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OSCILLATION CRITERIA FOR THIRD-ORDER NONLINEAR
DIFFERENTIAL EQUATIONS WITH FUNCTIONAL

ARGUMENTS

YUTAKA SHOUKAKU

Abstract. In this article, we consider the third-order nonlinear differential
equations with functional arguments. By using the Riccati inequality, we find

conditions for all solutions to be oscillatory.

1. Introduction

We are concerned with the oscillation of solutions to the nonlinear third-order
functional differential equation

y′′′(t) + a(t)y′′(t) + b(t)y′(t) +
m∑
i=1

ci(t)ϕi(y(σi(t))) = 0, t > 0. (1.1)

Throughout this paper we assume the following conditions:
(H1) a(t), b(t), ci(t) ∈ C((0,∞); [0,∞)), (i = 1, 2, . . . ,m);
(H2) σi(t) ∈ C([0,∞); R), limt→∞ σi(t) = ∞ (i = 1, 2, . . . ,m), there exists a

positive constant σ such that

σ′j(t) ≥ σ and t ≥ σj(t)
for some j ∈ {1, 2, . . . ,m};

(H3) ϕi(s) ∈ C1(R; R) (i = 1, 2, . . . ,m), ϕi(−s) = −ϕi(s) for s ≥ 0, ϕ′j(s) > 0,
ϕ′j(s) is nondecreasing for s > 0 and some j ∈ {1, 2, . . . ,m}.

Definition 1.1. By a solution of (1.1) we mean a function y(t) ∈ C3([Ty,∞); R)
satisfying sup{|y(t)| : t > Ty} > 0 for any Ty ≥ ty, where

ty = min
{

0, min
1≤i≤m

{
inf
t≥0

σi(t)
}}
.

A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros, otherwise
it is non-oscillatory.

Definition 1.2. A function H belongs to the class H, if H is in C(D; [0,∞)); H
satisfies

H(t, t) = 0, H(t, s) > 0 for t > s > t1,

2000 Mathematics Subject Classification. 34K11, 34C10.

Key words and phrases. Oscillation criteria; third order; Riccati inequality.
c©2013 Texas State University - San Marcos.

Submitted February 1, 2013. Published February 18, 2013.

1



2 Y. SHOUKAKU EJDE-2013/49

where D = {(t, s) ∈ R2 : t ≥ s ≥ t1}; there exists a constant k0 > 0 such that

lim
t→∞

H(t, s)
H(t, t1)

= k0 for all t ≥ t1;

and the partial derivative ∂H/∂s exists on D0 = {(t, s) ∈ R2; t > s ≥ t1} and
satisfies

∂H

∂s
(t, s) = −h(t, s)H(t, s),

for some function h in C(D0; R).

Since the work by Hanan [5] was published, oscillation of solutions to third-order
differential equations in special cases have been widely studied by many authors
[1, 2, 3, 4, 5, 6, 8, 9, 10]. This maybe because third-order differential equations
have applications in mechanical, physical and biological problems [8], and because
(1.1) plays an important role in control theory.

In the mid-nineteenth century, Maxwell analyzed the stability problem of the
Watt’s governor, and obtained conditions for stability which are based on third-
order linear differential equations with constant coefficients. Later, Routh and
Hurwitz derived more general stability conditions which are known today as the
Routh-Hurwitz stability criteria. In 1976, Erbe [4] studied the oscillatory and
asymptotic behavior of solutions of the equation

y′′′(t) + a(t)y′′(t) + b(t)y′(t) + c(t)yα(t) = 0, (1.2)

where α is the quotient of positive odd integers.

Theorem 1.3 ([4, Theorem 4.9]). Let a(t)b(t) + b′(t) ≤ 0 and y(t) be a nontrivial
solution of (1.2) with F [y(t0)] ≤ 0 for some t0 > 0, where

F [y(t)] = eA(t)[2y′′(t)y(t)− y′2(t) + b(t)y2(t)].

If the equation (
eA(t)z′(t)

)′
+ eA(t) {b(t)z(t) + λαtαc(t)zα(t)} = 0 (1.3)

is oscillatory (that is, all solutions of (1.3) are oscillatory) for some 0 < λ < 1
2 ,

then y(t) is oscillatory.

Tiryki and Aktas [10], Agarwal et al [1], and Aktas et al [2] studied third-order
nonlinear differential equations of the form(

r2(t) (r1(t)y′(t))′
)′

+ p(t)y′(t) + q(t)ϕ(y(σ(t))) = 0. (1.4)

Aktas et al [2] established the following results which ensures that every solution
is oscillatory or converges to zero.

Theorem 1.4 ([2, Theorem 3.1]). Assume that

R1(t, t0) =
∫ t

t0

ds

r1(s)
→∞, R2(t, t0) =

∫ t

t0

ds

r2(s)
→∞ as t→∞,

that there exist functions φ(t) and ρ1(t) in C([0,∞); (0,∞)) such that

ρ′1(t) ≥ 0, φ(t) = (r2(t)ρ′1(t))′ r1(t) + ρ1(t)p(t) ≥ 0,

φ′(t) ≤ 0,
∫ ∞

ρ1(t)q(t)dt =∞,
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and that the equation

(r2(t)z′(t))′ +
p(t)
r1(t)

z(t) = 0

is non-oscillatory. If there exists a function ρ2(t) ∈ C1([0,∞); (0,∞)) such that

lim sup
t→∞

∫ t

T

{
ρ2(s)q(s)− β2(s)

4α(s)
}
ds =∞,

then every solution of (1.4) either oscillates or converges to zero as t→∞. Here

α(t) =
K0R2(σ(t), t)σ′(t)
r1(σ(t))ρ2(t)

, β(t) =
ρ′2(t)
ρ2(t)

− p(t)R2(σ(t), t)
r1(t)

.

For the case when (1.1) has constant coefficients, it is easy to see that neither
a(t)b(t) + b(t) ≤ 0 in Theorem 1.3, nor R2(t, t0) → ∞ in Theorem 1.4 is satisifed.
The natural question to ask is:

Is it possible to find oscillation criteria for equation (1.1), which
include the case of constant coefficients?

In this article we obtain an affirmative answer to this question.

2. Preliminaries

First we sate an assumption to be used in the next lemma, which is needed for
proving our main results.

(H4) a(t) ≥ b(t) + 1.

Lemma 2.1. Assume that (A4) holds,∫ ∞
0

π(t)eA(t)
m∑
i=1

ci(t)dt =∞, (2.1)

where

A(t) =
∫ t

0

a(s)ds, π(t) =
∫ ∞
t

e−A(s)ds,

and y(t) is a non-oscillatory solution of (1.1). Then there exists a t0 > 0 such that

y(t)y′(t) > 0, ∀t ≥ t0. (2.2)

Proof. Suppose that y(t) is a non-oscillatory solution of (1.1). Without loss of
generality, we assume that y(t) > 0 and y(σi(t)) > 0 (i = 1, 2, . . . ,m). Note that if
y(t) is a negative solution, then −y(t) is a positive solution of (1.1).

We claim that y′(t) is non-oscillatory. If y′(t) is socillatory, then x(t) = −y′(t)
is oscillatory and satisfies(

eA(t)x′(t)
)′

+ b(t)eA(t)x(t) =
m∑
i=1

ci(t)eA(t)ϕi(y(σi(t))) ≥ 0. (2.3)

Let x(t) have consecutive zeros at α and β (t0 < α < β) such that x′(α) ≥ 0,
x′(β) ≤ 0 and x(t) ≥ 0 for t ∈ (α, β). Multiplying (2.3) by e−t and integrating over
[α, β], we obtain∫ β

α

e−t
(
eA(t)x′(t)

)′
dt+

∫ β

α

b(t)eA(t)x(t)e−tdt ≥ 0.
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Integrating by parts,

eA(β)−βx′(β)− eA(α)−αx′(α) +
∫ β

α

eA(t)−tx′(t)dt+
∫ β

α

b(t)eA(t)−tx(t)dt ≥ 0.

Integrating by parts again and using that x(α) = x(β) = 0,

eA(β)−βx′(β)− eA(α)−αx′(α) ≥
∫ β

α

eA(t)−t{a(t)− 1− b(t)}x(t)dt ≥ 0.

Since x′(α) ≥ 0 and x′(β) ≤ 0, the above inequality is a contradiction. Therefore,
x(t) is non-oscillatory, and there are two possible cases:

Case 1: x(t) < 0 for all t large enough. By definition x(t) = −y′(t). So y′(t) > 0
while y(t) > 0 for all t large enough. Therefore, (2.2) is satisfied.

Case 2: x(t) > 0 for all t large enough. Then y′(t) < 0 while y(t) > 0. From the
continuity of ϕi, there is a positive constant K0 such that

ϕi(y(σi(t))) ≤ K0 .

From (2.3), (
eA(t)x′(t)

)′
+ b(t)eA(t)x(t) ≤ K0e

A(t)
m∑
i=1

ci(t) . (2.4)

Let

v(t) = x(t) +K0

∫ ∞
t

e−A(s)

∫ s

t0

eA(ξ)
m∑
i=1

ci(ξ)dξds, . (2.5)

Then (2.4) implies (
eA(t)v′(t)

)′
≤ −b(t)eA(t)x(t) ≤ 0.

From this inequality, either v′(t) ≥ 0 or v′(t) < 0 for all t large enough. Differenti-
ating (2.5), we have

v′(t) = x′(t)−K0e
−A(t)

∫ t

t0

eA(s)
m∑
i=1

ci(s)ds ≤ x′(t) = −y′′(t).

If v′(t) ≥ 0, then y′′(t) = −v′(t) ≤ 0. Since y′(t) < 0 and y′′(t) ≤ 0, we have
limt→∞ y(t) = −∞ which contradicts y(t) ≥ 0. Therefore, v′(t) < 0. From v(t) > 0
and v′(t) < 0 it follows that there is a constant K1 > 0 such that

K1 > v(t) > K0

∫ ∞
t

e−A(s)

∫ s

t0

eA(ξ)
m∑
i=1

ci(ξ)dξds

= K0

∫ ∞
t

(−π(s))′
(∫ s

t0

eA(ξ)
m∑
i=1

ci(ξ)dξ
)
ds

≥ K0

∫ t

t0

π(s)eA(s)
m∑
i=1

ci(s)ds,

which contradicts the assumption (2.1). Therefore, Case 2 can not happen. The
proof is complete. �

For the next lemma we use the assumption
(H5) there exists a(t) ∈ C1((0,∞); [0,∞)) such that

b(t) ≥ a′(t).
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Lemma 2.2. Assume that (H5) and (2.1) hold. If y(t) is a nonoscillatory solution
of (1.1), then there exists a t0 > 0 such that (2.2) is satisfied.

Proof. Suppose that y(t) is a non-oscillatory solution of (1.1).
without loss of generality, we assume that y(t) > 0 and y(σi(t)) > 0 (i =

1, 2, . . . ,m). Note that if y(t) is a negative solution, then −y(t) is a positive solution
of (1.1).

We claim that y′(t) is non-oscillatory. If y′(t) is oscillatory, then x(t) = −y′(t)
is oscillatory and satisfies

x′′(t) + a(t)x′(t) + b(t)x(t) ≥ 0. (2.6)

Let x(t) be a consecutive zeros at α and β (t0 < α < β) such that x′(α) ≥ 0 and

x′(β) ≤ 0. Multiplying (2.6) by 1
a(t)e

R t
t0

b(s)
a(s)ds and integrating over [α, β], we obtain∫ β

α

{ 1
a(t)

e
R t
t0

b(s)
a(s)dsx′′(t) +

(
e

R t
t0

b(s)
a(s)dsx(t)

)′}
dt ≥ 0.

Integrating by parts,

1
a(β)

e
R β
t0

b(s)
a(s)dsx′(β)− 1

a(α)
e

R α
t0

b(s)
a(s)dsx′(α) ≥

∫ β

α

( 1
a(t)

e
R t
t0

b(s)
a(s)ds

)′
x′(t)dt.

Integrating by parts again and using that x(α) = x(β) = 0,

0 ≥ 1
a(β)

e
R β
t0

b(s)
a(s)dsx′(β)− 1

a(α)
e

R α
t0

b(s)
a(s)dsx′(α) ≥

∫ β

α

(b(t)− a′(t))
a2(t)

e
R t
t0

b(s)
a(s)dsx′(t)dt,

which implies that x′(t) ≤ 0 on [α, β]. The rest of the proof is the same as in
Lemma 2.1, and hence is omitted. �

Theorem 2.3. Assume that (H1)– (H4) or (H1)–(H3), (H5) are satisfied. If (2.1)
holds and the Riccati inequalities

z′(t) +
1
2

1
Pi(t)

z2(t) ≤ −Qi(t) (i = 1, 2)

have no solution on intervals [T,∞) for all large T > 0, then every solution of (1.1)
is oscillatory. Here

P1(t) = 1, Q1(t) = −1
2
a2(t) + b(t) +K1cj(t),

P2(t) =
1

σK2Ae(σj(t))
, Q2(t) = cj(t)eA(t) − 1

2

(b2(t)Ae(σj(t))
σK2

)
,

Ae(σj(t)) =
∫ σj(t)

0

e−A(s)ds

for some Ki > 0 (i = 1, 2), and some i ∈ {1, 2, . . . ,m}.

Proof. Suppose that y(t) is a nonoscillatory solution of (1.1) on [t0,∞) for some
t0 ≥ T > 0. Then there exists a t1 ≥ t0 such that y(t) > 0 and y(σi(t)) > 0 (i =
1, 2, . . . ,m) for t ≥ t1. We shall consider only this case, because the proof when
y(t) < 0 is similar. From (1.1), for each j ∈ {1, 2, . . . ,m}, we have(

eA(t)y′′(t)
)′

+ b(t)eA(t)y′(t) + cj(t)eA(t)ϕj(y(σj(t))) ≤ 0.
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According Lemma 2.1 or Lemma 2.2, y′(t) ≥ 0. Then from the above inequality,(
eA(t)y′′(t)

)′
≤ 0.

Hence y′′(t) ≥ 0 or y′′(t) < 0. First we assume that y′′(t) < 0. Letting

w1(t) =
eA(t)y′′(t)
y′(t)

,

we have

w′1(t) =

(
eA(t)y′′(t)

)′
y′(t)

− e−A(t)w2
1(t)

≤ −b(t)eA(t) − cj(t)eA(t)ϕj(y(σj(t)))
y′(t)

− e−A(t)w2
1(t).

On the other hand, there exist constants K0 and K1 such that

y(t) ≥ K0 and y′(t) ≤ K1.

It is easy to see that

w′1(t) ≤ −
(
b(t) +

K0

K1
cj(t)

)
eA(t) − e−A(t)w2

1(t).

Multiplying this by e−A(t), we obtain(
e−A(t)w1(t)

)′
+ a(t)e−A(t)w1(t) ≤ −

(
b(t) +

K0

K1
cj(t)

)
−
(
e−A(t)w1(t)

)2

. (2.7)

By Hölder’s inequality we have

|a(t)e−A(t)w1(t)| ≤ 1
2

(
a2(t) +

(
e−A(t)w1(t)

)2)
(2.8)

Substituting (2.8) into (2.7) yields(
e−A(t)w1(t)

)′
+

1
2

(
e−A(t)w1(t)

)2

≤ −
(
− 1

2
a2(t) + b(t) +

K0

K1
cj(t)

)
, (2.9)

which clearly imply that e−A(t)w1(t) is a solution of (2.9). Next we assume that
y′′(t) ≥ 0. Setting

w2(t) =
eA(t)y′′(t)
ϕj(y(σj(t)))

,

we obtain

w′2(t) =

(
eA(t)y′′(t)

)′
ϕj(y(σj(t)))

− eA(t)y′′(t)
ϕ′(y(σj(t)))y′(σj(t))σ′j(t)

ϕ2
j (y(σj(t)))

≤ −b(t)e
A(t)y′(t)

ϕj(y(σj(t)))
− cj(t)eA(t) − eA(t)y′′(t)

σK2y
′(σj(t))

ϕ2
j (y(σj(t)))

≤ − b(t)y′(t)
ϕj(y(σj(t)))

− cj(t)eA(t) − eA(t)y′′(t)
σK2y

′(σj(t))
ϕ2
j (y(σj(t)))

(2.10)

Since (eA(t)y′′(t))′ ≤ 0, we see that

y′(t) ≥ y′(σj(t)) ≥
∫ σj(t)

t0

e−A(s)
(
eA(s)y′′(s)

)
ds
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≥ eA(σj(t))y′′(σj(t))
∫ σj(t)

t0

e−A(s)ds

≥ eA(t)y′′(t)
∫ σj(t)

t0

e−A(s)ds = eA(t)y′′(t)Ae(σj(t)).

By using this relation, (2.10) is rewritten as

w′2(t) ≤ −b(t)Ae(σj(t))w2(t)− cj(t)eA(t) − σK2Ae(σj(t))w2
2(t).

Applying Hölder’s inequality,

|b(t)Ae(σj(t))w2(t)| ≤ 1
2

( (b(t)Ae(σj(t)))
2

(σK2Ae(σj(t)))
+ σK2Ae(σj(t))w2

2(t)
)
.

It is easy to establish the inequality

w′2(t) ≤ 1
2

(
b2(t)Ae(σj(t))

σK2

)
− cj(t)eA(t) − 1

2
σK2Ae(σj(t))w2

2(t), (2.11)

and then, w2(t) is a solution of (2.11). This contradicts the hypothesis and com-
pletes the proof. �

3. Main results

In this section, we establish some new oscillatory criteria for (1.1). First, we
state following useful lemmas.

Lemma 3.1 ([11, Theorem 4]). If there is a function φ(t) ∈ C1([T0,∞); (0,∞))
such that ∫ ∞

T1

( p̄(t)|φ′(t)|β
φ(t)

)1/(β−1)

dt <∞,
∫ ∞
T1

1
p̄(t)(φ(t))β−1

dt =∞,∫ ∞
T1

φ(t)q̄(t)dt =∞

for some T1 ≥ T0, then the Riccati inequality

x′(t) +
1
β

1
p̄(t)
|x(t)|β ≤ −q̄(t), (3.1)

where β > 1, p̄(t) ∈ C([T0,∞); (0,∞)) and q̄(t) ∈ C([T0,∞); R), has no solution
on intervals [T,∞) for all large T .

Let ρ(s) ∈ C1([0,∞); (0,∞)), and define an integral operator Aρτ by

Aρτ (v; t) =
∫ t

τ

H(t, s)v(s)ρ(s)ds, t ≥ τ ≥ T,

where v ∈ ([τ,∞); R). It is easy to see that Aρτ is linear and positive, and in fact
satisfies the following conditions:

(H6) Aρτ (k1v1 + k2v2; r) = k1A
ρ
τ (v1; r) + k2A

ρ
τ (v2; r) for k1, k2 ∈ R;

(H7) Aρτ ≥ 0 for v ≥ 0;
(H8) Aρτ (v′; r) = −H(r, τ)v(τ)ρ(τ) +Aρτ ((h− ρ′

ρ )v; r).

Lemma 3.2 ([12, Theorem 1]). If

lim sup
t→∞

1
H(t, T )

AρT

(
q̄ − β − 1

β
p̄

1
β−1 |h− ρ′

ρ
|β/(β−1); t

)
=∞,

then (3.1) has no solution on [T,∞) for all large T .



8 Y. SHOUKAKU EJDE-2013/49

Theorem 3.3. Assume that (H1)–(H4) or (H1)–(H3), (H5) are satisfied. If (2.1)
holds, and there exists functions φi(t) ∈ C1([T0,∞); (0,∞)) (i = 1, 2) such that∫ ∞

T

(
Pi(t)φ′i(t)

2

φi(t)

)
dt <∞,

∫ ∞
T

1
Pi(t)φi(t)

dt =∞,∫ ∞
T

φi(t)Qi(t)dt =∞ (i = 1, 2),

then every solution y(t) of (1.1) is oscillatory.

An application. The flow of chemically reacting mixtures of gases plays a func-
tional role in studying such diverse problems as the solar atmosphere, the atmo-
sphere of other stars, and the gas flow in the combustion chamber of a rocket engine.
It can be shown that for certain types of gases the propagation of small disturbances
through the gas as time t varies is described by the DE y′′′ + ay′′ + by′ + cy = 0,
where the given constants a, b and c are all positive. The independent variable y(t)
is proportional to the gas pressure. The coefficient a, b and c are related to physi-
cal properties and the temperature of the gas. In particular, the constants b and c
are usually called the frozen and equilibrium sound speeds of the gas, respectively.
From the physical properties, it is known that b > c. If the DE is asymptotically
stable, then all disturbances to the gas will eventually disappear because they are
dissipated by the chemical reactions. If the DE is not asymptotically stable, then
there are disturbances which do not decay as t→∞. Then shock waves may form
in the gas (see, [7]). Thus we consider the equation

y′′′(t) +
3
4
y′′(t) +

1
4
y′(t) +

3
16
y(t) = 0, t > 0. (3.2)

Here a(t) = 3/4, b(t) = 1/4 and c(t) = 3/16. It is easy to check that ab = c, which
implies that (3.2) is not asymptotically stable. Since b(t) > c(t) and

a(t) =
3
4
<

5
4

= b(t) + 1,

Assumption (H4) is not satisfied, but (H5) is satisfied. A straightforward compu-
tation yields∫ ∞

π(t)eA(t)c(t)dt =
∫ ∞ (4

3
e−3t/4

)(
e3t/4

)( 3
16

)
dt =∞.

By choosing φ1(t) = t1/2 and φ2(t) = e−t/2, we can show that∫ ∞ P1(t)φ′1(t)2

φ1(t)
dt =

∫ ∞ (1 ·
(

1
2 t
− 1

2
)2

t1/2

)
dt <∞,∫ ∞ 1

P1(t)φ1(t)
dt =

∫ ∞ ( 1
1 · t1/2

)
dt =∞,∫ ∞

φ1(t)Q1(t)dt =
∫ ∞ (

t1/2
)( 5

32

)
dt =∞,

and ∫ ∞ P2(t)φ′2(t)2

φ2(t)
dt =

∫ ∞ ( 3
4(1−e−3t/4)

(
− 1

2e
−t/2)2

e−t/2

)
dt <∞,∫ ∞ 1

P2(t)φ2(t)
dt =

∫ ∞ ( 1
3

4(1−e−3t/4)
e−t/2

)
dt =∞,
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φ2(t)Q2(t)dt =

∫ ∞
e−t/2

{ 3
16
e3t/4 − 1

24
(1− e−3t/4)

}
dt =∞.

So every solution of (3.2) is oscillatory by Theorem 3.3. Moreover, we note that
y(t) = sin t

2 is a solution of (3.2), which is oscillatory.

Theorem 3.4. Assume that (H1)–(H4) or (H1)–(H3), (H5) are satisfied. If

lim sup
t→∞

1
H(t, T )

AρT

(
Qi − Pi|h−

ρ′

ρ
|; t
)

=∞,

then every solution of (1.1) is oscillatory.

Now, we consider the linear case of equation (1.1):

y′′′(t) + a(t)y′′(t) + b(t)y′(t) +
m∑
i=1

ci(t)y(σi(t)) = 0, t > 0, (3.3)

where σi(t) ≥ t (i = 1, 2, . . . ,m).

Corollary 3.5. Assume that (H1)–(H4) or (H1)–(H3), (H5) are satisfied. If (2.1)
holds and∫ ∞ { 2

27
a3(t)− 1

3
a(t)b(t) + cj(t) −

2
3
√

3

(a2(t)
3
− (b(t)− a′(t))

)3/2}
dt =∞,

then every solution of (3.3) is oscillatory.

Proof. Suppose that y(t) is a nonoscillatory solution of (3.3). It follows from Lemma
2.1 or Lemma 2.2 that y(t)y′(t) > 0 holds. Now we define

u(t) =
y′(t)
y(t)

> 0,

then we see that

u′′(t) =
y′′′(t)
y(t)

− y′(t)y′′(t)
y2(t)

− 2u′(t)u(t)

≤ −a(t)u′(t)− 3u′(t)u(t)− {u3(t) + a(t)u2(t) + b(t)u(t) + cj(t)},
and so,[

u′(t) +
3
2
u2(t) + a(t)u(t)

]′
≤ −

{
u3(t) + a(t)u2(t) + (b(t)− a′(t))u(t) + cj(t)

}
≡ −F (u(t), t).

(3.4)

Clearly, F (u(t), t) has a minimum value for u(t) > 0 at

u(t) =
−a(t) +

√
a2(t)− 3(b(t)− a′(t))

3
.

This, together with (3.4), implies that[
u′(t) +

3
2
u2(t) + a(t)u(t)

]′
≤ −

{ 2
27
a3(s)− 1

3
a(s)b(s) + cj(s)−

2
3
√

3

(a2(s)
3
− (b(s)− a′(s))

)3/2}
.

Integrating this over [t0, t] yields

u′(t) ≤ u′(t0) +
3
2
u2(t0) + a(t0)u(t0)−

∫ t

t0

{ 2
27
a3(s)− 1

3
a(s)b(s) + cj(s)
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− 2
3
√

3

(a2(s)
3
− (b(s)− a′(s))

)3/2}
ds,

which implies that u(t) < 0 for large t. This contradiction completes the proof. �
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