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UNIQUENESS OF SOLUTIONS TO MATRIX EQUATIONS
ON TIME SCALES

ATIYA H. ZAIDI

Abstract. In this article we establish the uniqueness of solutions to first-order

matrix dynamic equations on time scales. These results extend the results
presented in [16], to more complex systems of n × n matrices. Following the

ideas in [5, Chap 5], we identify Lipschitz conditions that are suitable for

generalizing n× n models on time scales.

1. Introduction

The study of dynamic equations on time scales was initiated in 1988 by Hilger
when he introduced the concept and the calculus of unifying mathematical analyses
of continuous and discrete dynamics, see [8, 9]. Since then, several results have been
developed to complement his ideas to shape the linear and the nonlinear theory of
dynamic equations on time scales. These equations describe continuous, discrete
or both types of phenomena occurring simultaneously, through a single model.

In [14] and [16] we presented results regarding non-multiplicity of solutions to
nonlinear models of dimension n on time scales. In this work we use some of
these notions to understand more complex systems of dimension n × n for n ≥ 1.
Most physical processes that occur in nature, industry and society are nonlinear
in structure and depend on several factors and their interactions. Also, in real
life problems, it may not be possible to change the initial or prevailing states of a
dynamic model as well as the natural or circumstantial relationships of the variables
involved. Knowing that a mathematical formulation of such a system with the given
initial conditions has either one solution or no solution would lead to the guarantee
that ‘existence’ of a solution implies its uniqueness.

This article considers two basic types of dynamic initial-value problems (IVPs)
of dimension n× n. These are:

X∆ = F (t,X); (1.1)

and
X∆ = F (t,Xσ), (1.2)

subject to the initial condition
X(a) = A. (1.3)
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In the above systems, X is a n × n matrix-valued function on a time scale
interval [a, b]T := [a, b] ∩ T, where b > a and T is a non-empty and closed subset of
R; F : [a, b]T × Rn×n → Rn×n; Xσ = (xσij) and X∆ = (x∆

ij) for 1 ≤ i, j ≤ n; and
A is a given constant n × n matrix. A solution of (1.1), (1.3) (respectively (1.2),
(1.3)) will be a matrix-valued function X which solves (1.1) and (1.3) (respectively
(1.2), (1.3)) on [a, b]T.

Our main aim in this work is to derive conditions that would ensure that there
is either one or no solution to initial value problems (1.1), (1.3) and (1.2), (1.3).
Our new results significantly improve those in [16] and present some novel ideas.

In the next section, we identify some basic concepts of the time scale calculus
associated with matrix-valued functions, used in this work.

2. Preliminaries

The following definitions and descriptions explain how we use the time scale
notation within the set of m×n matrices on T. For more detail see [2, 5, 8, 13, 16].

Definition 2.1. Let T be an arbitrary time scale and t be a point in T. The
forward jump operator, σ(t) : T→ T, is defined as σ(t) := inf[s ∈ T : s > t} for all
t ∈ T. In a similar way, we define the backward jump operator, ρ(t) : T → T, as
ρ(t) := sup[s ∈ T : s < t} for all t ∈ T.

In this way, the forward and backward (or right and left) jump operators declare
whether a point in a time scale is discrete and give the direction of discreteness of
the point. The results in this paper concern the forward or rightward motion on
[a, b]T. Hence, further notation and definitions will be presented accordingly.

Continuity of a function at a point t ∈ T is said to be ‘right-dense’ when t = σ(t),
otherwise it is called right-scattered. The ‘step size’ at each point of a time scale
is given by the graininess function, µ(t), defined as µ(t) := σ(t)− t for all t ∈ T. If
T is discrete, it has a left-scattered maximum value m and we define Tκ := T \m,
otherwise Tκ := T.

Analogous to left-Hilger-continuous functions [17, p.3] for any ordered n-pair
(t,x) ∈ T×Rn, we define a right-Hilger-continuous function f(t,x) [8], [16, Chap.2]
as a function f : Tκ × Rn → Rn having the property that f is continuous at each
(t,x) where t is right-dense; and the limits

lim
(s,y)→(t−,x)

f(s,y) and lim
y→x

f(t,y)

both exist and are finite at each (t,x) where t is left-dense.
It should be noted that f is rd-continuous if f(t,x) = g(t) for all t ∈ T and is

continuous if f(t,x) = h(x) for all t ∈ T.
Continuity of a matrix-valued function at a point t ∈ T depends on the continuity

of its elements at t. Thus, for any t ∈ T, a rd-continuous matrix-valued function
is a function X : T → Rm×n with entries (xij), where xij : T → R; 1 ≤ i ≤ m,
1 ≤ j ≤ n; and each xij is rd-continuous on T. Moreover, we say that X ∈ Crd =
Crd(T; Rm×n) [5, p.189].

Thus, a right-Hilger-continuous matrix-valued function can be defined as follows.

Definition 2.2. Assume F : T×Rm×n → Rm×n be a matrix-valued function with
entries (fij), where each fij : T×R→ R for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We define F to
be right-Hilger-continuous if each fij(t, xkl) is right-Hilger-continuous for all t ∈ T
and xkl : T→ R for all k, l.
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For a fixed t ∈ Tκ and x : T→ R, the delta-derivative of x (if it exists) is x∆(t),
having the property that given ε > 0 there is a neighbourhood U of t, that is,
U = (t− δ, t+ δ) ∩ T for some δ > 0, such that

|(xσ(t)− x(s))− x∆(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U.
Hence, the delta-derivative of a matrix-valued function on a time scale is defined
as follows.

Definition 2.3. Consider a function X : T→ Rm×n. We define X∆ := (x∆
ij) to be

the delta-derivative of X on T if x∆
ij(t) exists for all t ∈ Tκ for 1 ≤ i ≤ m, 1 ≤ j ≤ n

and say that X is delta-differentiable on T.

The set of delta-differentiable matrix-valued functions K : T → Rm×n satisfy
the simple useful formula [5, Theorem 5.2]

Kσ(t) = K(t) + µ(t)K∆(t), for all t ∈ Tκ. (2.1)

The next theorem describes some more identities related to delta-differentiable
matrix-valued functions that will be used in this work [5, Theorem 5.3].

Theorem 2.4. Let X,Y : T → Rn×n be matrix-valued functions. If X,Y are
delta-differentiable on T then for all t ∈ Tκ we have

(1) (X + Y )∆(t) = X∆(t) + Y ∆(t);
(2) for any constant k ∈ R, (kX)∆(t) = kX∆(t);
(3) (XY )∆(t) = [X∆Y +XσY ∆](t) = [XY ∆ +X∆Y σ](t);
(4) If X(t) and Xσ(t) are invertible for all t ∈ Tκ then

(X−1)∆(t) = [−X−1X∆(Xσ)−1](t) = [−(Xσ)−1X∆X−1](t);

(5) If Y (t) and Y σ(t) are invertible for all t ∈ Tκ then

[XY −1]∆(t) = [X∆ −XY −1Y ∆](t)(Y σ(t))−1 = [X∆ − (XY −1)σY ∆](t)Y −1(t);

(6) (X∗)∆ = (X∆)∗, where ∗ refers to the conjugate transpose.

Since all rd-continuous functions are delta-integrable, the antiderivative of a
right-Hilger-continuous matrix-valued function can be defined as follows:

Theorem 2.5. Let F : Tκ × Rn×n → Rn×n and a ∈ T. If F is right-Hilger-
continuous on Tκ×Rn×n then there exists a function F : C(T; Rn×n)→ C(T; Rn×n)
called the delta integral of F such that

[FX](t) :=
∫ t

a

F (s,X(s)) ∆s, for all t ∈ T. (2.2)

Next, we describe positive definite (respectively semi-definite) n×n matrices and
some of their properties [3, 10, 13] on a time scale T. This class of square matrices
on T plays a vital role in establishing the non-multiplicity of solutions in this work.

Definition 2.6. Let X : [a, b]T → Rn×n and z : T → Rn. Assume z 6= 0 for all
t ∈ [a, b]T. We say that X is positive definite (respectively semi-definite) on [a, b]T if
zTXz > 0 (respectively zTXz ≥ 0) on [a, b]T and write X > 0 (respectively X ≥ 0)
on [a, b]T.

It is clear from the above definition that a negative definite (respectively semi-
definite) matrix Y on T will satisfy zTY z < 0 (respectively zTY z ≤ 0) for all
z : T→ Rn and we say that Y < 0 (respectively Y ≤ 0).

The class of positive definite matrices defined above has the following properties.
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Theorem 2.7. Let A,B : [a, b]T → Rn×n. If A,B > 0 on [a, b]T then the following
properties hold on [a, b]T:

(1) A is invertible and A−1 > 0;
(2) if α ∈ R such that α > 0 then αA > 0;
(3) if λ is an eigenvalue of A then λ > 0;
(4) det(A) > 0 and tr(A) > 0.
(5) A+B > 0, ABA > 0 and BAB > 0;
(6) if A and B commute then AB > 0 and similarly, if there exists C ≤ 0 such

that A and C commute then AC ≤ 0;
(7) if A−B ≥ 0 then A ≥ B and B−1 ≥ A−1 > 0;
(8) there exists β > 0 such that A > βI.

From now onwards we will write ‘matrix-valued functions’ simply as ‘matrix
functions’.

The regressiveness of n×n matrix functions and their properties is described [5]
in a similar manner as for regressive n-functions, as follows.

Definition 2.8. Consider a function K : T→ Rn×n. We call K regressive on T if
the following conditions hold:

• K is rd-continuous on T; and
• the matrix I + µ(t)K is invertible for all t ∈ Tκ, where I is the identity

matrix.
We denote by R := R(T; Rn×n) the set of all regressive n× n matrix functions on
T.

It is clear from above that all positive and negative definite matrix functions
on T are regressive. The following theorem [5, pp. 191-192] lists some important
properties of regressive n× n matrix functions on T.

Theorem 2.9. Let A,B : T → Rn×n. If A,B ∈ R then the following identities
hold for all t ∈ Tκ:

(1) (A⊕B)(t) = A(t) +B(t) + µ(t)A(t)B(t);
(2) (	A)(t) = −[I + µ(t)A(t)]−1A(t) = −A(t)[I + µ(t)A(t)]−1;
(3) A∗ ∈ R and (	A)∗ = 	A∗;
(4) I + µ(t)(A(t)⊕B(t)) = [I + µ(t)A(t)][I + µ(t)B(t)];
(5) I + µ(t)(	A(t)) = [I + µ(t)A(t)]−1;
(6) (A	B)(t) = (A⊕ (	B))(t) = A(t)− [I + µ(t)A(t)][I + µ(t)B(t)]−1B(t);
(7) [A(t)⊕B(t)]∗ = A(t)∗ ⊕B(t)∗.

An important implication of regressive matrices is the generalized matrix expo-
nential function on a time scale.

Definition 2.10. Let K : T→ Rn×n be a matrix function. Fix a ∈ T and assume
P ∈ R. The matrix exponential function denoted by eK(·, a) is defined as

eK(t, a) :=

{
exp

( ∫ t
a
K(s) ds

)
, for t ∈ T, µ = 0;

exp
( ∫ t

a
log(I+µ(s)K(s))

µ(s) ∆s
)
, for t ∈ T, µ > 0,

(2.3)

where Log is the principal logarithm function.

Further properties of the matrix exponential function [5, Chap 5] are shown in
the following theorem and will be used in this work.
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Theorem 2.11. Let K,L : T → Rn×n. If K,L ∈ R then the following properties
hold for all t, s, r ∈ T:

(1) e0(t, s) = I = eK(t, t), where 0 is the n× n zero matrix;
(2) eσK(t, s) = eK(σ(t), s) = (I + µ(t)K(t))eK(t, s);
(3) eK(s, t) = e−1

K (t, s) = e∗	K∗(t, s);
(4) eK(t, s)eK(s, r) = eK(t, r);
(5) eK(t, s)eL(t, s) = eK⊕L(t, s);
(6) e∆

K(t, s) = −eσK(t, s)K(t) = K(t)eK(t, s).

3. Lipschitz continuity of matrix functions on T

In this section, we present Lipschitz conditions for matrix functions defined on a
subset of T× Rn×n that allow positive definite matrices as Lipschitz constants for
these functions. The ideas are obtained from [1, 6, 7, 11, 16].

Definition 3.1. Let S ⊂ Rn×n and F : [a, b]T × S → Rn×n be a right-Hilger-
continuous function. If there exists a positive definite matrix B on T such that for
all P,Q ∈ S with P > Q, the inequality

F (t, P )− F (t, Q) ≤ B(t)(P −Q), for all (t, P ), (t, Q) ∈ [a, b]κT × S (3.1)

holds, then we say F satisfies a left-handed-Lipschitz condition (or is left-handed
Lipschitz continuous) on [a, b]T × S.

Definition 3.2. Let S ⊂ Rn×n and F : [a, b]T × S → Rn×n be a right-Hilger-
continuous function. If there exists a positive definite matrix C on T such that for
all P,Q ∈ S with P > Q, the inequality

F (t, P )− F (t, Q) ≤ (P −Q)C(t), for all (t, P ), (t, Q) ∈ [a, b]κT × S (3.2)

holds, then we say F satisfies a right-handed-Lipschitz condition (or is right-handed
Lipschitz continuous) on [a, b]T × S.

Classically, any value of matrix B or C satisfying (3.1) or (3.2) would depend
only on [a, b]T × S [7, p.6]. For the sake of simplicity, we consider [a, b]κT × S to
be convex and F smooth on [a, b]κT × S, then the following theorem [6, p.248], [1,
Lemma 3.2.1] will be helpful to identify a Lipschitz constant for F on [a, b]κT × S
and obtain a sufficient condition for F to satisfy the left- or right-handed Lipschitz
condition on [a, b]κT × S.

Corollary 3.3. Let a, b ∈ T with b > a and A ∈ Rn×n. Let k > 0 be a real constant
and consider a function F defined either on a rectangle

Rκ := {(t, P ) ∈ [a, b]κT × Rn×n : ‖P −A‖ ≤ k} (3.3)

or on an infinite strip

Sκ := {(t, P ) ∈ [a, b]κT × Rn×n : ‖P‖ ≤ ∞} (3.4)

If ∂F (t,P )
∂pij

exists for 1 ≤ i, j ≤ n and is continuous on Rκ (or Sκ), and there is a
positive definite matrix L such that for all (t, P ) ∈ Rκ (or Sκ), we have

∂F (t, P )
∂pij

≤ L, for all i, j = 1, 2, · · · , (3.5)

then F satisfies (3.1) with B(t) = L or (3.2) with C(t) = L, on Rκ (or Sκ) for all
t ∈ [a, b]T.
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Proof. The proof is similar to that of [1, Lemma 3.2.1] except that ∂F (t,P )
∂pij

is con-
sidered bounded above by B(t) = L in the left-handed case or C(t) = L in the
right-handed case, for all t ∈ [a, b]T. �

4. non-multiplicity results

In this section, we present generalized results regarding non-multiplicity of solu-
tions to the dynamic IVPs (1.1), (1.3) and (1.2), (1.3) within a domain S ⊆ Rn×n.
The results are based on ideas in [5, Chap 5], methods from ordinary differential
equations [4, 6, 11] and matrix theory [3, 10, 12].

The following lemma establishes conditions for a function to be a solution of
(1.1), (1.3) and (1.2), (1.3).

Lemma 4.1. Consider the dynamic IVP (1.1), (1.3). Let F : [a, b]κT × Rn×n →
Rn×n be a right-Hilger-continuous matrix-valued function. Then a function X
solves (1.1), (1.3) if and only if it satisfies

X(t) =
∫ t

a

F (s,X(s)) ∆s+A, for all t ∈ [a, b]T, (4.1)

where A is the initial value defined by (1.3).

Similarly, a function can be defined as solution of (1.2), (1.3).

Theorem 4.2. Let S ⊆ Rn×n and let F : [a, b]T × S → Rn×n be a right-Hilger-
continuous function. If there exist P,Q ∈ S with P > Q and a positive definite
matrix B on T such that

(1) B ∈ Crd([a, b]T; Rn×n);
(2) eB(t, a) commutes with B(t) for all t ∈ [a, b]T and with P (t) for all (t, P ) ∈

[a, b]T × S;
(3) the left-handed Lipschitz condition, F (t, P )− F (t, Q) ≤ B(t)(P −Q) holds

for all (t, P ), (t, Q) ∈ [a, b]]κT × S,

then (1.1), (1.3) has, at most, one solution, X, with X(t) ∈ S for all t ∈ [a, b]T.

Proof. By contradiction, and without loss of generality, assume two solutions X,Y
of (1.1), (1.3) in S such that X −Y ≥ 0 on [a, b]T, and show that X ≡ Y on [a, b]T.

By Lemma 4.1, X and Y must satisfy (4.1). Define U := X − Y on [a, b]T. We
show that U ≡ 0 on [a, b]T.

Since (3) holds, we have that for all t ∈ [a, b]κT,

U∆(t)−B(t)U(t) = F (t,X(t))− F (t, Y (t))−B(t)(X(t)− Y (t)) ≤ 0. (4.2)

Note that B being positive definite is regressive on [a, b]T. Thus, eB(t, a) and
eσB(t, a) are positive definite with positive definite inverses on [a, b]T, by Theorem
2.7(1). Hence, using Theorem 2.4 and Theorem 2.11 we obtain, for all t ∈ [a, b]κT,

[e−1
B (t, a)U(t)]∆ = [e−1

B (t, a)]σU∆(t) + [e−1
B (t, a)]∆U(t)

= [eσB(t, a)]−1U∆(t)− [eσB(t, a)]−1e∆
B(t, a)e−1

B (t, a)U(t)

= [eσB(t, a)]−1[U∆(t)− e∆
B(t, a)e−1

B (t, a)U(t)]

= (eσB(t, a))−1[U∆(t)−B(t)U(t)].
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By (2), e−1
B (t, a) also commutes with B(t) for all t ∈ [a, b]T and with P∆(t) for

all (t, P ) ∈ [a, b]T × S. Thus, e−1
B (t, a) commutes with U∆(t) − B(t)U(t) for all

t ∈ [a, b]T. Hence, by Theorem 2.7(6) and (4.2), we obtain

[e−1
B (t, a)U(t)]∆ ≤ 0, for all t ∈ [a, b]κT.

This means that e−1
B (t, a)U(t) is non-increasing for all t ∈ [a, b]T. But U is positive

semi-definite on [a, b]T and U(a) = 0. Hence, U ≡ 0 on [a, b]T. This means that
X(t) = Y (t) for all t ∈ [a, b]T.

A similar argument holds for the case where Y −X ≥ 0 on [a, b]T. �

Corollary 4.3. The above theorem also holds if F has continuous partial deriva-
tives with respect to the second argument and there exists a positive definite matrix
L such that ∂F (t,P )

∂pij
≤ L. In that case, F satisfies (3.1) on Rκ or Sκ with B := L

by Corollary 3.3.

Theorem 4.4. Let S ⊆ Rn×n and let F : [a, b]T × S → Rn×n be a right-Hilger-
continuous function. If there exist P,Q ∈ S with P > Q and a positive definite
matrix C on T such that

(1) C ∈ Crd([a, b]T; Rn×n);
(2) e−1

C (t, a) commutes with C(t) for all t ∈ [a, b]T and with P (t) for all (t, P ) ∈
[a, b]T × S;

(3) the right-handed Lipschitz condition, F (t, P )−F (t, Q) ≤ (P −Q)C(t) holds
for all (t, P ), (t, Q) ∈ [a, b]]κT × S,

then the IVP (1.1), (1.3) has, at most, one solution, X, with X(t) ∈ S for all
t ∈ [a, b]T.

The proof of the above theorem is similar to that of Theorem 4.2 and is omitted.

Corollary 4.5. Theorem 4.4 also holds if F has continuous partial derivatives with
respect to the second argument and there exists a positive definite matrix H such
that ∂F (t,P )

∂pij
≤ H. In that case, F satisfies (3.2) on Rκ or Sκ with C := H by

Corollary 3.3.

Our next two results are based on the, so called, inverse Lipschitz condition, in
conjunction with (3.1) and (3.2) and determine the existence of at most one solution
for (1.1), (1.3) in the light of Theorem 2.7(7).

Corollary 4.6. Let S ⊆ Rn×n and F : [a, b]κT × S → Rn×n be right-Hilger-
continuous. Assume there exists a positive definite matrix B on T such that con-
ditions (1) and (2)of Theorem 4.2 hold. If P (t) − Q(t) is positive definite and
increasing for all (t, P ), (t, Q) ∈ [a, b]T × S and the inequality

(P −Q)−1 ≤ (P∆ −Q∆)−1B(t), for all (t, P ), (t, Q) ∈ [a, b]]κT × S (4.3)

holds, then the IVP (1.1), (1.3) has, at most, one solution X with X(t) ∈ S for all
t ∈ [a, b]T.

Proof. If (4.3) holds then (3.1) holds, by Theorem 2.7(7). Hence, the IVP (1.1),
(1.3) has, at most, one solution by Theorem 4.2. �

Corollary 4.7. Let S ⊆ Rn×n and F : [a, b]κT × S → Rn×n be right-Hilger-
continuous. Assume there exists a positive definite matrix C on T such that con-
ditions (1) and (2) of Theorem 4.4 hold. If P (t) − Q(t) is positive definite and
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increasing for all (t, P ), (t, Q) ∈ [a, b]T × S and the inequality

(P −Q)−1 ≤ C(t)(P∆ −Q∆)−1, for all (t, P ), (t, Q) ∈ [a, b]]κT × S (4.4)

holds, then the IVP (1.1), (1.3) has, at most, one solution x with x(t) ∈ S for all
t ∈ [a, b]T.

Proof. If (4.4) holds then (3.2) holds, by Theorem 2.7(7). Hence, the IVP (1.1),
(1.3) has, at most, one solution by Theorem 4.4. �

We now present examples that illustrate the results presented above.

Example 4.8. Let S := {P ∈ R2×2 : tr(PTP ) ≤ 2}, where P =
(
p1 −p2

−p2 p1

)
.

Consider the initial-value problem

X∆ = F (t,X) =
(

1 + x2
1 t2 − x2

x2 + t t− x1

)
, for all t ∈ [0, b]κT;

X(0) = I.

(4.5)

We shall show that the conditions of Theorem 4.2 are satisfied for all (t, P ) ∈
[0, b]κT × S; Then there is at most one solution, X, such that tr(XTX) ≤ 2 for all
t ∈ [0, b]T.

Note that for P ∈ S, we have
∑2
j=1 p

2
j ≤ 1. Thus, |pj | ≤ 1 for j = 1, 2. Let

L :=
(
k 0
0 k

)
, where k ≥ 2, and let z ∈ R2 such that z =

(
x
y

)
, where x 6= 0, y 6= 0.

Then
zTLz = k(x2 + y2) > 0. (4.6)

Hence, L is positive definite. We note that F is right-Hilger-continuous on [0, 1]κT×S
as all of its components are rd-continuous on [0, b]T. Moreover, since L is a diagonal
matrix, it commutes with eL(t, a) for all t ∈ [0, b]T. It can be easily verified that
eL(t, a) also commutes with P for all (t, P ) ∈ [0, b]T × S.

We show that F satisfies (3.1) on [0, b]κT × S. Note that for all t ∈ [0, b]κT and
P ∈ S, we have

∂F

∂p1
=
(

2p1 0
0 −1

)
and

∂F

∂p2
=
(

0 −1
1 0

)
.

Then, we have

zT
(
L− ∂F

∂p1

)
z = (k − 2p1)x2 + (k + 1)y2 ≥ (k − 2)x2 + (k + 1)y2,

and

zT
(
L− ∂F

∂p2

)
z = k(x2 + y2).

Therefore, L− ∂F
∂pj

> 0 for j = 1, 2. Hence, by Theorem 2.7(7), ∂F
∂pj

< L for j = 1, 2.

Using Corollary 4.3, condition (3.1) holds for L =
(
k 0
0 k

)
and all k ≥ 0. In this

way, all conditions of Theorem 4.2 are satisfied and we conclude that our example
has at most one solution, X(t) ∈ S, for all t ∈ [0, b]T.



EJDE-2013/50 UNIQUENESS OF SOLUTIONS 9

Example 4.9. Let u,w be differentiable functions on (0,∞)T with u increasing and
u(t) > 1 for all t ∈ (0,∞)T. Let D be the set of all 2×2 positive definite symmetric

matrices. We shall show that, for any matrix P =
(

2u+ t2 w − t
w − t 2u+ t2

)
in D, there

exists a matrix Q :=
(
u+ t2 w − t
w − t u+ t2

)
also in D, such that the dynamic IVP (1.1),

(1.3) has at most one solution, X, on (0,∞)T such that X ∈ D. To do this we show
that (1.1) satisfies the conditions of Corollary 4.6 for all (t, P ), (t, Q) ∈ (0,∞)κT×D.

Note that since u,w are differentiable on (0,∞)T, we have P∆ = F (t, P ) and
Q∆ = F (t, Q) right-Hilger-continuous on (0,∞)κT. We also note that P − Q =(
u 0
0 u

)
, which is positive definite and, hence, invertible by Theorem 2.7(1). More-

over, since u∆, v∆ > 0 on (0,∞)κT, we have P∆ − Q∆ > 0 and thus, invertible on
(0,∞)κT. Define

B :=
(
a(t) b(t)
b(t) a(t)

)
with a(t) > b(t) for all t ∈ (0,∞)T. Then B and any real symmetric matrix
of the form Q will commute with eB(t, 0), as there exists an orthogonal matrix

M =
(

1 1
−1 1

)
such that M−1BM , M−1eB(t, 0)M and M−1QM are diagonal

matrices of their respective eigenvalues. Thus, the principal axes of the associated
quadric surface of eB(t, 0) coincide with the principal axes of the associated quadric
surfaces of B and Q (see [12, p.7]).

Therefore, taking a = u∆ and b = 0, we obtain that for all t ∈ (0,∞)T,

(P −Q)−1 − (P∆ −Q∆)−1B(t) =
(

1/u− 1 1
−1 1/v − 1

)
.

Thus, for any non-zero vector z =
(
x
y

)
, and all t ∈ (0,∞)T, we have

zT [(P −Q)−1 − (P∆ −Q∆)−1B(t)]z =
1− u
u

x2 +
1− v
v

y2 < 0.

Therefore, (P −Q)−1 < (P∆ −Q∆)−1B(t) for all t ∈ (0,∞)T by Theorem 2.7(7).
This completes all conditions of Corollary 4.6 and we conclude that (1.1), (1.3) has
at most one positive definite symmetric solution, X, on (0,∞)T.

Our next result concerns the non-multiplicity of solutions to the dynamic IVPs
(1.2), (1.3) for which Theorem 4.2 or Corollary 4.3 do not apply directly. However,
we employ the regressiveness of a positive definite matrix B to prove the non-
multiplicity of solutions to the IVP (1.2), (1.3), within a domain S ⊆ Rn×n by
constructing a modified Lipschitz condition.

Theorem 4.10. Let S ⊆ Rn×n and let F : [a, b]T × S → Rn×n be a right-Hilger-
continuous function. If there exist P,Q ∈ S with P > Q on [a, b]T and a positive
definite matrix B on T such that

(1) B ∈ Crd([a, b]T; Rn×n);
(2) eB(t, a) commutes with B(t) for all t ∈ [a, b]T and with P (t) for all (t, P ) ∈

[a, b]T × S;
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(3) the inequality

F (t, P )− F (t, Q) ≤ −	B(t)(P −Q) (4.7)

holds for all (t, P ), (t, Q) ∈ [a, b]]κT × S,
then the IVP (1.2), (1.3) has at most one solution, X, with X(t) ∈ S for all
t ∈ [a, b]T.

Proof. As before, we consider X,Y ∈ S as two solutions of (1.2), (1.3) and assume
X − Y ≥ 0 on [a, b]T. Let W := X − Y . We show that W ≡ 0 on [a, b]T, and so
X(t) = Y (t) for all t ∈ [a, b]T.

Since (4.7) holds, we have that for all t ∈ [a, b]κT,

W∆(t) +	B(t)Wσ(t) = F (t,Xσ(t))− F (t, Y σ(t)) +	B(t) (Xσ(t)− Y σ(t)) ≤ 0.
(4.8)

Note that I+µ(t)B(t) is invertible for all t ∈ [a, b]T. Then, by Theorem 2.9(2), the
above inequality reduces to

W∆(t)− [I + µ(t)B(t)]−1B(t)Wσ(t) ≤ 0, for all t ∈ [a, b]T (4.9)

Also, eB(t, a) and eσB(t, a) are positive definite and hence invertible on [a, b]T and,
thus, from Theorem 2.11(2),

W∆(t)− eB(t, a)(eσB(t, a))−1B(t) Wσ(t) ≤ 0, for all t ∈ [a, b]T. (4.10)

By (2), e−1
B (t, a) commutes with B(t) and, so, eB(t, a) commutes with eσB(t, a), for

all t ∈ [a, b]T. Thus, e−1
B (t, a) commutes with (eσB(t, a))−1 for all t ∈ [a, b]T. We also

see from (2) that e−1
B (t, a) commutes with P (t) for all t ∈ [a, b]T. Hence, e−1

B (t, a)
commutes with Pσ and P∆ and, thus, with W∆ and Wσ for all t ∈ [a, b]T. Thus,
rearranging inequality (4.10) and using Theorem 2.7(6) yields

e−1
B (t, a)W∆(t)− (eσB(t, a))−1B(t) Wσ(t) ≤ 0, for all t ∈ [a, b]κT. (4.11)

Hence, using properties of Theorem 2.4, Theorem 2.7 and Theorem 2.11 and
with (4.11), we obtain that for all t ∈ [a, b]T,

[e−1
B (t, a)W (t)]∆ = e−1

B (t, a)W∆(t) + [e−1
B (t, a)]∆Wσ(t)

≤ e−1
B (t, a)W∆(t)− [eσB(t, a)]−1B(t)Wσ(t) ≤ 0.

Thus e−1
B (t, a)W (t) is non-increasing for all t ∈ [a, b]T. Since e−1

B (t, a) > 0 for all
t ∈ [a, b]T and W (a) = 0, we have W ≡ 0 on [a, b]T. This means that X(t) = Y (t)
for all t ∈ [a, b]T. �

Theorem 4.11. Let S ⊆ Rn×n and let F : [a, b]T × S → Rn×n be a right-Hilger-
continuous function. If there exist P,Q ∈ S with P > Q on [a, b]T and a positive
definite matrix C on T such that

(1) C ∈ Crd([a, b]T; Rn×n);
(2) eC(t, a) commutes with C(t) for all t ∈ [a, b]T and with P (t) for all (t, P ) ∈

[a, b]T × S;
(3) the inequality

F (t, P )− F (t, Q) ≤ (P −Q)(−	 C(t)) (4.12)

holds for all (t, P ), (t, Q) ∈ [a, b]]κT × S,
then the IVP (1.2), (1.3) has at most one solution, X, with X(t) ∈ S for all
t ∈ [a, b]T.
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The proof of the above theorem is similar to that of Theorem 4.10 and is omitted.

Corollary 4.12. Let S ⊆ Rn×n and F : [a, b]κT × S → Rn×n be right-Hilger-
continuous. Assume there exists a positive definite matrix B on T such that condi-
tions (1) and (2) of Theorem 4.10 hold. If P −Q is positive definite and increasing
on [a, b]T and the inequality

(P −Q)−1 ≤ (P∆ −Q∆)−1(−	B), for all (t, P ), (t, Q) ∈ [a, b]]κT × S (4.13)

holds, then the IVP (1.2), (1.3) has at most one solution x with x(t) ∈ S for all
t ∈ [a, b]T.

Proof. If (4.13) holds then (4.7) holds, by Theorem 2.7(7). Hence, the IVP (1.2),
(1.3) has at most one solution by Theorem 4.10. �

Corollary 4.13. Let S ⊆ Rn×n and F : [a, b]κT × S → Rn×n be right-Hilger-
continuous. Assume there exists a positive definite matrix C on T such that condi-
tions (1) and (2) of Theorem 4.11 hold. If P −Q is positive definite and increasing
on [a, b]T and the inequality

(P −Q)−1 ≤ −	 C(P∆ −Q∆)−1, for all (t, P ), (t, Q) ∈ [a, b]T × S (4.14)

holds, then the IVP (1.2), (1.3) has at most one solution x with x(t) ∈ S for all
t ∈ [a, b]T.

Proof. If (4.14) holds then (4.12) holds, by Theorem 2.7(7). Hence, the IVP (1.2),
(1.3) has at most one solution by Theorem 4.11. �

We will present an example of a matrix dynamic equation that has a unique
solution. This is shown by using Theorem 4.10 and the following lemma [5, Theorem
5.27].

Lemma 4.14. Let a, b ∈ T with b > a and X : [a, b]T → Rn×n. Consider the
matrix initial value problem

X∆ = −V ∗(t)Xσ +G(t), for all t ∈ [a, b]T;

X(a) = A,
(4.15)

where G is a rd-continuous n× n-matrix function on [a, b]T. If V : [a, b]T → Rn×n
is regressive then the above IVP has a unique solution

X(t) = e	V ∗(t, a)A+
∫ t

a

e	V ∗(t, s)G(s)∆s, for all t ∈ [a, b]T.

Example 4.15. Let S be the set of all non-singular symmetric n×n matrices. Let
K = aiI for 1 ≤ i ≤ n, where ai ∈ (0,∞)T. Consider the IVP

X∆ = F (t,Xσ)

= −K(I + 2µ(t)K)−1Xσ + e	K(I+2µ(t)K)−1(t, a), for all t ∈ [a, b]κT;
(4.16)

X(a) = I. (4.17)

We shall show that (4.16), (4.17) has at most one solution, X, such that X ∈ S for
all t ∈ [a, b]T.

We note that K is a positive definite and diagonal matrix and hence I + µK is
invertible on [a, b]κT and commutes with K. Moreover, −K(I + µK)−1 is also diag-
onal and, thus, commutes with P . We also note that F is right-Hilger-continuous
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on [a, b]T × Rn×n, as each of its components is rd-continuous on [a, b]T. It follows
from Theorem 2.9(2) that for all t ∈ [a, b]T,

F (t, P )− F (t, Q) +	2K(P −Q)

= [−K(I + 2µ(t)K)−1 − 2K(I + 2µ(t)K)−1](P −Q)

= −3K(I + 2µ(t)K)−1(P −Q) < 0,

where we used Theorem 2.7(6) in the last step. Therefore, (4.7) holds for B = 2K.
Hence, (4.16), (4.17) has at most one solution X such that X ∈ S. Moreover, by
Lemma 4.14, the non-singular matrix function

X(t) = e	K(I+2µ(t)K)−1(t, a)(1 + t− a)

uniquely solves (4.16), (4.17) for all t ∈ [a, b]T.

Conclusions and future directions

In this paper, we presented results identifying conditions that guarantee that if
the systems (1.1), (1.3) and (1.2), (1.3) have a solution then it is unique. We did
this by formulating suitable Lipschitz conditions for matrix functions on time scales.
The conditions will also be helpful to determine the existence and uniqueness of
solutions to dynamic models of the form (1.1), (1.3) and (1.2), (1.3) and of the
higher order. The results will also be helpful to establish properties of solutions for
matrix-valued boundary value problems on time scales.

Acknowledgements. The author is grateful to Dr. Chris Tisdell for his useful
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