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LOCAL ESTIMATES FOR GRADIENTS OF SOLUTIONS TO
ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS

FENGPING YAO

Abstract. In this article we present local L∞ estimates for the gradient of so-

lutions to elliptic equations with variable exponents. Under proper conditions

on the coefficients, we prove that

|∇u| ∈ L∞loc

for all weak solutions of

div(g(|∇u|2, x)∇u) = 0 in Ω.

1. Introduction

Uhlenbeck [26] obtained the interior Hölder regularity estimates for weak solu-
tions of

div(ρ(|∇u|2)∇u) = 0 in Ω, (1.1)

where Ω is an open bounded domain in Rn and ρ ∈ C1([0,∞)) is a non-negative
function satisfying the ellipticity conditions

K−1(ξ + c)
p
2−1 ≤ ρ(ξ) + 2ρ′(ξ)ξ ≤ K(ξ + c)

p
2−1, (1.2)

|ρ′(ξ1)ξ1 − ρ′(ξ2)ξ2| ≤ K(ξ1 + ξ2 + c)p/2−1−α(ξ1 − ξ2)α (1.3)

for c ≥ 0, α > 0 and p ≥ 2. Especially when ρ(t) = t(p−2)/2, (1.1) is reduced to
the well-known p-Laplace equation. In this paper we discuss the nonlinear elliptic
equation of the form

div(g(|∇u|2, x)∇u) = 0 in Ω, (1.4)

where g(ξ, x) ∈ C1([0,∞)× Ω) satisfies the ellipticity conditions

C1(ξ + c)
p(x)

2 −1 ≤ g(ξ, x) + 2ξgξ(ξ, x) ≤ C2(ξ + c)
p(x)

2 −1, (1.5)

|∇xg(ξ, x)| ≤ C3(ξ + c)
p(x)−1

2 |∇p|| ln(ξ + c)| (1.6)

for c ≥ 0 and C1, C2, C3 > 0. Here p ∈W 1,s(Ω) for some s > n satisfies

1 < p1 = inf
Ω
p(x) ≤ p(x) ≤ sup

Ω

p(x) = p2 <∞. (1.7)
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Especially when g(t) = |t|
p(x)−2

2 , (1.4) is reduced to the p(x)-Laplace elliptic equa-
tion

div(|∇u|p(x)−2∇u) = 0 in Ω, (1.8)
whose special case is the well-known elliptic p-Laplace equation

div(|∇u|p−2∇u) = 0 in Ω,

which can be derived from the variational problem

Φ(u) = min
v|∂Ω=ϕ

Φ(v) =: min
v|∂Ω=ϕ

∫
Ω

|∇v|pdx.

We denote by Lp(x)(Ω) the variable exponent Lebesgue-Sobolev space

Lp(x)(Ω) = {f : Ω→ R : f is measurable and
∫

Ω

|f |p(x)dx <∞} (1.9)

equipped with the Luxemburg type norm

‖f‖Lp(x)(Ω) = inf
{
λ > 0 :

∫
Ω

|f
λ
|p(x)dx ≤ 1

}
. (1.10)

Furthermore, we define

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)} (1.11)

equipped with the norm

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω). (1.12)

By W
1,p(x)
0 (Ω) we denote the closure of C∞0 (Ω) in W 1,p(x)(Ω). Actually, the

Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) spaces are Banach spaces. There have been

many investigations (see for example [9, 10, 11, 12, 16, 17, 19]) on properties of
such variable exponent Sobolev spaces.

As usual, the solutions of (1.4) are taken in a weak sense. We now state the
definition of weak solutions.

Definition 1.1. A function u ∈ W 1,p(x)
loc (Ω) is a local weak solution of (1.4) in Ω

if for any ϕ ∈W 1,p(x)
0 (Ω), we have∫

Ω

g(|∇u|2, x)∇u · ∇ϕdx = 0.

When p(x) is a constant, many authors [3, 4, 8, 13, 14, 21, 20, 23] have studied
the regularity estimates for weak solutions of quasilinear elliptic equations of p-
Laplacian type and the general case. When p(x) is not a constant, such elliptic
problems (1.4) appear in mathematical models of various physical phenomena, such
as the electro-rheological fluids (see, e.g., [1, 24, 25]). There have been many
investigations [7, 15, 22] on Hölder estimates for the p(x)-Laplacian elliptic equation
(1.4) and the more general case. Moreover, Acerbi and Mingione [2] proved that

|f |p(x) ∈ Lqloc(Ω) =⇒ |∇u|p(x) ∈ Lqloc(Ω) for q > 1

of weak solutions of (1.4) under some assumptions. The purpose of this paper is
to extend the results in [6], where Challal and Lyaghfouri obtained the local L∞

estimates of |∇u| for the weak solutions of (1.8).
We assume that p(x) ∈ W 1,s(Ω) for some s > n. Therefore, it follows from

Sobolev embedding theorem that p(x) is Hölder continuous with the exponent α =
1− n

s . Now let us state the main result of this work.
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Theorem 1.2. Let u ∈W 1,p(x)
loc (Ω) be a local weak solution of (1.4) in Ω under the

assumptions (1.2)-(1.7). Then

|∇u| ∈ L∞loc(Ω).

Moreover, for each σ > 0 and δ ∈ (0, sq(1+σ)
s−q − 1) with a constant q ∈ (n, s) there

exists a positive constant R0, depending only on n, p1, p2, s, σ and ‖|∇u(·)|p(·)‖L1(Ω),
such that, wherever R ≤ R0 and the ball B8R ⊂ Ω,

sup
BR/2

|∇u|p(x) ≤ C
[ ∫
−B2R |∇u|p(x)dx+RαM (1+σ)δ

(∫
−B8R |∇u|p(x) + 1dx

)1+σ]
,

where M =
∫
B8R
|∇u|p(x)dx+ 1 and C depends on n, p1, p2, s, δ, ‖p‖W 1,s(Ω).

2. Proof of main result

In this section we prove Theorem 1.2 by the approximation method. Our ap-
proach is much influenced by [2, 5, 6, 27]. We first consider the following approxi-
mation problem

div(g(ε+ |∇uε|2, x)∇uε) = 0, x ∈ BR′ , ε ∈ (0, 1], (2.1)

where B8R ⊂ BR′ ⊂ Ω. It is standard that (2.1), with the boundary condition
uε = u on ∂BR′ , has a unique solution uε for fixed ε > 0. Similarly to [6], we know
uε ∈W 2,2

loc (Ω). From [15] we can get u ∈ C1,µ
loc (Ω) for some µ ∈ (0, 1) and then have

uε ∈ C1,ν(BR′) for some ν ∈ (0, 1) and ‖uε‖C1,ν(BR′ )
≤ C, where C is a constant

independent of ε. It follows from Ascoli-Arzelà theorem that there exists a sequence
of {εk} converging to 0 and satisfying uεk → u uniformly in C1(BR′). Thus, we
can get the result of Theorem 1.2 by passing to the limit as εk → 0 in (2.9) with
uεk replacing u. So it is sufficient to prove (2.9). For simplicity, we shall drop the
index ε on uε in the exposition. Actually, from (2.1) we have[

g(ε+ |∇u|2, x)δij + 2gξ(ε+ |∇u|2, x)uiuj
]
uij + gxi(ε+ |∇u|2, x)ui

=: aijuij + biui = 0.
(2.2)

Lemma 2.1. If g(ξ, x) ∈ C1([0,∞) × Ω) satisfies the conditions (1.2) and (1.6),
then

C4(ξ + c)
p(x)

2 −1 ≤ g(ξ, x) ≤ C5(ξ + c)
p(x)

2 −1, (2.3)

|gξ(ξ, x)ξ| ≤ C6(ξ + c)
p(x)

2 −1 (2.4)

for the constants 0 < C4 < C1, C5 > C2 > 0, C6 > 0, and

C4

(
c+ ε+ |∇u|2

) p(x)
2 −1

|ξ|2 ≤ aijξiξj ≤ C5

(
c+ ε+ |∇u|2

) p(x)
2 −1

|ξ|2. (2.5)

Proof. We prove only (1.3). First, we find that

ξ1/2g(ξ, x) =
∫ ξ

0

(t1/2g(t, x))tdt =
∫ ξ

0

1
2
t−1/2

[
g(t, x) + 2tgt(t, x)

]
dt.

Moreover, from (1.2) we deduce that

I1 =:
C1

2

∫ ξ

0

t−1/2(t+ c)
p(x)

2 −1dt ≤ ξ1/2g(ξ, x) ≤ C2

2

∫ ξ

0

t−1/2(t+ c)
p(x)

2 −1dt =: I2.

To estimate of I1 and I2, we consider two cases.
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Case 1: c ≤ ξ. We have

I1 ≥
C1

2

∫ ξ

0

(t+ c)
p(x)−3

2 dt

≥ C1

2
(

1
p(x)−1

2

)[(ξ + c)
p(x)−1

2 − c
p(x)−1

2 ]

≥ C1

p(x)− 1
[(ξ + c)

p(x)−1
2 − c

p(x)−1
2 ].

Since 1 < p1 ≤ p(x) ≤ p2 and c ≤ c+ξ
2 , we obtain

I1 ≥
C1

p2 − 1
[
1− (

1
2

)
p(x)−1

2
]
(ξ + c)

p(x)−1
2

≥ C ′1(ξ + c)
p(x)−1

2

≥ C ′1(ξ + c)
p(x)

2 −1ξ1/2.

Moreover, we deduce that

I2 ≤
C2

2
(ξ + c)

p(x)
2 −1

∫ ξ

0

t−1/2dt = C2(ξ + c)
p(x)

2 −1ξ1/2 for p(x) ≥ 2

and

I2 ≤
C2

2

∫ ξ

0

t
p(x)−1

2 −1dt

=
C2

p(x)− 1
ξ
p(x)−1

2

≤ C2

p1 − 1
(ξ + c)

p(x)−1
2

=
C2

p1 − 1
(ξ + c)

p(x)
2 −1(ξ + c)1/2 for 1 < p(x) < 2,

which implies

I2 ≤
C2

p1 − 1
(ξ + c)

p(x)
2 −1(2ξ)1/2 =

√
2C2

p1 − 1
(ξ + c)

p(x)
2 −1ξ1/2

in view of the fact that ξ + c ≤ 2ξ.
Case 2: c ≥ ξ. Then we have

I1 ≥
C1

2
ξ−1/2(ξ + c)−1/2

∫ ξ

0

(t+ c)
p(x)−1

2 dt.

Furthermore,

I1 ≥
C1

2
ξ−1/2(ξ + c)

p(x)
2 −1(

1
2

)
p(x)−1

2 ξ ≥ C ′′1 (ξ + c)
p(x)

2 −1ξ1/2

since
t+ c ≥ c ≥ 1

2
(2c) ≥ 1

2
(ξ + c).

Since the result (1.3) is trivial when c = 0. Without loss of generality we may as
well assume that c > 0. Moreover, we first have

I2 ≤
C2

2
c−1/2

∫ ξ

0

t−1/2(t+ c)
p(x)−1

2 dt
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≤ C2

2
c−1/2(ξ + c)

p(x)−1
2

∫ ξ

0

t−1/2dt,

which implies

I2 ≤ C2c
−1/2(ξ + c)

p(x)−1
2 ξ1/2

= C2(
ξ + c

c
)1/2(ξ + c)

p(x)
2 −1ξ1/2

≤
√

2C2(ξ + c)
p(x)

2 −1ξ1/2.

Thus, from Cases 1 and 2 we have

g(ξ, x) ≥ min{C ′1, C ′′1 }(ξ + c)
p(x)

2 −1 =: C4(ξ + c)
p(x)

2 −1.

and

g(ξ, x) ≤ max{
√

2C2

p1 − 1
,
√

2C2}(ξ + c)
p(x)

2 −1 =: C5(ξ + c)
p(x)

2 −1,

which completes the proof. �

Now we denote
ãij =

aij
(c+ ε+ |∇u|2)p(x)/2−1

. (2.6)

Then, from the lemma above we have

C4|ξ|2 ≤ ãijξiξj ≤ C5|ξ|2 for each ξ ∈ Rn. (2.7)

Lemma 2.2. Let v = (c+ ε+ |∇u|2)p(x)/2. Then

div(
1

p(x)
ãij · ∇v) ≥ div

(
aij · (c+ ε+ |∇u|2) · ln(c+ ε+ |∇u|2)1/2 · ∇p(x)

p(x)

)
=: divF,

where
|F | ≤ C

[
1 + (c+ ε+ |∇u|2)

p(x)(1+σ)
2

]
· |∇p| for any σ > 0.

Proof. We first find that

vxj

=
(

(c+ ε+ |∇u|2) ln(c+ ε+ |∇u|2)1/2pxj (x) + p(x)ukjuk
)

(c+ ε+ |∇u|2)
p(x)

2 −1

and

div(
1

p(x)
ãij · ∇v)

= div(aij · (c+ ε+ |∇u|2) · ln(c+ ε+ |∇u|2)1/2 · ∇p(x)
p(x)

) + (aijukjuk)xi .

Moreover, differentiating (2.1) with respect to xk, we have

(aijukj)xi + (bkui)xi = 0, (2.8)

where bk is defined in (2.2). Therefore, from (2.8) and Lemma 2.1 we have

div
( 1
p(x)

ãij · ∇v
)

= div
(
aij · (c+ ε+ |∇u|2) · ln(c+ ε+ |∇u|2)1/2 · ∇p(x)

p(x)

)
+ aijukjuki − (bkui)xi
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≥ div
(
aij · (c+ ε+ |∇u|2) · ln(c+ ε+ |∇u|2)1/2 · ∇p(x)

p(x)

)
− (bkui)xi

=: divF,

where

F = aij ·
(
c+ ε+ |∇u|2

)
· ln
(
c+ ε+ |∇u|2

)1/2

· ∇p(x)
p(x)

− bkui

Actually, for any σ > 0, we deduce that

|F | ≤ C
{
|aij |(c+ ε+ |∇u|2)| ln(c+ ε+ |∇u|2)1/2||∇p|+ |bk||∇u|

}
≤ C

(
c+ ε+ |∇u|2

) p(x)
2 | ln(c+ ε+ |∇u|2)1/2||∇p|

≤ C
(
c+ ε+ |∇u|2

) p(x)
2 | ln(c+ ε+ |∇u|2)

p(x)
2 ||∇p|

≤ C
[
1 + (c+ ε+ |∇u|2)

p(x)(1+σ)
2

]
|∇p|.

By (1.6), Lemma 2.1 and

|x|| lnx| ≤ C(1 + |x|1+σ) for any σ > 0,

we complete the proof. �

Next, we shall finish the proof of the main result.

Proof. Using [18, Theorem 8.17], we obtain

sup
BR/2

(
c+ ε+ |∇u|2

)p(x)/2

≤ C
( 1
Rn

∫
B2R

(c+ ε+ |∇u|2)
p(x)

2 dx+K(R)
)
,

where

K(R) = R1−nq
(∫

B2R

|F |qdx
)1/q

and q ∈ (n, s) is a positive constant. Moreover, we find that∫
B2R

|F |qdx ≤ C
{∫

B2R

|∇p|qdx+
∫
B2R

(c+ ε+ |∇u|2)
p(x)(σ+1)q

2 |∇p|qdx
}

Furthermore, using Hölder’s inequality and p ∈W 1,s, we obtain∫
B2R

|F |qdx

≤ C
(∫

B2R

|∇p|sdx
)q/s{(∫

B2R

(c+ ε+ |∇u|2)
p(x)sq(1+σ)

2(s−q) dx
) s−q

s

+R
n(s−q)

s

}
≤ C

{(∫
B2R

(c+ ε+ |∇u|2)
p(x)sq(1+σ)

2(s−q) dx
) s−q

s

+R
n(s−q)

s

}
≤ CR

n(s−q)
s

[ ∫
−B2R(c+ ε+ |∇u|2)

p(x)sq(1+σ)
2(s−q) + 1dx

] s−q
s

.

From [2, Theorem 2], for any δ ∈ (0, sq(1+σ)
s−q − 1) there exists a positive constant

R0, depending only on n, p1, p2, s, δ, σ and ‖ |∇u(·)|p(·)‖L1(Ω), such that, wherever
R ≤ R0,∫

B2R

|F |qdx ≤ CR
n(s−q)

s Mq(1+σ)δ
(∫
−B8R(c+ ε+ |∇u|2)

p(x)
2 + 1dx

)q(1+σ)

,
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where
M =

∫
B8R

|∇u|p(x)dx+ 1.

Thus,

K(R) ≤ CRαM (1+σ)δ
(∫
−B8R(c+ ε+ |∇u|2)

p(x)
2 + 1dx

)1+σ

,

where the exponent α = 1− n
s . Finally, we conclude that

sup
BR/2

(c+ ε+ |∇u|2)
p(x)

2

≤ C
[ ∫
−B2R(c+ ε+ |∇u|2)

p(x)
2 dx

+M (1+σ)δRα
(∫
−B8R(c+ ε+ |∇u|2)

p(x)
2 + 1dx

)1+σ]
,

(2.9)

which completes our proof. �
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