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BOUNDARY STABILIZATION OF MEMORY-TYPE
THERMOELASTIC SYSTEMS

MUHAMMAD I. MUSTAFA

Abstract. In this article we consider an n-dimentional thermoelastic system

with a viscoelastic damping localized on a part of the boundary. We establish
an explicit and general decay rate result that allows a larger class of relaxation

functions and generalizes previous results existing in the literature.

1. Introduction

In this article we are concerned with the problem
utt − µ∆u− (µ+ λ)∇(div u) + β∇θ = 0, in Ω× (0,∞)

bθt − h∆θ + β div ut = 0, in Ω× (0,∞)

u = 0, on Γ0 × (0,∞)

u(x, t) = −
∫ t

0

g(t− s)
(
µ
∂u

∂v
+ (µ+ λ)(div u)v

)
(s)ds, on Γ1 × (0,∞)

θ = 0, on ∂Ω× (0,∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω,

(1.1)

which is a thermoelastic system subjected to the effect of a viscoelastic damping
acting on a part of the boundary. Here Ω is a bounded domain of Rn (n ≥ 2)
with a smooth boundary ∂Ω = Γ0 ∪ Γ1, v is the unit outward normal to ∂Ω,
u = u(x, t) ∈ Rn is the displacement vector, θ = θ(x, t) is the difference temprature,
and the relaxation function g is a positive differentiable function. The coefficients
b, h, β, µ, λ are positive constants, where µ, λ are Lame moduli. In this work, we
study the decay properties of the solutions of (1.1) for functions g of more general
type.

Over the past few decades, there has been a lot of work on local existence,
global existence, well-posedeness, and asymptotic behavior of solutions to some
initial-boundary value problems in both one-dimensional and multi-dimensional
thermoelasticity. In the absence of the viscoelastic term, it is well-known (see
[2, 4, 10]) that the one dimensional linear thermoelastic system associated with
various types of boundary conditions decays to zero exponentially. Irmscher and
Racke [4] obtained explicit sharp exponential decay rates for solutions of the system
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of classical thermoelasticity in one dimension. They also considered the model of
thermoelasticity with second sound and compared the results of both models with
respect to the asymptotic behavior of solutions. Also, Rivera and Qin [13, 18]
established the global existence, uniqueness and exponential stability of solutions
to equations of one-dimensional nonlinear thermoelasticity with thermal memory
subject to Dirichlet-Dirichlet or Dirichlet-Neumann boundary conditions.

In the multi-dimensional case the situation is much different. It was shown
that the dissipation given by heat conduction is not strong enough to produce
uniform rate of decay to the solution as in the one-dimensional case. We have
the pioneering work of Dafermos [3], in which he proved an asymptotic stability
result; but no rate of decay has been given. The uniform rate of decay for the
solution in two or three dimensional space was obtained by Jiang, Rivera and Racke
[7] in special situation like radial symmetry. Lebeau and Zuazua [8] proved that
the decay rate is never uniform when the domain is convex. Thus, to solve this
problem, additional damping mechanisms are necessary. In this aspect, Pereira and
Menzala [17] introduced a linear internal damping effective in the whole domain,
and established the uniform decay rate. A similar result was obtained by Liu
[9] for a linear boundary velocity feedback acting on the elastic component of the
system, and by Liu and Zuazua [11] for a nonlinear boundary feedback. Oliveira and
Charao [16] improved the result in [17] by including a weak localized dissipative term
effective only in a neighborhood of part of the boundary and proved an exponential
decay result when the damping term is linear and a polynomial decay result for a
nonlinear damping term. Recently, Mustafa [15] treated weak frictional damping
of more general type and established an explicit and general decay result. For more
literature on the subject, we refer the reader to books by Jiang and Racke [6] and
Zheng [19].

Regarding viscoelastic damping, we mention that viscoelastic materials are those
with properties that are intermediate between elasticity and viscosity. As a result of
this behavior, some of the energy stored in a viscoelastic system is recovered upon
removal of the load, and the remainder is dissipated in the form of heat causing
a damping for the system. This type of material possesses a characteristic which
can be referred to as a memory effect. That is, the material response not only
does depend on the current state, but also on all past occurrences, and in a general
sense, the material has a memory keeping all past states. As a conclusion, this
memory effect is expressed by an integral term from the initial time 0 up to the
time t with kernel usually called the relaxation function. Rivera and Racke [14]
considered magneto-thermoelastic model with a boundary condition of memory
type. If g is the relaxation function and k is the resolvent kernel of −g′/g(0), they
showed that the energy of the solution decays exponentially (polynomially) when
k and (−k′) decay exponentially (polynomially). Messaoudi and Al-Shehri [12]
considered a wider class of kernels k that are not necessarily decaying exponentially
or polynomially and proved a more general energy decay result.

Our aim in this work is to investigate (1.1) for resolvent kernels of general-type
decay and obtain a more general and explicit energy decay formula, from which the
usual exponential and polynomial decay rates are only special cases of our result.
The proof is based on the multiplier method and makes use of some properties of
convex functions including the use of the general Young’s inequality and Jensen’s
inequality. The paper is organized as follows. In section 2, we present some notation
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and material needed for our work. Some technical lemmas and the proof of our main
result will be given in section 3.

2. Preliminaries

We use the standard Lebesgue and Sobolev spaces with their usual scalar prod-
ucts and norms. Throughout this paper, c is used to denote a generic positive
constant. In the sequel we assume that system (1.1) has a unique solution

u ∈ C(R+;H2(Ω)n ∩ V n) ∩ C1(R+;V n) ∩ C2(R+;L2(Ω)n),

θ ∈ C(R+;H2(Ω) ∩H1
0 (Ω)) ∩ C1(R+;L2(Ω)).

where V = {w ∈ H1(Ω) : w = 0 on Γ0}. This result can be proved, for initial data
in suitable function spaces, using standard arguments such as the Galerkin method.

First we state the following hypothesis

(A1) Ω is a bounded domain of Rn with a smooth boundary ∂Ω = Γ0 ∪ Γ1,
where Γ0 and Γ1 are closed and disjoint, with meas(Γ0) > 0, v is the unit
outward normal to ∂Ω, and there exists a fixed point x0 ∈ Rn such that,
for m(x) = x− x0, m · v ≤ 0 on Γ0 and m · v > 0 on Γ1.

We remark that (A1) implies that there exist constants δ0 and R such that

m · v ≥ δ0 > 0 on Γ1 and |m(x)| ≤ R for all x ∈ Ω. (2.1)

We denote by k the resolvent kernel of (−g′/g(0)) which satisfies

k(t) +
1
g(0)

(g′ ∗ k)(t) = − 1
g(0)

g′(t), t ≥ 0

where * denotes the convolution product

(u ∗ v)(t) =
∫ t

0

u(t− s)v(s)ds.

By differentiating the equation

u(x, t) = −
∫ t

0

g(t− s)
(
µ
∂u

∂v
+ (µ+ λ)(div u)v

)
(s)ds

and taking α = 1
g(0) , we obtain

µ
∂u

∂v
+ (µ+ λ)(div u)v = −α

[
ut + g′ ∗

(
µ
∂u

∂v
+ (µ+ λ)(div u)v

)]
on Γ1 × (0,∞). Using the Volterra’s inverse operator, we obtain

µ
∂u

∂v
+ (µ+ λ)(div u)v = −α[ut + k ∗ ut], on Γ1 × (0,∞)

which gives, assuming throughout the paper that u0 ≡ 0,

µ
∂u

∂v
+ (µ+ λ)(div u)v = −α[ut + k(0)u+ k′ ∗ u], on Γ1 × (0,∞). (2.2)

Therefore, we use (2.2) instead of the boundary condition on Γ1 × (0,∞) in (1.1)
and also consider the following assumption on k,
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(A2) k : R+ → R+ is a C2 function such that

k(0) > 0, lim
t→∞

k(t) = 0, k′(t) ≤ 0

and there exists a positive function H ∈ C1(R+), with H(0) = 0, and H is
linear or strictly increasing and strictly convex C2 function on (0, r], r < 1,
such that

k′′(t) ≥ H(−k′(t)), ∀t > 0.
Now, we introduce the energy functional

E(t) :=
1
2

∫
Ω

(
|ut|2 + µ|∇u|2 + (µ+ λ)(div u)2 + bθ2

)
dx

+
α

2
k(t)

∫
Γ1

|u|2 dΓ− α

2

∫
Γ1

(k′ ◦ u)(t) dΓ

where |∇u|2 =
∑n
i=1 |∇ui|2 and

(f ◦ w)(t) =
∫ t

0

f(t− s)|w(t)− w(s)|2ds.

Our main stability result is the following.

Theorem 2.1. Assume that (A1) and (A2) hold. Then there exist positive con-
stants k1, k2, k3 and ε0 such that the solution of (1.1) satisfies

E(t) ≤ k3H
−1
1 (k1t+ k2) ∀t ≥ 0, (2.3)

where

H1(t) =
∫ 1

t

1
sH ′0(ε0s)

ds and H0(t) = H(D(t))

provided that D is a positive C1 function, with D(0) = 0, for which H0 is strictly
increasing and strictly convex C2 function on (0, r] and∫ +∞

0

−k′(s)
H−1

0 (k′′(s))
ds < +∞. (2.4)

Moreover, if
∫ 1

0
H1(t)dt < +∞ for some choice of D, then we have the improved

estimate

E(t) ≤ k3G
−1(k1t+ k2) where G(t) =

∫ 1

t

1
sH ′(ε0s)

ds. (2.5)

In particular, this last estimate is valid for the special case H(t) = ctp, for
1 ≤ p < 3

2 .

Remarks. 1. Using the properties of H, one can show that the function H1 is
strictly decreasing and convex on (0, 1], with limt→0H1(t) = +∞. Therefore, The-
orem 2.1 ensures

lim
t→∞

E(t) = 0.

2. Our main result is obtained under very general hypotheses on the resolvent
kernel k that allow to deal with a much larger class of functions k that guarantee
the uniform stability of (1.1) with an explicit formula for the decay rates of the
energy.

3. The usual exponential and polynomial decay rate estimates, already proved
for k satisfying k′′ ≥ d(−k′)p, 1 ≤ p < 3/2, are special cases of our result. We will
provide a “simpler” proof for these special cases.
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4. The condition k′′ ≥ d(−k′)p, 1 ≤ p < 3/2 assumes (−k′(t)) ≤ ωe−dt when
p = 1 and (−k′(t)) ≤ ω/t

1
p−1 when 1 < p < 3/2. Our result allows resolvent

kernels whose derivatives are not necessarily of exponential or polynomial decay.
For instance, if

k′(t) = − exp(−tq)
for 0 < q < 1, then k′′(t) = H(−k′(t)) where, for t ∈ (0, r], r < 1,

H(t) =
qt

[ln(1/t)]
1
q−1

which satisfies hypothesis (A2). Also, by taking D(t) = tα, (2.4) is satisfied for
any α > 1. Therefore, we can use Theorem 2.1 and do some calculations (see the
appendix) to deduce that the energy decays at the same rate of (−k′(t)), that is

E(t) ≤ c exp(−ωtq).

5. The well-known Jensen’s inequality will be of essential use in establishing our
main result. If F is a convex function on [a, b], f : Ω → [a, b] and j are integrable
functions on Ω, j(x) ≥ 0, and

∫
Ω
j(x)dx = C > 0, then Jensen’s inequality states

that

F
[ 1
C

∫
Ω

f(x)j(x)dx
]
≤ 1
C

∫
Ω

F [f(x)]j(x)dx.

6. Since limt→∞ k(t) = 0, then limt→∞(−k′(t)) cannot be equal to a positive
number, and so it is natural to assume that limt→+∞(−k′(t)) = 0, and so to also
assume that limt→∞ k′′(t) = 0. Hence, there is t1 > 0 large enough such that
k′(t1) < 0 and

max{k(t),−k′(t), k′′(t)} < min{r,H(r), H0(r)}, ∀t ≥ t1. (2.6)

As k′ is nondecreasing, k′(0) < 0 and k′(t1) < 0, then k′(t) < 0 for any t ∈ [0, t1]
and

0 < −k′(t1) ≤ −k′(t) ≤ −k′(0), ∀t ∈ [0, t1].
Therefore, since H is a positive continuous function,

a ≤ H(−k′(t)) ≤ b, ∀t ∈ [0, t1]

for some positive constants a and b. Consequently, for all t ∈ [0, t1],

k′′(t) ≥ H(−k′(t)) ≥ a =
a

k′(0)
k′(0) ≥ a

k′(0)
k′(t)

which gives, for some positive constant d,

k′′(t) ≥ −dk′(t), ∀t ∈ [0, t1]. (2.7)

3. Proof of the main result

In this section we prove Theorem 2.1. For this purpose, we establish several
lemmas.

Lemma 3.1. Under the assumptions (A1) and (A2), the energy functional satisfies,
along the solution of (1.1), the estimate

E′(t) = −h
∫

Ω

|∇θ|2dx−α
∫

Γ1

|ut|2 dΓ+
α

2
k′(t)

∫
Γ1

|u|2 dΓ−α
2

∫
Γ1

(k′′◦u)(t) dΓ ≤ 0.

(3.1)
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Proof. Multiplying the first two equations of (1.1) by ut and θ respectively, inte-
grating by parts over Ω, and using (2.2) give

1
2
d

dt

∫
Ω

(
|ut|2 + µ|∇u|2 + (µ+ λ)(div u)2 + bθ2

)
dx

= −h
∫

Ω

|∇θ|2dx+
∫

Γ1

ut · [µ
∂u

∂v
+ (µ+ λ)(div u)v] dΓ

= −h
∫

Ω

|∇θ|2dx− α
∫

Γ1

|ut|2 dΓ− αk(0)
∫

Γ1

utu dΓ− α
∫

Γ1

ut · (k′ ∗ u) dΓ

Then, we make use of the identity

(f ∗ w)w′ = −1
2
f(t)|w(t)|2 +

1
2
f ′ ◦ w − 1

2
d

dt

[
f ◦ w − (

∫ t

0

f(s)ds)|w(t)|2
]
. (3.2)

to obtain (3.1). �

Lemma 3.2. Under the assumptions (A1) and (A2), the functional

K(t) :=
∫

Ω

ut · [M + (n− 1)u]dx,

where M = 〈M1,M2, . . . ,Mn〉 such that Mi = 2m∇ui and m = (x− x0), satisfies,
along the solution of (1.1), the estimate

K ′(t) ≤ −
∫

Ω

|ut|2dx−
µ

2

∫
Ω

|∇u|2dx− µ+ λ

2

∫
Ω

(div u)2dx

+ c

∫
Γ1

|ut|2 dΓ− c
∫

Γ1

(k′ ◦ u)(t) dΓ + c

∫
Ω

|∇θ|2dx, ∀t ≥ t1.
(3.3)

Proof. Direct computations, using (1.1), yield

K ′(t) =
n∑
i=1

∫
Ω

uit(2m · ∇uit)dx+ (n− 1)
∫

Ω

|ut|2dx+
∫

Ω

utt · [M + (n− 1)u]dx

=
n∑
i=1

∫
Ω

m · ∇|uit|2dx+ (n− 1)
∫

Ω

|ut|2dx

+
∫

Ω

[µ∆u+ (µ+ λ)∇(div u)− β∇θ] · [M + (n− 1)u]dx

= −
∫

Ω

|ut|2dx+
∫

Γ1

(m · v)|ut|2 dΓ + µ

∫
Ω

∆u · [M + (n− 1)u]dx

+ (µ+ λ)
∫

Ω

∇(div u)[M + (n− 1)u]dx− β
∫

Ω

∇θ[M + (n− 1)u]dx.

(3.4)
Now, we estimate the last three terms in (3.4) as follows. First, we use the identity

2∇ui · ∇(m · ∇ui) = 2|∇ui|2 +m · ∇(|∇ui|2) (3.5)

to obtain∫
Ω

∆u ·M dx

= −
n∑
i=1

∫
Ω

∇ui · ∇(2m.∇ui)dx+
n∑
i=1

∫
∂Ω

(2m · ∇ui)∂u
i

∂v
dΓ
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= −
n∑
i=1

∫
Ω

[2|∇ui|2 +m · ∇(|∇ui|2)]dx+
n∑
i=1

∫
∂Ω

(2m · ∇ui)∂u
i

∂v
dΓ

= (n− 2)
∫

Ω

|∇u|2dx−
∫
∂Ω

(m · v)|∇u|2 dΓ +
n∑
i=1

∫
∂Ω

(2m · ∇ui)∂u
i

∂v
dΓ

By the fact that

∇ui = (
∂ui

∂v
)v on Γ0, (3.6)

we obtain∫
Ω

∆u ·M dx = (n− 2)
∫

Ω

|∇u|2dx−
∫

Γ1

(m · v)|∇u|2 dΓ +
∫

Γ0

(m · v)|∇u|2 dΓ

+
n∑
i=1

∫
Γ1

(2m · ∇ui)∂u
i

∂v
dΓ.

Since ∫
Ω

∆u · udx = −
∫

Ω

|∇u|2dx+
∫

Γ1

u · ∂u
∂v

dΓ

and

m · v ≤ 0 on Γ0

m · v ≥ δ0 > 0 on Γ1,

it follows that∫
Ω

∆u · [M + (n− 1)u]dx

= −
∫

Ω

|∇u|2dx−
∫

Γ1

(m · v)|∇u|2 dΓ

+
∫

Γ0

(m · v)|∇u|2 dΓ +
n∑
i=1

∫
Γ1

[2m · ∇ui + (n− 1)ui]
∂ui

∂v
dΓ

≤ −
∫

Ω

|∇u|2dx− δ0
∫

Γ1

|∇u|2 dΓ +
n∑
i=1

∫
Γ1

(2m · ∇ui)∂u
i

∂v
dΓ

+ (n− 1)
∫

Γ1

u · ∂u
∂v

dΓ.

(3.7)

Next, we consider∫
Ω

∇(div u) · [M + (n− 1)u]dx

= −
∫

Ω

(div u)(divM)dx+
∫
∂Ω

(div u)(M · v) dΓ

− (n− 1)
∫

Ω

(div u)2dx+ (n− 1)
∫

Γ1

(div u)(u · v) dΓ.

(3.8)

But, one can show that

divM = 2(div u) + 2m · ∇(div u). (3.9)

Therefore,

−
∫

Ω

(div u)(divM)dx = −2
∫

Ω

(div u)2dx− 2
∫

Ω

(div u)(m · ∇(div u))dx
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= −2
∫

Ω

(div u)2dx−
∫

Ω

m · ∇(div u)2dx

= (n− 2)
∫

Ω

(div u)2dx−
∫
∂Ω

(div u)2(m · v) dΓ.

Also, using (3.6),

M · v = 2(m · v)(div u) on Γ0

which gives∫
∂Ω

(div u)(M · v) dΓ = 2
∫

Γ0

(div u)2(m · v) dΓ +
n∑
i=1

∫
Γ1

(div u)(2m · ∇ui)vi dΓ.

Consequently, (3.8) becomes∫
Ω

∇(div u) · [M + (n− 1)u]dx

= −
∫

Ω

(div u)2dx+
∫

Γ0

(div u)2(m · v) dΓ

−
∫

Γ1

(div u)2(m · v) dΓ +
n∑
i=1

∫
Γ1

(div u)(2m · ∇ui)vi dΓ

+ (n− 1)
∫

Γ1

(div u)(u · v) dΓ

≤ −
∫

Ω

(div u)2dx− δ0
∫

Γ1

(div u)2 dΓ +
n∑
i=1

∫
Γ1

(div u)(2m · ∇ui)vi dΓ

+ (n− 1)
∫

Γ1

(div u)(u · v) dΓ

≤ −
∫

Ω

(div u)2dx+
n∑
i=1

∫
Γ1

(div u)(2m · ∇ui)vi dΓ

+ (n− 1)
∫

Γ1

(div u)(u · v) dΓ.

(3.10)

For the last term of (3.4), we find, using (3.9), that

−
∫

Ω

∇θ · [M + (n− 1)u]dx

=
∫

Ω

(divM)θdx+ (n− 1)
∫

Ω

(div u)θdx

= (n+ 1)
∫

Ω

(div u)θdx+ 2
∫

Ω

(m · ∇(div u))θdx

= (n+ 1)
∫

Ω

(div u)θdx− 2
∫

Ω

(div u)(div(mθ))dx

= −(n− 1)
∫

Ω

(div u)θdx− 2
∫

Ω

(div u)(m · ∇θ)dx.

(3.11)
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A combination of (3.4), (3.7), (3.10), and (3.11) leads to

K ′(t) ≤ −
∫

Ω

|ut|2dx+
∫

Γ1

(m · v)|ut|2 dΓ− µ
∫

Ω

|∇u|2dx− µδ0
∫

Γ1

|∇u|2 dΓ

+
n∑
i=1

∫
Γ1

(2m · ∇ui)
[
µ
∂ui

∂v
+ (µ+ λ)(div u)vi

]
dΓ

+ (n− 1)
∫

Γ1

u ·
[
µ
∂u

∂v
+ (µ+ λ)(div u)v

]
dΓ− (µ+ λ)

∫
Ω

(div u)2dx

− (n− 1)
∫

Ω

(div u)θdx− 2
∫

Ω

(div u)(m · ∇θ)dx.

(3.12)
By using the boundary condition (2.2), Young’s inequality and |m(x)| ≤ R, and
noting that

k′ ∗ u =
∫ t

0

k′(t− s)[u(s)− u(t)]ds+ u(t)[k(t)− k(0)]

and ∣∣∣ ∫ t

0

k′(t− s)[u(s)− u(t)]dsBig|2 ≤
(∫ t

0

−k′(s)ds
)

(−k′ ◦ u)(t)

= [k(0)− k(t)](−k′ ◦ u)(t)

≤ −c(k′ ◦ u)(t),

we obtain

n∑
i=1

∫
Γ1

(2m · ∇ui)[µ∂u
i

∂v
+ (µ+ λ)(div u)vi] dΓ

+ (n− 1)
∫

Γ1

u · [µ∂u
∂v

+ (µ+ λ)(div u)v] dΓ

= −α
n∑
i=1

∫
Γ1

(2m · ∇ui)[uit + k(0)ui + k′ ∗ ui] dΓ

− α(n− 1)
∫

Γ1

u · [ut + k(0)u+ k′ ∗ u] dΓ

= −α
n∑
i=1

∫
Γ1

(2m · ∇ui)
[
uit + k(t)ui +

∫ t

0

k′(t− s)[ui(s)− ui(t)]ds
]
dΓ

− α(n− 1)
∫

Γ1

u ·
[
ut + k(t)u+

∫ t

0

k′(t− s)[u(s)− u(t)]ds
]
dΓ

≤ µδ0
∫

Γ1

|∇u|2 dΓ + Cε

∫
Γ1

|ut|2 dΓ− Cε
∫

Γ1

(k′ ◦ u) dΓ + (ε+ ck2(t))
∫

Γ1

|u|2 dΓ.

Then, using ∫
Γ1

|u|2 dΓ ≤ c0
∫

Ω

|∇u|2dx (3.13)
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and that limt→∞ k(t) = 0 and choosing ε small enough, we deduce that for all
t ≥ t1,

n∑
i=1

∫
Γ1

(2m · ∇ui)[µ∂u
i

∂v
+ (µ+ λ)(div u)vi] dΓ

+ (n− 1)
∫

Γ1

u · [µ∂u
∂v

+ (µ+ λ)(div u)v] dΓ

≤ µδ0
∫

Γ1

|∇u|2 dΓ + c

∫
Γ1

|ut|2 dΓ− c
∫

Γ1

(k′ ◦ u) dΓ +
µ

2

∫
Ω

|∇u|2dx,

(3.14)

where t1, introduced in (2.6), is large enough. Also, using Young’s and Poincaré’s
inequalities yields

−(n−1)
∫

Ω

(div u)θdx−2
∫

Ω

(div u)(m·∇θ)dx ≤ (µ+ λ)
2

∫
Ω

(div u)2dx+c
∫

Ω

|∇θ|2dx

(3.15)
By inserting (3.14) and (3.15) in (3.12), the estimate (3.3) is established. �

Proof of Theorem 2.1. For N > 0, we define

L(t) := NE(t) +K(t).

Combining (3.1) and (3.3), for all t ≥ t1, we obtain

L′(t) ≤ −
∫

Ω

|ut|2dx−
µ

2

∫
Ω

|∇u|2dx− µ+ λ

2

∫
Ω

(div u)2dx− (hN − c)
∫

Ω

|∇θ|2dx

− (αN − c)
∫

Γ1

|ut|2 dΓ− c
∫

Γ1

(k′ ◦ u)(t) dΓ.

At this point, we choose N large enough so that

γ := (hN − c) > 0 and αN − c > 0.

So, we arrive at

L′(t) ≤ −
∫

Ω

[
|ut|2 +

µ

2
|∇u|2dx+

µ+ λ

2
(div u)2 + γ|∇θ|2

]
dx− c

∫
Γ1

(k′ ◦ u)(t) dΓ

which, using Poincaré’s inequality and (3.13), yields

L′(t) ≤ −mE(t)− c
∫

Γ1

(k′ ◦ u)(t) dΓ, ∀t ≥ t1. (3.16)

On the other hand, we can choose N even larger (if needed) so that

L(t) ∼ E(t). (3.17)

Now, we use (2.7) and (3.1) to conclude that, for any t ≥ t1,

−
∫ t1

0

k′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds ≤ 1
d

∫ t1

0

k′′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds

≤ −cE′(t).
(3.18)

Next, we take F (t) = L(t) + cE(t), which is clearly equivalent to E(t), and use
(3.16) and (3.18), to obtain: for all t ≥ t1,

F ′(t) ≤ −mE(t)− c
∫ t

t1

k′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds. (3.19)
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(I) H(t) = ctp and 1 ≤ p < 3
2 :

Case 1. p = 1: Estimate (3.19) yields

F ′(t) ≤ −mE(t) + c

∫
Γ1

(k′′ ◦ u)(t) dΓ ≤ −mE(t)− cE′(t), ∀t ≥ t1.

which gives
(F + cE)′(t) ≤ −mE(t), ∀t ≥ t1.

Hence, using the fact that F + cE ∼ E, we obtain easily that

E(t) ≤ c′e−ct = c′G−1(t).

Case 2. 1 < p < 3
2 : One can easily show that

∫ +∞
0

[−k′(s)]1−δ0ds < +∞ for
any δ0 < 2 − p. Using this fact, (3.1), and (3.13) and choosing t1 even larger if
needed, we deduce that, for all t ≥ t1,

η(t) :=
∫ t

t1

[−k′(s)]1−δ0
∫

Γ1

|u(t)− u(t− s)|2 dΓds

≤ 2
∫ t

t1

[−k′(s)]1−δ0
∫

Γ1

(|u(t)|2 + |u(t− s)|2) dΓds

≤ cE(0)
∫ t

t1

[−k′(s)]1−δ0ds < 1.

(3.20)

Then, Jensen’s inequality, (3.1), hypothesis (A2), and (3.20) lead to

−
∫ t

t1

k′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds

=
∫ t

t1

[−k′(s)]δ0 [−k′(s)]1−δ0
∫

Γ1

|u(t)− u(t− s)|2 dΓds

=
∫ t

t1

[−k′(s)](p−1+δ0)(
δ0

p−1+δ0
)[−k′(s)]1−δ0

∫
Γ1

|u(t)− u(t− s)|2 dΓds

≤ η(t)
[ 1
η(t)

∫ t

t1

[−k′(s)](p−1+δ0)[−k′(s)]1−δ0
∫

Γ1

|u(t)− u(t− s)|2 dΓds
] δ0
p−1+δ0

≤
[ ∫ t

t1

[−k′(s)]p
∫

Γ1

|u(t)− u(t− s)|2 dΓds
] δ0
p−1+δ0

≤ c
[ ∫ t

t1

k′′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds
] δ0
p−1+δ0

≤ c[−E′(t)]
δ0

p−1+δ0 .

Then, in particular for δ0 = 1/2, we find that (3.19) becomes

F ′(t) ≤ −mE(t) + c[−E′(t)]
1

2p−1 .

Now, we multiply by Eα(t), with α = 2p− 2, to obtain, using (3.1),

(FEα)′(t) ≤ F ′(t)Eα(t) ≤ −mE1+α(t) + cEα(t)[−E′(t)]
1

1+α .

Then, Young’s inequality, with q = 1 + α and q′ = 1+α
α , gives

(FEα)′(t) ≤ −mE1+α(t) + εE1+α(t) + Cε(−E′(t)).
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Consequently, picking ε < m, we obtain

F ′0(t) ≤ −m′E1+α(t)

where F0 = FEα + CεE ∼ E. Hence we have, for some a0 > 0,

F ′0(t) ≤ −a0F
1+α
0 (t)

from which we easily deduce that

E(t) ≤ a

(a′t+ a′′)1/(2p−2)
(3.21)

By recalling that p < 3/2 and using (3.21), we find that
∫ +∞

0
E(s)ds < +∞. Hence,

by noting that ∫ t

0

∫
Γ1

|u(t)− u(t− s)|2 dΓds ≤ c
∫ t

0

E(s)ds,

estimate (3.19) gives

F ′(t) ≤ −mE(t) + c

∫
Γ1

([−k′]p·
1
p ◦ u)(t) dΓ ≤ −mE(t) + c

[ ∫
Γ1

([−k′]p ◦ u)(t) dΓ
]1/p

≤ −mE(t) + c
[ ∫

Γ1

(k′′ ◦ u)(t) dΓ
]1/p

≤ −mE(t) + c[−E′(t)]1/p.

Therefore, repeating the above steps, with α = p− 1, we arrive at

E(t) ≤ a

(a′t+ a′′)1/(p−1)
= cG−1(c′t+ c′′).

(II) The general case: We define

I(t) :=
∫ t

t1

−k′(s)
H−1

0 (k′′(s))

∫
Γ1

|u(t)− u(t− s)|2 dΓ ds

where H0 is such that (2.4) is satisfied. As in (3.20), we find that I(t) satisfies, for
all t ≥ t1,

I(t) < 1. (3.22)
We also assume, without loss of generality that I(t) ≥ b0 > 0, for all t ≥ t1;
otherwise (3.19) yields an exponential decay. In addition, we define ξ(t) by

ξ(t) :=
∫ t

t1

k′′(s)
−k′(s)

H−1
0 (k′′(s))

∫
Γ1

|u(t)− u(t− s)|2 dΓ ds

and infer from (A2) and the properties of H0 and D that

−k′(s)
H−1

0 (k′′(s))
≤ −k′(s)
H−1

0 (H(−k′(s)))
=

−k′(s)
D−1(−k′(s))

≤ k0

for some positive constant k0. Then, using (3.1) and choosing t1 even larger (if
needed), one can easily see that ξ(t) satisfies, for all t ≥ t1,

ξ(t) ≤ k0

∫ t

t1

k′′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds

≤ cE(0)
∫ t

t1

k′′(s) ≤ −ck′(t1)E(0)

< min{r,H(r), H0(r)}.

(3.23)
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Since H0 is strictly convex on (0, r] and H0(0) = 0, it follows that

H0(θx) ≤ θH0(x),

provided 0 ≤ θ ≤ 1 and x ∈ (0, r]. Using this fact, hypothesis (A2), (2.6), (3.22),
(3.23), and Jensen’s inequality leads to

ξ(t) =
1
I(t)

∫ t

t1

I(t)H0[H−1
0 (k′′(s))]

−k′(s)
H−1

0 (k′′(s))

∫
Γ1

|u(t)− u(t− s)|2 dΓds

≥ 1
I(t)

∫ t

t1

H0[I(t)H−1
0 (k′′(s))]

−k′(s)
H−1

0 (k′′(s))

∫
Γ1

|u(t)− u(t− s)|2 dΓds

≥ H0

( 1
I(t)

∫ t

t1

I(t)H−1
0 (k′′(s))

−k′(s)
H−1

0 (k′′(s))

∫
Γ1

|u(t)− u(t− s)|2 dΓds
)

= H0

(
−
∫ t

t1

k′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds
)

This implies that

−
∫ t

t1

k′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds ≤ H−1
0 (ξ(t))

and (3.19) becomes

F ′(t) ≤ −mE(t) + cH−1
0 (ξ(t)), ∀t ≥ t1. (3.24)

Now, for ε0 < r and c0 > 0, using (3.24), and the fact that E′ ≤ 0, H ′0 > 0, H ′′0 > 0
on (0, r], we find that the functional F1, defined by

F1(t) := H ′0(ε0
E(t)
E(0)

)F (t) + c0E(t)

satisfies, for some α1, α2 > 0,

α1F1(t) ≤ E(t) ≤ α2F1(t) (3.25)

and

F ′1(t) = ε0
E′(t)
E(0)

H ′′0 (ε0
E(t)
E(0)

)F (t) +H ′0(ε0
E(t)
E(0)

)F ′(t) + c0E
′(t)

≤ −mE(t)H ′0(ε0
E(t)
E(0)

) + cH ′0(ε0
E(t)
E(0)

)H−1
0 (ξ(t)) + c0E

′(t).
(3.26)

Let H∗0 be the convex conjugate of H0 in the sense of Young (see [1, p. 61-64]),
then

H∗0 (s) = s(H ′0)−1(s)−H0[(H ′0)−1(s)], if s ∈ (0, H ′0(r)] (3.27)
and H∗0 satisfies the Young’s inequality

AB ≤ H∗0 (A) +H0(B), if A ∈ (0, H ′0(r)], B ∈ (0, r] (3.28)

With A = H ′0
(
ε0

E(t)
E(0)

)
and B = H−1

0 (ξ(t)), using (3.1), (3.23) and (3.26)-(3.28),
we arrive at

F ′1(t) ≤ −mE(t)H ′0(ε0
E(t)
E(0)

) + cH∗1

(
H ′0(ε0

E(t)
E(0)

)
)

+ cξ(t) + c0E
′(t)

≤ −mE(t)H ′0(ε0
E(t)
E(0)

) + cε0
E(t)
E(0)

H ′0(ε0
E(t)
E(0)

)− cE′(t) + c0E
′(t).
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Consequently, with a suitable choice of ε0 and c0, we obtain, for all t ≥ t1,

F ′1(t) ≤ −τ
(E(t)
E(0)

)
H ′0

(
ε0
E(t)
E(0)

)
= −τH2(

E(t)
E(0)

), (3.29)

where H2(t) = tH ′0(ε0t).
Since H ′2(t) = H ′0(ε0t) + ε0tH

′′
0 (ε0t), using the strict convexity of H0 on (0, r],

we find that H ′2(t), H2(t) > 0 on (0, 1]. Thus, with

R(t) = ε
α1F1(t)
E(0)

, 0 < ε < 1,

taking in account (3.25) and (3.29), we have

R(t) ∼ E(t) (3.30)

and, for some k0 > 0,

R′(t) ≤ −εk0H2(R(t)), ∀t ≥ t1.

Then, a simple integration and a suitable choice of ε yield, for some k1, k2 > 0,

R(t) ≤ H−1
1 (k1t+ k2), ∀t ≥ t1, (3.31)

where H1(t) =
∫ 1

t
1

H2(s)ds.
Here, we have used, based on the properties of H2, the fact that H1 is strictly

decreasing function on (0, 1] and limt→0H1(t) = +∞. A combination of (3.30) and
(3.31), estimate (2.3) is established.

Moreover, if
∫ 1

0
H1(t)dt < +∞, then∫ t

0

∫
Γ1

|u(t)− u(t− s)|2 dΓds ≤ c
∫ t

0

E(s)ds < +∞.

Therefore, we can repeat the same process with

I(t) :=
∫ t

t1

∫
Γ1

|u(t)− u(t− s)|2 dΓds,

and

ξ(t) :=
∫ t

t1

k′′(s)
∫

Γ1

|u(t)− u(t− s)|2 dΓds,

to obtain (2.5). �

4. Appendix

Let 0 < q < 1 and consider

k′(t) = − exp(−tq).

Here, we show how to apply Theorem 2.1 to this specific type of resolvent kernels.
First, one can show that k′′(t) = H((−k′(t))) where

H(t) =
qt

[ln(1/t)]
1
q−1

.

Since

H ′(t) =
(1− q) + q ln(1/t)

[ln(1/t)]1/q
and H ′′(t) =

(1− q)[ln(1/t) + 1
q ]

[ln(1/t)]
1
q+1

,
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then the function H satisfies hypothesis (A2) on the interval (0, r] for any 0 < r < 1.
Also, by taking D(t) = tα, (2.4) is satisfied for any α > 1. Therefore, an explicit
rate of decay can be obtained by Theorem 2.1. The function H0(t) = H(tα) has
derivative

H ′0(t) =
qαtα−1[ 1

q − 1 + ln(1/tα)]

[ln(1/tα)]1/q

Therefore,

H1(t) =
∫ 1

t

[ln(1/(ε0s)α)]1/qqαεα−1
0 sα[ 1

q − 1 + ln(1/(ε0s)α)]

d
s

=
1
qα2

∫ ln[ε0
−α]

ln[(ε0t)−α]

u1/qe(1− 1
α )u

1
q − 1 + u

du,

where u = ln(1/(ε0s)α). Using the fact that ( 1
q − 1 +u) > ( 1

q − 1) and the function
f(u) = u1/q is increasing on (0,+∞) and taking ε0 < 1, then

H1(t) ≤ [−α ln ε0t]1/q

α2(1− q)

∫ −α ln ε0

−α ln ε0t

e(1− 1
α )udu

=
[−α ln ε0t]1/q[t1−α − 1]
α(1− q)(α− 1)ε0

α−1
= b[− ln ε0t]1/q[t1−α − 1]

where b = α
1
q
−1

(1−q)(α−1)εα −1
0

. Next, we find that∫ 1

0

H1(t)dt ≤
∫ 1

0

b[− ln ε0t]1/q[t1−α − 1]dt (taking v = − ln ε0t)

=
b

ε0

∫ +∞

− ln ε0

v
1
q [εα−1

0 e(α−2)v − e−v]dv.

Then, it is easily seen that
∫ 1

0
H1(t)dt < +∞ if (α − 2) < 0, and so we choose

1 < α < 2. Therefore, we can use (2.5) to deduce

E(t) ≤ k3G
−1(k1t+ k2)

where

G(t) =
∫ 1

t

1
sH ′(ε0s)

ds =
∫ 1

t

[ln 1
ε0s

]1/q

s[1− q + q ln 1
ε0s

]
ds

=
∫ ln 1

ε0t

ln 1
ε0

u1/q

1− q + qu
du =

1
q

∫ ln 1
ε0t

ln 1
ε0

u
1
q−1[

u
1−q
q + u

]du

≤ 1
q

∫ ln 1
ε0t

ln 1
ε0

u
1
q−1du = [ln

1
ε0t

]1/q − [ln
1
ε0

]
1
q

≤ [ln
1
ε0t

]1/q.

Hence, G−1(t) ≤ 1
ε0

exp(−tq) and the enegy decays at the same rate of g, that is

E(t) ≤ c exp(−ωtq).
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