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EXISTENCE OF NON-OSCILLATORY SOLUTIONS FOR
SECOND-ORDER ADVANCED HALF-LINEAR

DIFFERENTIAL EQUATIONS

AIJUN CHENG, ZHITING XU

Abstract. In this article, we establish the necessary and sufficient conditions

for existence of non-oscillatory solutions for the second-order advanced half-
linear differential equation`

r(t)|x′(t)|α−1x′(t)
´′

+ p(t)|x(h(t)
´
|α−1x(h(t)) = 0, t ≥ t0.

The obtained results generalize some well-known theorems in the literature

1. Introduction

Consider the second-order advanced half-linear differential equation(
r(t)|x′(t)|α−1x′(t)

)′
+ p(t)|x(h(t)

)
|α−1x(h(t)) = 0, t ≥ t0, (1.1)

where α > 0 is a constant, r ∈ C1([t0,∞),R+) with
∫∞
t0
r−1/α(t)dt = ∞, p ∈

C([t0,∞), [0,∞)) with p(t) 6≡ 0, and h ∈ C([t0,∞),R) with t ≤ h(t).
By a solution to (1.1) we mean a function x ∈ C1([Tx,∞),R), Tx ≥ t0, such that

r|x′|α−1x′ ∈ C1([Tx,∞),R) and x satisfies (1.1) for all t ≥ Tx. Solutions of (1.1)
vanishing in some neighborhood of infinity will be excluded from our consideration.
A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros, and
otherwise it is said to be non-oscillatory. Equation (1.1) is called oscillatory if all
its solutions are oscillatory. Similarly, it is called non-oscillatory if all its solutions
are non-oscillatory.

Equation (1.1) can be considered as the natural generalization of the linear dif-
ferential equation (

r(t)x′(t)
)′ + p(t)x(t) = 0, (1.2)

or of the half-linear differential equation(
r(t)|x′(t)|α−1x′(t)

)′
+ p(t)|x(t)|α−1x(t) = 0 (1.3)

and of the advanced differential equation(
r(t)x′(t)

)′ + p(t)x(h(t)) = 0, t ≤ h(t), (1.4)
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The oscillation and nonoscillation of (1.2)-(1.3) has been extensively investigated
from various viewpoints during the previous 60 years, see for example the mono-
graphs [1, 2] and the references therein. To motivate the formulation of our main
results, we wish to quote the following known non-oscillation results.

Theorem 1.1 ([8, p. 379]). Equation (1.2) has a nonoscillatory solution if and
only if there is a positive differentiable function ϕ(t) defined on [t1,∞), t1 ≥ t0,
such that

ϕ′(t) +
ϕ2(t)
r(t)

≤ −p(t), t ≥ t1.

Theorem 1.2 ([9, Theorem 2.1]). Assume that∫ ∞
t

ds

r(s)
=∞ and 0 ≤

∫ ∞
t

p(s)ds <∞, t ∈ [t0,∞)

hold. Define a sequence of function {υn(t)}∞0 as follows:

υ0(t) =
∫ ∞
t

p(s)ds, υ1(t) =
∫ ∞
t

υ2
0(s)
r(s)

ds,

υn+1(t) =
∫ ∞
t

[υ0(s) + υn(s)]2

r(s)
ds, t ∈ [t0,∞), n = 1, 2, . . . .

Then (1.2) is non-oscillatory if and only if there exists t1 ≥ t0 such that

lim
n→∞

υn(t) = υ(t) <∞ for t ≥ t1.

Recently, Yang and Lo [10] extended Theorem 1.2 to (1.3), see [10, Theorem 1].
On the other hand, in 1991, Lu [6] extended Theorem 1.1 to (1.4). More precisely,
Lu proved the following theorem.

Theorem 1.3 ( [6, Lemma 2]). Equation (1.4) has a nonoscillatory solution if and
only if there is a positive differentiable function ϕ(t) defined on [t1,∞), t1 ≥ t0,
such that

ϕ′(t) +
ϕ2(t)
r(t)

≤ −p(t) exp
(∫ h(t)

t

ϕ(s)
r(s)

ds
)
, t ≥ t1.

For related works for (1.2), see. e.g., [3, 4, 5, 7].
Inspired by [6, 8, 9, 10], in this article, we extend the results by Lu [6], Wintner

[8], Yan [9], and Yang and Lo [10] to the Equation (1.1). We establish necessary
and sufficient conditions for existence of non-oscillatory solutions to (1.1). Using
these results, we further establish oscillation criteria for (1.1). The obtained results
generalize some well-known theorems in the literature.

2. Main results

Theorem 2.1. If ∫ ∞
t0

p(s)ds =∞, (2.1)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) has a non-oscillatory solution x(t). We
assume that x(t) > 0 and x(h(t)) > 0 for t ≥ t1 ≥ t0. A similar proof is done if
we assume x(t) < 0 on [t1,∞). Since p(t) ≥ 0 on [t1,∞),

(
r(t)|x′(t)|α−1x′(t)

)′ ≤ 0,
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hence, r(t)|x′(t)|α−1x′(t) is non-increasing on [t1,∞), therefore, x′(t) is eventually
of constant sign. If x′(t) < 0 for t ≥ t1, then

r(t)|x′(t)|α−1x′(t) ≤ r(t1)(−x′(t1))α−1x′(t1) =: −c < 0 .

It follows that

x(t) ≤ x(t1)− c1/α
∫ t

t1

ds

r1/α(s)
→ −∞ as t→∞,

which contradicts x(t) > 0. Thus, x′(t) > 0 for t ≥ t1. Let

w(t) =
r(t)|x′(t)|α−1x′(t)
|x(t)|α−1x(t)

. (2.2)

Obviously, w(t) > 0, and r(t)(x′(t))α = w(t)(x(t))α; i.e.,

x(h(t))
x(t)

= exp
(∫ h(t)

t

(w(s)
r(s)

)1/α
ds
)
. (2.3)

Then, from (1.1) and (2.3), we obtain

w′(t) + α
(w(t))(α+1)/α

r1/α(t)
+ p(t) exp

(
α

∫ h(t)

t

(w(s)
r(s)

)1/α
ds
)

= 0, (2.4)

consequently,
w′(t) + p(t) ≤ 0.

Integrating the above inequality from t1 to t (t > t1), we have

w(t) ≤ w(t1)−
∫ t

t1

p(s)ds→ −∞ as t→ +∞,

which contradicts w(t) > 0. �

According to Theorem 2.1, we can furthermore restrict our attention to the case:∫ ∞
t

p(s)ds <∞. (2.5)

For convenience, we define P (t) =
∫∞
t
p(s)ds for t ≥ t0. Firstly, we give the

following Lemma.

Lemma 2.2. Let (2.5) hold. Suppose that (1.1) has a nonoscillatory solution
x(t) 6= 0 for t ≥ t1 ≥ t0, and let w(t) be defined by (2.2). Then the following
statements hold for t ≥ t1:

w(t) > 0, lim
t→∞

w(t) = 0, (2.6)∫ ∞
t

(w(s))(α+1)/α

r1/α(s)
ds <∞, (2.7)

I(t) =
∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(w(τ)
r(τ)

)1/α
dτ
)
ds <∞, (2.8)

w(t) = α

∫ ∞
t

(w(s))(α+1)/α

r1/α(s)
ds+ I(t). (2.9)
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Proof. Assume that x(t) > 0 on [t1,∞). A similar argument holds if we assume
x(t) < 0 on [t1,∞). Proceeding as in the proof of Theorem 2.1, we know x′(t) > 0
for t ≥ t1. Hence, w(t) > 0 for t ≥ t1, and (2.4) holds and

w′(t) ≤ −α (w(t))(α+1)/α

r1/α(t)
.

It follows that
1

w1/α(t)
− 1
w1/α(t1)

≥
∫ t

t1

1
r1/α(s)

ds→∞ as t→ +∞,

thus limt→∞ w(t) = 0. Integrating (2.4) from t to T (T ≥ t ≥ t1), we have

w(T )−w(t) +α

∫ T

t

(w(s))(α+1)/α

r1/α(s)
ds+

∫ T

t

p(s) exp
(
α

∫ h(s)

s

(w(τ)
r(τ)

)1/α
dτ
)
ds = 0.

(2.10)
Let T →∞, then from (2.10) it follows that

w(t) = α

∫ ∞
t

(w(s))(α+1)/α

r1/α(s)
ds+ I(t), t ≥ t1.

Hence, (2.9) holds. Furthermore, (2.7) and (2.8) hold. �

Theorem 2.3. Let (2.5) hold. Equation (1.1) is non-oscillatory if and only if there
exist t1 ≥ t0 and ϕ(t) ∈ C1([t1,∞),R+) such that

ϕ′(t) + α
(ϕ(t))(α+1)/α

r1/α(t)
+ p(t) exp

(
α

∫ h(t)

t

(ϕ(s)
r(s)

)1/α
ds
)
≤ 0, t ≥ t1. (2.11)

Proof. The “only if” part. Let x(t) be a non-oscillatory solution of (1.1). Assume
that x(t) > 0 and x(h(t)) > 0 for t ≥ t1. Then, by Lemma 2.2, the function
w(t) ∈ C1([t1,∞),R+) defined by (2.2) satisfies (2.9). Differentiation of (2.9)
shows that w(t) is a solution of (2.11) on [t1,∞).

The “if” part. It follows from (2.11) that ϕ′(t) < 0, hence ϕ(t) is decreasing and
is bounded from below; consequently, its limit exists, namely, limt→∞ ϕ(t) = d ≥ 0.
Next, we prove that d = 0. Indeed, it follows from (2.11) that

ϕ′(t) ≤ −α (ϕ(t))(α+1)/α

r1/α(t)
.

Dividing both sides of the above inequality by (ϕ(t))(α+1)/α, and integrating from
t to T , then we obtain

1
ϕ1/α(T )

− 1
ϕ1/α(t)

≥
∫ T

t

ds

r1/α(s)
,

letting T → ∞ in the above, we have limT→∞ ϕ(T ) = 0. Then integrating (2.11)
from t to ∞, we have

α

∫ ∞
t

(ϕ(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(ϕ(τ)
r(τ)

)1/α
dτ
)
ds ≤ ϕ(t), t ≥ t1,

which implies that for t ≥ t1,∫ ∞
t

(ϕ(s))(α+1)/α

r1/α(s)
ds <∞,

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(ϕ(τ)
r(τ)

)1/α
dτ
)
ds <∞.
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Define the following mapping

(Ly)(t) = α

∫ ∞
t

(y(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(y(τ)
r(τ)

)1/α
dτ
)
ds, (2.12)

for t ≥ t1. Let

x0(t) ≡ 0, xn(t) = L(xn−1(t)), n = 1, 2, 3, . . . .

It is easy to show that

x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ ϕ(t).

Hence
lim
n→∞

xn(t) = u(t) ≤ ϕ(t).

By (2.12), we have

xn(t) = α

∫ ∞
t

(xn−1(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(xn−1(τ)
r(τ)

)1/α
dτ
)
ds,

for t ≥ t1. By Levi’s monotone convergence theorem, and letting n → ∞ in the
above equation, we obtain

u(t) = α

∫ ∞
t

(u(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(u(τ)
r(τ)

)1/α
dτ
)
ds, t ≥ t1.

(2.13)
Set

x(t) = exp
(∫ t

t1

(u(τ)
r(τ)

)1/α
dτ
)
, t ≥ t1 .

Then

u(t) =
r(t)(x′(t))α

(x(t))α
. (2.14)

By (2.13) and (2.14), we have

(r(t)(x′(t))α)′ + p(t)(x(h(t)))α = 0;

i.e.,
(r(t)|x′(t)|α−1x′(t))′ + p(t)|x(h(t))|α−1x(h(t)) = 0, t ≥ t1.

Thus, x(t) is a non-oscillatory solution of (1.1). �

Corollary 2.4. Let (2.5) hold. If h(t) ≡ t, then (1.1) is non-oscillatory if and
only if there exist t1 ≥ t0, and ϕ(t) ∈ C1([t1,∞),R+

)
such that

ϕ′(t) + α
ϕ(α+1)/α(t)
r1/α(t)

+ p(t) ≤ 0, t ≥ t1,

We remark that for (1.4), Theorem 2.3 and Corollary 2.4 reduce to [6, Lemma
2] and [6, Corollary 1], respectively.

Let (2.5) hold. Define a sequence of functions {υn(t)}∞0 as follows (if they exist):

υ0(t) = P (t) =
∫ ∞
t

p(s)ds,

υn+1(t) = α

∫ ∞
t

(υn(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(υn(τ)
r(τ)

)1/α
dτ
)
ds,

(2.15)
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for n = 0, 1, 2, . . . , t ≥ t1. Clearly, υ0(t) ≥ 0 and υ1(t) ≥ υ0(t). By induction, we
obtain

υn+1(t) ≥ υn(t), n = 0, 1, 2 . . . ; (2.16)
i.e., the sequence {υn(t)}∞0 is nondecreasing on [t0,∞).

Theorem 2.5. Let (2.5) hold. Then (1.1) is non-oscillatory if and only if there
exists t1 ≥ t0 such that {υn(t)}∞0 exists and converges; i.e.,

lim
n→∞

υn(t) = υ(t) <∞, t ≥ t1. (2.17)

Proof. The “only if” part. Suppose that x(t) is a non-oscillatory solution of (1.1).
Without loss of generality, we assume that x(t) > 0 and x(h(t)) > 0 on [t1,∞). Let
w(t) be defined by (2.2), by Lemma 2.2, we obtain (2.9), which follows

w(t) ≥
∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(w(τ)
r(τ)

)1/α
dτ
)
ds ≥

∫ ∞
t

p(s)ds = υ0(t) ≥ 0.

By (2.9) again, we have

w(t) ≥ α
∫ ∞
t

(υ0(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(υ0(τ)
r(τ)

)1/α
dτ
)
ds = υ1(t).

By induction, we obtain

w(t) ≥ υn(t) ≥ 0, n = 0, 1, 2 . . . , t ≥ t1. (2.18)

It follows from (2.16) and (2.18) that (2.17) holds.
The “if” part. Assume that the function sequence {υn(t)}∞0 exists and converges.

It follows from (2.16) and (2.17) that

0 ≤ υn(t) ≤ υ(t), n = 1, 2, . . . , t ≥ t1.
By Levi’s monotone convergence theorem for (2.15), we obtain

υ(t) = α

∫ ∞
t

(υ(s))(α+1)/α

r1/α(s)
ds+

∫ ∞
t

p(s) exp
(
α

∫ h(s)

s

(υ(τ)
r(τ)

)1/α
dτ
)
ds.

Consequently,

υ′(t) + α
(υ(t))(α+1)/α

r1/α(t)
+ p(t) exp

(
α

∫ h(t)

t

(υ(s)
r(s)

)1/α
ds
)

= 0, t ≥ t1.

Then, by Theorem 2.3, (1.1) is non-oscillatory. �

As a consequence of Theorem 2.5, we have the following result.

Theorem 2.6. Let (2.5) hold. Then (1.1) is oscillatory if one of the following
conditions holds:

(1) There exists an integer m such that υn(t) is defined for n = 1, 2, . . . ,m−1,
but υm(t) does not exist;

(2) {υn(t)}∞0 is defined for n = 1, 2, . . . , but for arbitrarily large T ≥ t0, there
exists t∗ > T such that limn→∞ υn(t∗) =∞.

Corollary 2.7. Let (2.5) hold. Assume that there exists R(t) ∈ C1([t0,∞),R+
)

with R′(t) = r−1/α(t), and there exists λ0 > αα/(α + 1)α+1 such that for all
sufficiently large t,

Rα(t)P (t) ≥ λ0. (2.19)
Then (1.1) is oscillatory .
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Proof. It follows from (2.19) that υ0(t) ≥ λ0R
−α(t), which implies, by (2.15),

υ1(t) ≥ υ0(t) + αλ
(α+1)/α
0

∫ ∞
t

dR(s)
Rα+1(s)

≥ λ1

Rα(t)
, λ1 = λ0 + λ

(α+1)/α
0 > λ0.

By induction, we can show that

υn+1(t) ≥ λn+1

Rα(t)
and λn+1 = λ0 + λ(α+1)/α

n > λn, for n = 1, 2, . . . .

Now we claim that limn→∞ λn =∞. Otherwise, as λn is monotone increasing, we
must have limn→∞ λn = λ <∞, and λ > 0 satisfies the equation λ = λ0+λ(α+1)/α.
Note that λ0 > αα/(α+ 1)α+1, then, by Hölder inequality, we have

λ = λ0 + λ(α+1)/α >
α+ 1
α

[ 1
α+ 1

( α

α+ 1
)α+1 +

α

α+ 1
λ(α+1)/α

]
≥α+ 1

α

α

α+ 1
λ = λ,

which is impossible. Hence, the claim is true. Consequently, limn→∞ υn(t) = ∞.
Thus, by Theorem 2.6 (2), Equaton (1.1) is oscillatory. �

Corollary 2.8. Let (2.5) hold. Assume that there exists γ0 > (α+1)−(α+1)/α such
that for all sufficiently large t,∫ ∞

t

P (α+1)/α(s)
r1/α(s)

ds ≥ γ0P (t). (2.20)

Then (1.1) is oscillatory.

Proof. It follows from (2.15) and (2.20) that

υ1(t) ≥ γ1P (t), γ1 = 1 + αγ0 > 1.

Assume that υn(t) ≥ γnP (t), then, by (2.15) again and induction, we have

υn+1(t) ≥ γn+1P (t), γn+1 = 1 + αγ0γ
(α+1)/α
n , n = 1, 2, . . . .

We now claim that
γn+1 > γn, n = 1, 2, . . . . (2.21)

Indeed, in view of the fact that γ1 > 1 and (α+ 1)/α > 1, we have

r2 = 1 + αγ0γ
(α+1)/α
1 > 1 + αγ0 = γ1.

Moreover, we have

r3 = 1 + αγ0γ
(α+1)/α
2 > 1 + αγ0γ

(α+1)/α
1 = γ2.

Hence, by induction, we can show that (2.21) holds. Then, by an argument sim-
ilar to the proof of Corollary 2.7, we can prove limn→∞ λn = ∞; consequently
limn→∞ υn(t) =∞. It follows from Theorem 2.6 (2) that (1.1) is oscillatory. �

Theorem 2.9. Let (2.5) hold. If (1.1) has a nonoscillatory solution, then

lim
t→∞

υ(t) exp
(
α

∫ t

t1

(P (s)
r(s)

)1/α
ds
)
<∞, (2.22)

where υ(t) satisfies (2.17).
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Proof. Suppose x(t) 6= 0 is a nonoscillatory solution of (1.1) for t ≥ t1. Let w(t) be
defined by (2.2), it follows from (2.4) and (2.9) that

−w′(t) = α
(w(t))(α+1)/α

r1/α(t)
+ p(t) exp

(
α

∫ h(t)

t

(w(s)
r(s)

)1/α
ds
)

≥ α (w(t))(α+1)/α

r1/α(t)
= αw(t)

(w(t)
r(t)

)1/α
≥ αw(t)

(P (t)
r(t)

)1/α
,

hence,

w(t) ≤ w(t1) exp
(
− α

∫ t

t1

(P (s)
r(s)

)1/α
ds
)
. (2.23)

On the other hand, by induction, we have w(t) ≥ υn(t), n = 0, 1, 2, . . . . Combining
this with (2.23), we obtain

υn(t) exp
(
α

∫ t

t1

(P (s)
r(s)

)1/α
ds
)
≤ w(t1), n = 1, 2, . . . . (2.24)

Note that from Theorem 2.5, it follows that limn→∞ υn(t) = υ(t), then by (2.24),
we have

lim
n→∞

υn(t) exp
(
α

∫ t

t1

(P (s)
r(s)

)1/α
ds
)

= υ(t) exp
(
α

∫ t

t1

(P (s)
r(s)

)1/α
ds
)
≤ w(t1),

and then we obtain the desired inequality (2.22). �

As a direct consequence of Theorem 2.9, we obtain the following theorem.

Theorem 2.10. Let (2.5) hold, and υn(t) be defined for n = 1, 2, . . . ,m. If one of
the following conditions holds:

(1) limt→∞ υm(t) exp
(
α
∫ t
t0

(P (s)
r(s)

)1/α
ds
)

=∞,

(2) Condition (2.17) holds, and limt→∞ υ(t) exp
(
α
∫ t
t0

(P (s)
r(s)

)1/α
ds
)

=∞,

then (1.1) is oscillatory.

Theorem 2.11. Let (2.5) hold and

lim
t→∞

∫ t

t0

exp
(
− α

∫ s

t0

(P (τ)
r(τ)

)1/α
dτ
)
ds <∞ . (2.25)

If there exists m ≥ 1 such that

lim
t→∞

∫ t

t0

υm(s)ds =∞, (2.26)

then (1.1) is oscillatory.

Proof. Assume that x(t) 6= 0 is a non-oscillatory solution of (1.1) for t ≥ t1. Let
w(t) be defined by (2.2), similar to the proof of Theorem 2.9, we have

υm(t) ≤ w(t1) exp
(
− α

∫ t

t1

(P (s)
r(s)

)1/α
ds
)
, m ≥ 1. (2.27)

Integrating (2.27) from t1 to t, and then letting t → ∞ makes (2.25) contradict
(2.26). Hence, (1.1) is oscillatory. �
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3. Examples

In this section, we will give some examples to illustrate our main results.

Example 3.1. Consider the equation(1
t
|x′(t)|−1/2x′(t)

)′
+

3λ
2t5/2

|x(3t)|−1/2x(3t) = 0, t ≥ t0, (3.1)

where

α =
1
2
, r(t) =

1
t
, h(t) = 3t, λ > 0.

Then R1/2(t)P (t) = λ
√

3/3. By Corollary 2.7, if there exists λ0 > 2
√

3/3 such that
λ ≥
√

3λ0, i.e., λ > 2, then (3.1) is oscillatory.

Example 3.2. Consider the equation(
t|x′(t)|x′(t)

)′ + k

t2
|x(2t)|x(2t) = 0, t ≥ t0, (3.2)

where α = 2, r(t) = t, h(t) = 2t, k > 0. Then P (t) = k/t. If k > 1/27, then (3.2)
is oscillatory. Indeed, note that there exists γ0 ∈ (

√
3

9 ,
√
k), then∫ ∞

t

P 1+1/α(s)
r1/α(s)

ds =
k3/2

t
=
k

t

√
k ≥ γ0

k

t
>

P (t)
(α+ 1)(α+1)/α

,

for all sufficiently large t. Hence, by Corollary 2.8, the conclusion holds.

Example 3.3. Consider the equation( 1√
t
|x′(t)|1/2x′(t)

)′
+

k

t5/2

(3
2

+
3

2 ln t
+

1
ln2 t

)
|x(2t)|1/2x(2t) = 0, t ≥ 1, (3.3)

where

k > 0, α =
3
2
, r(t) =

1√
t
, h(t) = 2t, p(t) =

k

t5/2
(
3
2

+
3

2 ln t
+

1
ln2 t

).

Note that

υ0(t) = P (t) =
k

t3/2
(1 +

1
ln t

), υ1(t) >
9k5/3

7t7/6
+

k

t3/2
(1 +

1
ln t

).

Then

lim
t→∞

υ1(t) exp
(
α

∫ t

1

(P (s)
r(s)

)1/α
ds
)

≥ lim
t→∞

(9k5/3

7t7/6
+

k

t3/2
(
1 +

1
ln t
))

exp
(3

2

∫ t

1

(k(1 + 1
ln s )

s

)2/3
ds
)

≥ lim
t→∞

(9k5/3

7t7/6
+

k

t3/2

)
exp

(3
2

∫ t

1

(k
s

)2/3
ds
)

≥ lim
t→∞

k1

t3/2
ek2t

1/3
=∞,

where k1 = ke−9/2k2/3
and k2 = 9k2/3/2. Thus, Theorem 2.10 (1) is satisfied for

m = 1. Hence (3.3) is oscillatory.
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