Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 54, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF NON-OSCILLATORY SOLUTIONS FOR SECOND-ORDER ADVANCED HALF-LINEAR DIFFERENTIAL EQUATIONS

AIJUN CHENG, ZHITING XU

Abstract

In this article, we establish the necessary and sufficient conditions for existence of non-oscillatory solutions for the second-order advanced halflinear differential equation

$$
\left(r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+p(t)|x(h(t))|^{\alpha-1} x(h(t))=0, \quad t \geq t_{0} .
$$

The obtained results generalize some well-known theorems in the literature

1. Introduction

Consider the second-order advanced half-linear differential equation

$$
\begin{equation*}
\left(r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+p(t)|x(h(t))|^{\alpha-1} x(h(t))=0, \quad t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where $\alpha>0$ is a constant, $r \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$with $\int_{t_{0}}^{\infty} r^{-1 / \alpha}(t) d t=\infty, p \in$ $C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$ with $p(t) \not \equiv 0$, and $h \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ with $t \leq h(t)$.

By a solution to (1.1) we mean a function $x \in C^{1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right), T_{x} \geq t_{0}$, such that $r\left|x^{\prime}\right|^{\alpha-1} x^{\prime} \in C^{1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$ and x satisfies 1.1 for all $t \geq T_{x}$. Solutions of 1.1) vanishing in some neighborhood of infinity will be excluded from our consideration. A solution of 1.1 is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is said to be non-oscillatory. Equation 1.1) is called oscillatory if all its solutions are oscillatory. Similarly, it is called non-oscillatory if all its solutions are non-oscillatory.

Equation (1.1) can be considered as the natural generalization of the linear differential equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+p(t) x(t)=0 \tag{1.2}
\end{equation*}
$$

or of the half-linear differential equation

$$
\begin{equation*}
\left(r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+p(t)|x(t)|^{\alpha-1} x(t)=0 \tag{1.3}
\end{equation*}
$$

and of the advanced differential equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+p(t) x(h(t))=0, \quad t \leq h(t) \tag{1.4}
\end{equation*}
$$

2000 Mathematics Subject Classification. 34C10, 34C55.
Key words and phrases. Oscillation; nonoscillation; half-linear; advanced differential equation. (C)2013 Texas State University - San Marcos.

Submitted August 4, 2012. Published February 21, 2013.

The oscillation and nonoscillation of (1.2)-(1.3) has been extensively investigated from various viewpoints during the previous 60 years, see for example the monographs [1, 2] and the references therein. To motivate the formulation of our main results, we wish to quote the following known non-oscillation results.

Theorem 1.1 ([8, p. 379]). Equation (1.2 has a nonoscillatory solution if and only if there is a positive differentiable function $\varphi(t)$ defined on $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$, such that

$$
\varphi^{\prime}(t)+\frac{\varphi^{2}(t)}{r(t)} \leq-p(t), \quad t \geq t_{1}
$$

Theorem 1.2 ([9, Theorem 2.1]). Assume that

$$
\int_{t}^{\infty} \frac{d s}{r(s)}=\infty \quad \text { and } \quad 0 \leq \int_{t}^{\infty} p(s) d s<\infty, \quad t \in\left[t_{0}, \infty\right)
$$

hold. Define a sequence of function $\left\{v_{n}(t)\right\}_{0}^{\infty}$ as follows:

$$
\begin{gathered}
v_{0}(t)=\int_{t}^{\infty} p(s) d s, \quad v_{1}(t)=\int_{t}^{\infty} \frac{v_{0}^{2}(s)}{r(s)} d s \\
v_{n+1}(t)=\int_{t}^{\infty} \frac{\left[v_{0}(s)+v_{n}(s)\right]^{2}}{r(s)} d s, \quad t \in\left[t_{0}, \infty\right), \quad n=1,2, \ldots
\end{gathered}
$$

Then (1.2) is non-oscillatory if and only if there exists $t_{1} \geq t_{0}$ such that

$$
\lim _{n \rightarrow \infty} v_{n}(t)=v(t)<\infty \quad \text { for } t \geq t_{1}
$$

Recently, Yang and Lo [10] extended Theorem 1.2 to (1.3), see [10, Theorem 1]. On the other hand, in 1991, Lu [6] extended Theorem 1.1 to (1.4). More precisely, Lu proved the following theorem.

Theorem 1.3 ([6, Lemma 2]). Equation (1.4) has a nonoscillatory solution if and only if there is a positive differentiable function $\varphi(t)$ defined on $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$, such that

$$
\varphi^{\prime}(t)+\frac{\varphi^{2}(t)}{r(t)} \leq-p(t) \exp \left(\int_{t}^{h(t)} \frac{\varphi(s)}{r(s)} d s\right), \quad t \geq t_{1}
$$

For related works for $(1.2$, see. e.g., [3, 4, 5, 7.
Inspired by [6, 8, 9, 10], in this article, we extend the results by Lu [6, Wintner [8], Yan [9, and Yang and Lo [10] to the Equation (1.1). We establish necessary and sufficient conditions for existence of non-oscillatory solutions to 1.1. Using these results, we further establish oscillation criteria for 1.1. The obtained results generalize some well-known theorems in the literature.

2. Main Results

Theorem 2.1. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} p(s) d s=\infty \tag{2.1}
\end{equation*}
$$

then (1.1) is oscillatory.
Proof. Suppose to the contrary that (1.1) has a non-oscillatory solution $x(t)$. We assume that $x(t)>0$ and $x(h(t))>0$ for $t \geq t_{1} \geq t_{0}$. A similar proof is done if we assume $x(t)<0$ on $\left[t_{1}, \infty\right)$. Since $p(t) \geq 0$ on $\left[t_{1}, \infty\right),\left(r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime} \leq 0$,
hence, $r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)$ is non-increasing on $\left[t_{1}, \infty\right)$, therefore, $x^{\prime}(t)$ is eventually of constant sign. If $x^{\prime}(t)<0$ for $t \geq t_{1}$, then

$$
r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t) \leq r\left(t_{1}\right)\left(-x^{\prime}\left(t_{1}\right)\right)^{\alpha-1} x^{\prime}\left(t_{1}\right)=:-c<0
$$

It follows that

$$
x(t) \leq x\left(t_{1}\right)-c^{1 / \alpha} \int_{t_{1}}^{t} \frac{d s}{r^{1 / \alpha}(s)} \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

which contradicts $x(t)>0$. Thus, $x^{\prime}(t)>0$ for $t \geq t_{1}$. Let

$$
\begin{equation*}
w(t)=\frac{r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)}{|x(t)|^{\alpha-1} x(t)} \tag{2.2}
\end{equation*}
$$

Obviously, $w(t)>0$, and $r(t)\left(x^{\prime}(t)\right)^{\alpha}=w(t)(x(t))^{\alpha}$; i.e.,

$$
\begin{equation*}
\frac{x(h(t))}{x(t)}=\exp \left(\int_{t}^{h(t)}\left(\frac{w(s)}{r(s)}\right)^{1 / \alpha} d s\right) \tag{2.3}
\end{equation*}
$$

Then, from (1.1) and (2.3), we obtain

$$
\begin{equation*}
w^{\prime}(t)+\alpha \frac{(w(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}+p(t) \exp \left(\alpha \int_{t}^{h(t)}\left(\frac{w(s)}{r(s)}\right)^{1 / \alpha} d s\right)=0 \tag{2.4}
\end{equation*}
$$

consequently,

$$
w^{\prime}(t)+p(t) \leq 0
$$

Integrating the above inequality from t_{1} to $t\left(t>t_{1}\right)$, we have

$$
w(t) \leq w\left(t_{1}\right)-\int_{t_{1}}^{t} p(s) d s \rightarrow-\infty \quad \text { as } t \rightarrow+\infty
$$

which contradicts $w(t)>0$.
According to Theorem 2.1 we can furthermore restrict our attention to the case:

$$
\begin{equation*}
\int_{t}^{\infty} p(s) d s<\infty \tag{2.5}
\end{equation*}
$$

For convenience, we define $P(t)=\int_{t}^{\infty} p(s) d s$ for $t \geq t_{0}$. Firstly, we give the following Lemma.

Lemma 2.2. Let 2.5 hold. Suppose that 1.1 has a nonoscillatory solution $x(t) \neq 0$ for $t \geq t_{1} \geq t_{0}$, and let $w(t)$ be defined by (2.2). Then the following statements hold for $t \geq t_{1}$:

$$
\begin{gather*}
w(t)>0, \quad \lim _{t \rightarrow \infty} w(t)=0 \tag{2.6}\\
\int_{t}^{\infty} \frac{(w(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s<\infty \tag{2.7}\\
I(t)=\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{w(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s<\infty, \tag{2.8}\\
w(t)=\alpha \int_{t}^{\infty} \frac{(w(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+I(t) \tag{2.9}
\end{gather*}
$$

Proof. Assume that $x(t)>0$ on $\left[t_{1}, \infty\right)$. A similar argument holds if we assume $x(t)<0$ on $\left[t_{1}, \infty\right)$. Proceeding as in the proof of Theorem 2.1, we know $x^{\prime}(t)>0$ for $t \geq t_{1}$. Hence, $w(t)>0$ for $t \geq t_{1}$, and (2.4) holds and

$$
w^{\prime}(t) \leq-\alpha \frac{(w(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}
$$

It follows that

$$
\frac{1}{w^{1 / \alpha}(t)}-\frac{1}{w^{1 / \alpha}\left(t_{1}\right)} \geq \int_{t_{1}}^{t} \frac{1}{r^{1 / \alpha}(s)} d s \rightarrow \infty \quad \text { as } t \rightarrow+\infty
$$

thus $\lim _{t \rightarrow \infty} w(t)=0$. Integrating 2.4 from t to $T\left(T \geq t \geq t_{1}\right)$, we have

$$
\begin{equation*}
w(T)-w(t)+\alpha \int_{t}^{T} \frac{(w(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{T} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{w(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s=0 \tag{2.10}
\end{equation*}
$$

Let $T \rightarrow \infty$, then from 2.10 it follows that

$$
w(t)=\alpha \int_{t}^{\infty} \frac{(w(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+I(t), \quad t \geq t_{1}
$$

Hence, (2.9) holds. Furthermore, 2.7) and 2.8 hold.
Theorem 2.3. Let (2.5) hold. Equation (1.1) is non-oscillatory if and only if there exist $t_{1} \geq t_{0}$ and $\varphi(t) \in C^{1}\left(\left[t_{1}, \infty\right), \mathbb{R}^{+}\right)$such that

$$
\begin{equation*}
\varphi^{\prime}(t)+\alpha \frac{(\varphi(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}+p(t) \exp \left(\alpha \int_{t}^{h(t)}\left(\frac{\varphi(s)}{r(s)}\right)^{1 / \alpha} d s\right) \leq 0, \quad t \geq t_{1} \tag{2.11}
\end{equation*}
$$

Proof. The "only if" part. Let $x(t)$ be a non-oscillatory solution of (1.1). Assume that $x(t)>0$ and $x(h(t))>0$ for $t \geq t_{1}$. Then, by Lemma 2.2 the function $w(t) \in C^{1}\left(\left[t_{1}, \infty\right), \mathbb{R}^{+}\right)$defined by 2.2 satisfies 2.9). Differentiation of 2.9) shows that $w(t)$ is a solution of (2.11) on $\left[t_{1}, \infty\right)$.

The "if" part. It follows from (2.11) that $\varphi^{\prime}(t)<0$, hence $\varphi(t)$ is decreasing and is bounded from below; consequently, its limit exists, namely, $\lim _{t \rightarrow \infty} \varphi(t)=d \geq 0$. Next, we prove that $d=0$. Indeed, it follows from 2.11 that

$$
\varphi^{\prime}(t) \leq-\alpha \frac{(\varphi(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}
$$

Dividing both sides of the above inequality by $(\varphi(t))^{(\alpha+1) / \alpha}$, and integrating from t to T, then we obtain

$$
\frac{1}{\varphi^{1 / \alpha}(T)}-\frac{1}{\varphi^{1 / \alpha}(t)} \geq \int_{t}^{T} \frac{d s}{r^{1 / \alpha}(s)}
$$

letting $T \rightarrow \infty$ in the above, we have $\lim _{T \rightarrow \infty} \varphi(T)=0$. Then integrating 2.11) from t to ∞, we have

$$
\alpha \int_{t}^{\infty} \frac{(\varphi(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{\varphi(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s \leq \varphi(t), \quad t \geq t_{1}
$$

which implies that for $t \geq t_{1}$,

$$
\int_{t}^{\infty} \frac{(\varphi(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s<\infty, \quad \int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{\varphi(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s<\infty
$$

Define the following mapping

$$
\begin{equation*}
(L y)(t)=\alpha \int_{t}^{\infty} \frac{(y(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{y(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s \tag{2.12}
\end{equation*}
$$

for $t \geq t_{1}$. Let

$$
x_{0}(t) \equiv 0, \quad x_{n}(t)=L\left(x_{n-1}(t)\right), \quad n=1,2,3, \ldots
$$

It is easy to show that

$$
x_{0}(t) \leq x_{1}(t) \leq \cdots \leq x_{n}(t) \leq \cdots \leq \varphi(t)
$$

Hence

$$
\lim _{n \rightarrow \infty} x_{n}(t)=u(t) \leq \varphi(t)
$$

By 2.12, we have

$$
x_{n}(t)=\alpha \int_{t}^{\infty} \frac{\left(x_{n-1}(s)\right)^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{x_{n-1}(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s
$$

for $t \geq t_{1}$. By Levi's monotone convergence theorem, and letting $n \rightarrow \infty$ in the above equation, we obtain

$$
\begin{equation*}
u(t)=\alpha \int_{t}^{\infty} \frac{(u(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{u(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s, \quad t \geq t_{1} \tag{2.13}
\end{equation*}
$$

Set

$$
x(t)=\exp \left(\int_{t_{1}}^{t}\left(\frac{u(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right), \quad t \geq t_{1}
$$

Then

$$
\begin{equation*}
u(t)=\frac{r(t)\left(x^{\prime}(t)\right)^{\alpha}}{(x(t))^{\alpha}} \tag{2.14}
\end{equation*}
$$

By (2.13) and 2.14), we have

$$
\left(r(t)\left(x^{\prime}(t)\right)^{\alpha}\right)^{\prime}+p(t)(x(h(t)))^{\alpha}=0
$$

i.e.,

$$
\left(r(t)\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+p(t)|x(h(t))|^{\alpha-1} x(h(t))=0, \quad t \geq t_{1} .
$$

Thus, $x(t)$ is a non-oscillatory solution of (1.1).
Corollary 2.4. Let 2.5 hold. If $h(t) \equiv t$, then 1.1 is non-oscillatory if and only if there exist $t_{1} \geq t_{0}$, and $\varphi(t) \in C^{1}\left(\left[t_{1}, \infty\right), \mathbb{R}^{+}\right)$such that

$$
\varphi^{\prime}(t)+\alpha \frac{\varphi^{(\alpha+1) / \alpha}(t)}{r^{1 / \alpha}(t)}+p(t) \leq 0, \quad t \geq t_{1}
$$

We remark that for (1.4), Theorem 2.3 and Corollary 2.4 reduce to [6, Lemma 2] and [6, Corollary 1], respectively.

Let (2.5) hold. Define a sequence of functions $\left\{v_{n}(t)\right\}_{0}^{\infty}$ as follows (if they exist):

$$
\begin{gather*}
v_{0}(t)=P(t)=\int_{t}^{\infty} p(s) d s \\
v_{n+1}(t)=\alpha \int_{t}^{\infty} \frac{\left(v_{n}(s)\right)^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{v_{n}(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s \tag{2.15}
\end{gather*}
$$

for $n=0,1,2, \ldots, t \geq t_{1}$. Clearly, $v_{0}(t) \geq 0$ and $v_{1}(t) \geq v_{0}(t)$. By induction, we obtain

$$
\begin{equation*}
v_{n+1}(t) \geq v_{n}(t), \quad n=0,1,2 \ldots \tag{2.16}
\end{equation*}
$$

i.e., the sequence $\left\{v_{n}(t)\right\}_{0}^{\infty}$ is nondecreasing on $\left[t_{0}, \infty\right)$.

Theorem 2.5. Let 2.5 hold. Then (1.1) is non-oscillatory if and only if there exists $t_{1} \geq t_{0}$ such that $\left\{v_{n}(t)\right\}_{0}^{\infty}$ exists and converges; i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} v_{n}(t)=v(t)<\infty, \quad t \geq t_{1} \tag{2.17}
\end{equation*}
$$

Proof. The "only if" part. Suppose that $x(t)$ is a non-oscillatory solution of (1.1). Without loss of generality, we assume that $x(t)>0$ and $x(h(t))>0$ on $\left[t_{1}, \infty\right)$. Let $w(t)$ be defined by 2.2 , by Lemma 2.2 , we obtain 2.9, which follows

$$
w(t) \geq \int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{w(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s \geq \int_{t}^{\infty} p(s) d s=v_{0}(t) \geq 0
$$

By 2.9 again, we have
$w(t) \geq \alpha \int_{t}^{\infty} \frac{\left(v_{0}(s)\right)^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{v_{0}(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s=v_{1}(t)$
By induction, we obtain

$$
\begin{equation*}
w(t) \geq v_{n}(t) \geq 0, n=0,1,2 \ldots, \quad t \geq t_{1} \tag{2.18}
\end{equation*}
$$

It follows from (2.16) and 2.18 that 2.17 holds.
The "if" part. Assume that the function sequence $\left\{v_{n}(t)\right\}_{0}^{\infty}$ exists and converges. It follows from (2.16) and 2.17 that

$$
0 \leq v_{n}(t) \leq v(t), \quad n=1,2, \ldots, \quad t \geq t_{1}
$$

By Levi's monotone convergence theorem for (2.15), we obtain

$$
v(t)=\alpha \int_{t}^{\infty} \frac{(v(s))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(s)} d s+\int_{t}^{\infty} p(s) \exp \left(\alpha \int_{s}^{h(s)}\left(\frac{v(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s
$$

Consequently,

$$
v^{\prime}(t)+\alpha \frac{(v(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}+p(t) \exp \left(\alpha \int_{t}^{h(t)}\left(\frac{v(s)}{r(s)}\right)^{1 / \alpha} d s\right)=0, \quad t \geq t_{1}
$$

Then, by Theorem 2.3, 1.1 is non-oscillatory.
As a consequence of Theorem 2.5, we have the following result.
Theorem 2.6. Let 2.5 hold. Then (1.1) is oscillatory if one of the following conditions holds:
(1) There exists an integer m such that $v_{n}(t)$ is defined for $n=1,2, \ldots, m-1$, but $v_{m}(t)$ does not exist;
(2) $\left\{v_{n}(t)\right\}_{0}^{\infty}$ is defined for $n=1,2, \ldots$, but for arbitrarily large $T \geq t_{0}$, there exists $t^{*}>T$ such that $\lim _{n \rightarrow \infty} v_{n}\left(t^{*}\right)=\infty$.

Corollary 2.7. Let 2.5 hold. Assume that there exists $R(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$ with $R^{\prime}(t)=r^{-1 / \alpha}(t)$, and there exists $\lambda_{0}>\alpha^{\alpha} /(\alpha+1)^{\alpha+1}$ such that for all sufficiently large t,

$$
\begin{equation*}
R^{\alpha}(t) P(t) \geq \lambda_{0} \tag{2.19}
\end{equation*}
$$

Then 1.1) is oscillatory.

Proof. It follows from 2.19) that $v_{0}(t) \geq \lambda_{0} R^{-\alpha}(t)$, which implies, by 2.15),

$$
v_{1}(t) \geq v_{0}(t)+\alpha \lambda_{0}^{(\alpha+1) / \alpha} \int_{t}^{\infty} \frac{d R(s)}{R^{\alpha+1}(s)} \geq \frac{\lambda_{1}}{R^{\alpha}(t)}, \quad \lambda_{1}=\lambda_{0}+\lambda_{0}^{(\alpha+1) / \alpha}>\lambda_{0} .
$$

By induction, we can show that

$$
v_{n+1}(t) \geq \frac{\lambda_{n+1}}{R^{\alpha}(t)} \quad \text { and } \quad \lambda_{n+1}=\lambda_{0}+\lambda_{n}^{(\alpha+1) / \alpha}>\lambda_{n}, \quad \text { for } n=1,2, \ldots
$$

Now we claim that $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Otherwise, as λ_{n} is monotone increasing, we must have $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda<\infty$, and $\lambda>0$ satisfies the equation $\lambda=\lambda_{0}+\lambda^{(\alpha+1) / \alpha}$. Note that $\lambda_{0}>\alpha^{\alpha} /(\alpha+1)^{\alpha+1}$, then, by Hölder inequality, we have

$$
\begin{aligned}
\lambda=\lambda_{0}+\lambda^{(\alpha+1) / \alpha} & >\frac{\alpha+1}{\alpha}\left[\frac{1}{\alpha+1}\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}+\frac{\alpha}{\alpha+1} \lambda^{(\alpha+1) / \alpha}\right] \\
& \geq \frac{\alpha+1}{\alpha} \frac{\alpha}{\alpha+1} \lambda=\lambda,
\end{aligned}
$$

which is impossible. Hence, the claim is true. Consequently, $\lim _{n \rightarrow \infty} v_{n}(t)=\infty$. Thus, by Theorem 2.6 (2), Equaton (1.1) is oscillatory.

Corollary 2.8. Let 2.5 hold. Assume that there exists $\gamma_{0}>(\alpha+1)^{-(\alpha+1) / \alpha}$ such that for all sufficiently large t,

$$
\begin{equation*}
\int_{t}^{\infty} \frac{P^{(\alpha+1) / \alpha}(s)}{r^{1 / \alpha}(s)} d s \geq \gamma_{0} P(t) \tag{2.20}
\end{equation*}
$$

Then 1.1 is oscillatory.
Proof. It follows from 2.15 and 2.20 that

$$
v_{1}(t) \geq \gamma_{1} P(t), \quad \gamma_{1}=1+\alpha \gamma_{0}>1
$$

Assume that $v_{n}(t) \geq \gamma_{n} P(t)$, then, by 2.15 again and induction, we have

$$
v_{n+1}(t) \geq \gamma_{n+1} P(t), \quad \gamma_{n+1}=1+\alpha \gamma_{0} \gamma_{n}^{(\alpha+1) / \alpha}, \quad n=1,2, \ldots
$$

We now claim that

$$
\begin{equation*}
\gamma_{n+1}>\gamma_{n}, \quad n=1,2, \ldots \tag{2.21}
\end{equation*}
$$

Indeed, in view of the fact that $\gamma_{1}>1$ and $(\alpha+1) / \alpha>1$, we have

$$
r_{2}=1+\alpha \gamma_{0} \gamma_{1}^{(\alpha+1) / \alpha}>1+\alpha \gamma_{0}=\gamma_{1}
$$

Moreover, we have

$$
r_{3}=1+\alpha \gamma_{0} \gamma_{2}^{(\alpha+1) / \alpha}>1+\alpha \gamma_{0} \gamma_{1}^{(\alpha+1) / \alpha}=\gamma_{2}
$$

Hence, by induction, we can show that 2.21 holds. Then, by an argument similar to the proof of Corollary 2.7, we can prove $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$; consequently $\lim _{n \rightarrow \infty} v_{n}(t)=\infty$. It follows from Theorem 2.6(2) that 1.1) is oscillatory.

Theorem 2.9. Let 2.5 hold. If 1.1 has a nonoscillatory solution, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} v(t) \exp \left(\alpha \int_{t_{1}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right)<\infty \tag{2.22}
\end{equation*}
$$

where $v(t)$ satisfies 2.17.

Proof. Suppose $x(t) \neq 0$ is a nonoscillatory solution of 1.1 for $t \geq t_{1}$. Let $w(t)$ be defined by 2.2 , it follows from 2.4 and 2.9 that

$$
\begin{aligned}
-w^{\prime}(t) & =\alpha \frac{(w(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}+p(t) \exp \left(\alpha \int_{t}^{h(t)}\left(\frac{w(s)}{r(s)}\right)^{1 / \alpha} d s\right) \\
& \geq \alpha \frac{(w(t))^{(\alpha+1) / \alpha}}{r^{1 / \alpha}(t)}=\alpha w(t)\left(\frac{w(t)}{r(t)}\right)^{1 / \alpha} \\
& \geq \alpha w(t)\left(\frac{P(t)}{r(t)}\right)^{1 / \alpha}
\end{aligned}
$$

hence,

$$
\begin{equation*}
w(t) \leq w\left(t_{1}\right) \exp \left(-\alpha \int_{t_{1}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right) \tag{2.23}
\end{equation*}
$$

On the other hand, by induction, we have $w(t) \geq v_{n}(t), n=0,1,2, \ldots$ Combining this with 2.23), we obtain

$$
\begin{equation*}
v_{n}(t) \exp \left(\alpha \int_{t_{1}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right) \leq w\left(t_{1}\right), \quad n=1,2, \ldots \tag{2.24}
\end{equation*}
$$

Note that from Theorem 2.5, it follows that $\lim _{n \rightarrow \infty} v_{n}(t)=v(t)$, then by 2.24), we have

$$
\lim _{n \rightarrow \infty} v_{n}(t) \exp \left(\alpha \int_{t_{1}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right)=v(t) \exp \left(\alpha \int_{t_{1}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right) \leq w\left(t_{1}\right)
$$

and then we obtain the desired inequality 2.22 .
As a direct consequence of Theorem 2.9, we obtain the following theorem.
Theorem 2.10. Let 2.5 hold, and $v_{n}(t)$ be defined for $n=1,2, \ldots, m$. If one of the following conditions holds:
(1) $\lim _{t \rightarrow \infty} v_{m}(t) \exp \left(\alpha \int_{t_{0}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right)=\infty$,
(2) Condition 2.17 holds, and $\lim _{t \rightarrow \infty} v(t) \exp \left(\alpha \int_{t_{0}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right)=\infty$, then (1.1) is oscillatory.

Theorem 2.11. Let (2.5) hold and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} \exp \left(-\alpha \int_{t_{0}}^{s}\left(\frac{P(\tau)}{r(\tau)}\right)^{1 / \alpha} d \tau\right) d s<\infty \tag{2.25}
\end{equation*}
$$

If there exists $m \geq 1$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} v_{m}(s) d s=\infty \tag{2.26}
\end{equation*}
$$

then (1.1) is oscillatory.
Proof. Assume that $x(t) \neq 0$ is a non-oscillatory solution of (1.1) for $t \geq t_{1}$. Let $w(t)$ be defined by 2.2 , similar to the proof of Theorem 2.9, we have

$$
\begin{equation*}
v_{m}(t) \leq w\left(t_{1}\right) \exp \left(-\alpha \int_{t_{1}}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right), \quad m \geq 1 \tag{2.27}
\end{equation*}
$$

Integrating 2.27) from t_{1} to t, and then letting $t \rightarrow \infty$ makes 2.25 contradict 2.26). Hence, (1.1) is oscillatory.

3. Examples

In this section, we will give some examples to illustrate our main results.
Example 3.1. Consider the equation

$$
\begin{equation*}
\left(\frac{1}{t}\left|x^{\prime}(t)\right|^{-1 / 2} x^{\prime}(t)\right)^{\prime}+\frac{3 \lambda}{2 t^{5 / 2}}|x(3 t)|^{-1 / 2} x(3 t)=0, \quad t \geq t_{0} \tag{3.1}
\end{equation*}
$$

where

$$
\alpha=\frac{1}{2}, \quad r(t)=\frac{1}{t}, \quad h(t)=3 t, \quad \lambda>0 .
$$

Then $R^{1 / 2}(t) P(t)=\lambda \sqrt{3} / 3$. By Corollary 2.7. if there exists $\lambda_{0}>2 \sqrt{3} / 3$ such that $\lambda \geq \sqrt{3} \lambda_{0}$, i.e., $\lambda>2$, then (3.1) is oscillatory.

Example 3.2. Consider the equation

$$
\begin{equation*}
\left(t\left|x^{\prime}(t)\right| x^{\prime}(t)\right)^{\prime}+\frac{k}{t^{2}}|x(2 t)| x(2 t)=0, \quad t \geq t_{0} \tag{3.2}
\end{equation*}
$$

where $\alpha=2, r(t)=t, h(t)=2 t, k>0$. Then $P(t)=k / t$. If $k>1 / 27$, then (3.2) is oscillatory. Indeed, note that there exists $\gamma_{0} \in\left(\frac{\sqrt{3}}{9}, \sqrt{k}\right)$, then

$$
\int_{t}^{\infty} \frac{P^{1+1 / \alpha}(s)}{r^{1 / \alpha}(s)} d s=\frac{k^{3 / 2}}{t}=\frac{k}{t} \sqrt{k} \geq \gamma_{0} \frac{k}{t}>\frac{P(t)}{(\alpha+1)^{(\alpha+1) / \alpha}}
$$

for all sufficiently large t. Hence, by Corollary 2.8, the conclusion holds.
Example 3.3. Consider the equation

$$
\begin{equation*}
\left(\frac{1}{\sqrt{t}}\left|x^{\prime}(t)\right|^{1 / 2} x^{\prime}(t)\right)^{\prime}+\frac{k}{t^{5 / 2}}\left(\frac{3}{2}+\frac{3}{2 \ln t}+\frac{1}{\ln ^{2} t}\right)|x(2 t)|^{1 / 2} x(2 t)=0, \quad t \geq 1 \tag{3.3}
\end{equation*}
$$

where

$$
k>0, \quad \alpha=\frac{3}{2}, \quad r(t)=\frac{1}{\sqrt{t}}, \quad h(t)=2 t, \quad p(t)=\frac{k}{t^{5 / 2}}\left(\frac{3}{2}+\frac{3}{2 \ln t}+\frac{1}{\ln ^{2} t}\right) .
$$

Note that

$$
v_{0}(t)=P(t)=\frac{k}{t^{3 / 2}}\left(1+\frac{1}{\ln t}\right), \quad v_{1}(t)>\frac{9 k^{5 / 3}}{7 t^{7 / 6}}+\frac{k}{t^{3 / 2}}\left(1+\frac{1}{\ln t}\right) .
$$

Then

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} v_{1}(t) \exp \left(\alpha \int_{1}^{t}\left(\frac{P(s)}{r(s)}\right)^{1 / \alpha} d s\right) \\
& \geq \lim _{t \rightarrow \infty}\left(\frac{9 k^{5 / 3}}{7 t^{7 / 6}}+\frac{k}{t^{3 / 2}}\left(1+\frac{1}{\ln t}\right)\right) \exp \left(\frac{3}{2} \int_{1}^{t}\left(\frac{k\left(1+\frac{1}{\ln s}\right)}{s}\right)^{2 / 3} d s\right) \\
& \geq \lim _{t \rightarrow \infty}\left(\frac{9 k^{5 / 3}}{7 t^{7 / 6}}+\frac{k}{t^{3 / 2}}\right) \exp \left(\frac{3}{2} \int_{1}^{t}\left(\frac{k}{s}\right)^{2 / 3} d s\right) \\
& \geq \lim _{t \rightarrow \infty} \frac{k_{1}}{t^{3 / 2}} e^{k_{2} t^{1 / 3}}=\infty,
\end{aligned}
$$

where $k_{1}=k e^{-9 / 2 k^{2 / 3}}$ and $k_{2}=9 k^{2 / 3} / 2$. Thus, Theorem 2.10 (1) is satisfied for $m=1$. Hence (3.3) is oscillatory.

References

[1] R. P. Agarwal, S. R. Grace, D. O'Regan; Oscillation Theory for Second Order Linear, HalfLinear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht, 2002.
[2] O. Došlý, P. Řehák; Half-linear Differential Equations, Elsevier, Amsterdam, 2005.
[3] H. Hoshino, R. Imabayashi, T. Kusano, T. Tanigawa; On second-order half-linear oscillations, Adv. Math. Sci. Appl. 8 (1998) 199-210.
[4] T. Kusano, Y. Naito; Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hungar. 76 (1-2) (1997) 81-99.
[5] H.J. Li, C.C. Yeh; Nonoscillation criteria for second-order half-linear differential equations, Appl. Math. Lett. 8 (1995) 63-70.
[6] W. D. Lu; Oscillation property for second order advanced differential equations, Chinese Ann. Math. 12 (1991) 133-138 (in Chinese).
[7] K. Takasi, N. Yoshida; Nonoscillation theorems for a class of quasilinear differential equations of second order, J. Math. Anal. Appl. 189 (1995) 115-127.
[8] A. Wintner; On the non-existence of conjugate points, Amer. J. Math. 73 (1951) 368-380.
[9] J. Yan; Oscillation property for second order differential equations with an "integral small" coefficient, Acta Math. Sinica. 30 (1987) 206-215 (in Chinese).
[10] X. Yang, K. Lo; Nonoscillation criteria for quasilinear second order differential equations, J. Math. Anal. Appl. 331 (2007) 1023-1032.

Aisun Cheng

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

E-mail address: chengaijun@163.com
Zhiting Xu
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

E-mail address: xuzhit@126.com

