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EXISTENCE OF NON-OSCILLATORY SOLUTIONS FOR
SECOND-ORDER ADVANCED HALF-LINEAR
DIFFERENTIAL EQUATIONS

AIJUN CHENG, ZHITING XU

ABSTRACT. In this article, we establish the necessary and sufficient conditions
for existence of non-oscillatory solutions for the second-order advanced half-
linear differential equation

(r(®l2' @)1~ ()" + p@)e(h(®)[*~ e(h(t) =0, > to.

The obtained results generalize some well-known theorems in the literature

1. INTRODUCTION

Consider the second-order advanced half-linear differential equation
!/
(r@l2 @12 @)+ pOlek@) " a(h(t) =0, t=to,  (11)

where o > 0 is a constant, r € C1([tg,00),R") with ft(;o r=Ve(t)dt = oo, p €
C([to, 00), [0,00)) with p(t) # 0, and h € C([tg,0),R) with ¢ < h(t).

By a solution to we mean a function x € C1([T}, 00),R), T); > to, such that
rlz'|* 2’ € CY([Ty, 00),R) and x satisfies for all ¢ > T,. Solutions of
vanishing in some neighborhood of infinity will be excluded from our consideration.
A solution of is said to be oscillatory if it has arbitrarily large zeros, and
otherwise it is said to be non-oscillatory. Equation is called oscillatory if all
its solutions are oscillatory. Similarly, it is called non-oscillatory if all its solutions
are non-oscillatory.

Equation can be considered as the natural generalization of the linear dif-
ferential equation

(r@t)a' (1)) + p(t)z(t) = 0, (1.2)
or of the half-linear differential equation

!
(r 012 (1)) + p(t) ()" a(t) = 0 (13)
and of the advanced differential equation

(r(®)2' (1) + p(Da(h(t) =0, ¢ < (), (L.4)
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The oscillation and nonoscillation of (1.2)-(L.3) has been extensively investigated
from various viewpoints during the previous 60 years, see for example the mono-
graphs [I} [2] and the references therein. To motivate the formulation of our main
results, we wish to quote the following known non-oscillation results.

Theorem 1.1 ([8, p. 379]). Equation (1.2) has a nonoscillatory solution if and
only if there is a positive differentiable function o(t) defined on [t1,00), t1 > to,
such that

<-pt), t=>t.
Theorem 1.2 ([9, Theorem 2.1]). Assume that

—— =00 and 0< p(s)ds < 0o, t € [tg, 0
| & a9 0. 0)

hold. Define a sequence of function {v,(t)}5° as follows:

> > 1v3(s
w(t) = [ po)ds o= [ ;(i))ds,

o) 2
Upt1(t) = / Md&, t € [to,00), n=12....
t 7(s)
Then (1.2) is non-oscillatory if and only if there exists t1 > to such that
lim v, (t) =v(t) <oo  fort>t.

Recently, Yang and Lo [10] extended Theorem to (1.3)), see [10, Theorem 1].
On the other hand, in 1991, Lu [6] extended Theorem [1.1]to (1.4]). More precisely,
Lu proved the following theorem.

Theorem 1.3 ( [0, Lemma 2]). Equation (1.4)) has a nonoscillatory solution if and
only if there is a positive differentiable function ¢(t) defined on [t1,00), t1 > to,

such that ©
2 t h(t
o)+ 2 (1) < fp(t)eXp(/ ‘p(s)ds), t>t.
t r(s)

For related works for ([1.2)), see. e.g., [3, [ [5 [7].

Inspired by [0 8, @} [10], in this article, we extend the results by Lu [6], Wintner
[8], Yan [9], and Yang and Lo [10] to the Equation (1.1). We establish necessary
and sufficient conditions for existence of non-oscillatory solutions to (1.1). Using
these results, we further establish oscillation criteria for (1.1). The obtained results
generalize some well-known theorems in the literature.

2. MAIN RESULTS

Theorem 2.1. If
/ p(s)ds = oo, (2.1)

to

then (L.1]) is oscillatory.

Proof. Suppose to the contrary that (1.1)) has a non-oscillatory solution z(t). We
assume that z(t) > 0 and x(h(t)) > 0 for t > t; > to. A similar proof is done if

we assume z(t) < 0 on [t1,00). Since p(t) > 0 on [t1, 00), (r(t)|x’(t)|°"1x’(t)), <0,
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hence, r(t)|z’(t)|* 12'(t) is non-increasing on [t;,00), therefore, 2/(t) is eventually
of constant sign. If 2/(t) < 0 for ¢t > ¢, then

r)|2’ @) 2 () < r(t) (=2 (41))* M2 (1) = —c < 0.
It follows that

t
d
x(t) < a(ty) — cV/® /t1 77"1/;(3) — —00 as t — o0,

which contradicts x(t) > 0. Thus, 2'(¢) > 0 for ¢t > ¢;. Let

@Ol )
i) = et o (22)

Obviously, w(t) > 0, and r(t)(2'(¢))* = w(t)(x(t))*;
(

([ 80 =

Then, from (1.1) and (2.3)), we obtain

w (a+1)/a h(t) w(s) 1/a
w'(t) —i—a% + p(t) exp (a/t ( ( )) / ds) =0, (2.4)

consequently,
w'(t) +p(t) <0.
Integrating the above inequality from ¢; to t (¢ > t1), we have
t
w(t) < w(ty) — / p(s)ds — —oo ast — 400,
ty

which contradicts w(t) > 0. O

According to Theorem 2.1 we can furthermore restrict our attention to the case:

/too p(s)ds < oo. (2.5)

For convenience, we define P(t ft s)ds for t > tyg. Firstly, we give the
following Lemma.

Lemma 2.2. Let (2.5) hold. Suppose that (1.1) has a nonoscillatory solution
x(t) # 0 fort > t1 > to, and let w(t) be defined by (2.2). Then the following
statements hold for t > ty:

w(t) >0, lim w(t) =0, (2.6)
Awnggwﬁ<m, (2.7)
I@—[ﬂwhm@lmkﬁgW%ﬂ@<w, (2.8)
mﬂ:almwfazym¢+uw (2.9)
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Proof. Assume that z(t) > 0 on [t1,00). A similar argument holds if we assume
x(t) < 0 on [t1,00). Proceeding as in the proof of Theorem we know /() > 0
for t > t;. Hence, w(t) > 0 for ¢t > t1, and (2.4]) holds and
t))(aﬂ)/a
NN
w'(t) < 1/ )
It follows that
1 1 > /t 1 ds — 00 ast— +oo
- — —
wh/o(t)  wl/e(t) Ty, r/o(s) ’

thus lim_, o w(t) = 0. Integrating (2.4) from ¢ to T' (T > ¢ > ¢1), we have

w(T) —w(t) +a/tT st—l—/t:rp(s) exp (a /Sh(S) (w(T))l/am')ds =0.

r(7)
(2.10)
Let T'— oo, then from (2.10) it follows that
o 1
_ (w(S))(“Jr e
Hence, . holds. Furthermore, and . hold. O

Theorem 2.3. Let (2.5) hold. Equation (1.1)) is non-oscillatory if and only if there
exist t1 > to and ¢(t) € C1([t1,00),RT) such that

/ (ip(t)) > +1)/e " o(s)\1/a
<p(t)+ozrl/7a(t)+p(t)exp (a/t (T(S)) ds) <0, t>t. (2.11)

Proof. The “only if” part. Let x(t) be a non-oscillatory solution of . Assume
that x(t) > 0 and z(h(t)) > 0 for ¢ > ¢;. Then, by Lemma the function
w(t) € CY([t1,00),RT) defined by satisfies (2.9). Differentiation of
shows that w(t) is a solution of (2.11)) on [t1, 00).

The “if” part. It follows from (2.11)) that ¢’ () < 0, hence (t) is decreasing and
is bounded from below; consequently, its limit exists, namely, lim; ., ©(t) = d > 0.
Next, we prove that d = 0. Indeed, it follows from that

(p(t)) /e

Dividing both sides of the above inequality by (o(t))(@*+1/® and integrating from

t to T, then we obtain
1 1 /T ds
_ > _
P P e 1)

letting T'— oo in the above, we have limy_,o ¢(T) = 0. Then integrating (2.11)
from t to oo, we have

which implies that for ¢ > t1,

/too ( ( BZLO;Jr)l)/a ds < 00, / eXp /Sh(S) (f((:)))l/adT) ds < o0.

¢'(t) < —
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Define the following mapping

(Ly)(t) = a/too st + /t(><J p(s) exp (a /sh(S) (y(T))l/adT>d3a (2.12)

for t > t1. Let

2o(t) =0, x,(t) = L(zp—1(t)), n=1,2,3,....
It is easy to show that

Hence
lim 2, (t) = u(t) < p(t).

n— o0 -

By (2.12)), we have

Tn(t) = a/too (xn;(ii)((:;l)/a ds + /too p(s) exp (a /Sh(S) (x”r(;()T))l/adT) ds,

for t > t;. By Levi’s monotone convergence theorem, and letting n — oo in the
above equation, we obtain

u(t) = a/too st + /too p(s)exp (a /Sh(S) (:fg:)))l/adT)ds, t> 1.

(2.13)
Set ,
x(t) = exp (/t (:f((:)))l/ad )7 t>t
then (O (1)
u(t) = “GOr (2.14)

By and , we have

(r(®) (' (£)")" + p®) (x(h(t))* = 0;
0RO @) + Ok b)) =0, ¢ b
Thus, z(t) is a non-oscillatory solution of (L.1]). O

Corollary 2.4. Let (2.5) hold. If h(t) = t, then (L.1) is non-oscillatory if and
only if there exist t; > to, and p(t) € C*([t1,00),RT) such that

Lp(oz+1)/a(t)
ri/o(t)

We remark that for (1.4)), Theorem and Corollary reduce to [6l, Lemma
2] and [0, Corollary 1], respectively.
Let (2.5) hold. Define a sequence of functions {v, (¢)}§° as follows (if they exist):

vo(t) = P(t) = /too p(s)ds,

Unpa(t) = a/too st + /too p(s)exp (a /Sh(S) (?;’ZS_T)))l/adT)ds,
(2.15)

©'(t) + « +p(t) <0, t>t,
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forn =0,1,2,..., ¢t > t;. Clearly, vg(t) > 0 and v (t) > vo(t). By induction, we
obtain

Un+1(t) Zvn(t)7 n:O71727 (216)
i.e., the sequence {v,(t)}§° is nondecreasing on [tg, 00).
Theorem 2.5. Let (2.5) hold. Then (1.1)) is non-oscillatory if and only if there
exists t1 > to such that {v,(t)}5° exists and converges; i.e.,

m v, (t) = v(t) < 0o, t> 1. (2.17)

n—oo

Proof. The “only if” part. Suppose that z(t) is a non-oscillatory solution of (|1.1)).
Without loss of generality, we assume that (¢) > 0 and x(h(t)) > 0 on [t1,00). Let

w(t) be defined by (2.2)), by Lemma[2.2] we obtain (2.9)), which follows
o h(s) o
w(t) > / p(s) exp (a/ (w(T))l/adT) ds > / p(s)ds = vo(t) > 0.
t s r() t
By (2.9) again, we have

w(t) > a/too st + /too p(s) exp (a /Sh(S) (7;0((:)))1/%[7—)(15 = v1(t).

By induction, we obtain
w(t) >vp(t) >0, n=0,1,2..., t>t. (2.18)

It follows from (2.16]) and (2.18)) that (2.17) holds.

The “if” part. Assume that the function sequence {v, (t)}5° exists and converges.
It follows from (2.16]) and (2.17)) that
0<uv,(t) <v(t), n=1,2,..., t>1.
By Levi’s monotone convergence theorem for (2.15)), we obtain

u(t) = a/too st + /toop(s)exp (o /sh(S) (:((:)))1/%7)(15.

Consequently,

/ (v(t)lett/e MO o(s)\1/a
v (t)—l—aW + p(t) exp (a t (=) ds) =0, t>1.
Then, by Theorem (1.1) is non-oscillatory. O

As a consequence of Theorem we have the following result.
Theorem 2.6. Let (2.5) hold. Then (1.1) is oscillatory if one of the following

conditions holds:

(1) There exists an integer m such that v, (t) is defined forn=1,2,... ., m—1,
but vy, (t) does not exist;
(2) {vn(t)}e is defined forn =1,2,..., but for arbitrarily large T > tg, there
exists t* > T such that lim,,_, o, v, (t*) = co.
Corollary 2.7. Let hold. Assume that there exists R(t) € C*([to,00), RT)
with R'(t) = r~Y/2(t), and there exists \g > a®/(a + 1)+ such that for all
sufficiently large t,
R*(t)P(t) > Xo. (2.19)
Then 18 oscillatory .
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Proof. Tt follows from (2.19) that vg(¢) > AgR™*(t), which implies, by (2.15)),
dR(s) A

U1 (t) Z Uo(t) + a)\(()a+1)/a RO‘+1(8) 2 Ra(t)a

A1 =X+ )\(()a+1)/a > Ag.

By induction, we can show that

An
Upg1(t) > =250 and Appr = Ao ATV S A forn=1,2,....
Re(t)
Now we claim that lim, ., A, = co. Otherwise, as A, is monotone increasing, we
must have lim,_,o A\, = A < 00, and A > 0 satisfies the equation A = Ao+ A(@+1)/e
Note that Ao > a®/(a + 1)®T1, then, by Hélder inequality, we have

+1 1 O \a+tl «
A= A+ A+ /a S { 7A(a+1>/a}
o+t > « a—i—l(a—i—l) a—+1
>a+1 o Y
a o+l

which is impossible. Hence, the claim is true. Consequently, lim,, o, v, (t) = 0.
Thus, by Theorem (2), Equaton (1.1)) is oscillatory. O

Corollary 2.8. Let ([2.5) hold. Assume that there exists 7o > (a+1)~(@+t/e gych
that for all sufficiently large t,

(a+1)/a (g
/ P )ds > v P(t). (2.20)

Tl/a
Then (1.1) is oscillatory.

Proof. 1t follows from (2.15) and (2.20) that
vi(t) 2 nP{E), m=1l+ay>1
Assume that v, (t) > v, P(t), then, by again and induction, we have
Unt1(t) = 1 P(t),  Yng1 =1+ a0/ n=1,2,....

We now claim that

Tl >, n=1,2,.... (2.21)
Indeed, in view of the fact that v; > 1 and (o + 1)/ > 1, we have
re =1+ ay 'y(aH)/ >1l4+ay=m

Moreover, we have

(a+1)/c (a+1)/a _

r3 =1+ vy > 1+ oy = 2.

Hence, by induction, we can show that (2.21) holds. Then, by an argument sim-
ilar to the proof of Corollary we can prove lim, .., A, = 00; consequently
lim,, 00 Uy, (t) = 00. It follows from Theorem (2) that (1.1 is oscillatory. O

Theorem 2.9. Let (2.5)) hold. If (1.1) has a nonoscillatory solution, then

lim v(t) exp (a /tt (P(S))l/o‘d3> < 00, (2.22)

o (s)

where v(t) satisfies (2.17)).
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Proof. Suppose z(t) # 0 is a nonoscillatory solution of (1.1)) for ¢ > ¢;. Let w(¢) be
defined by ({2.2)), it follows from (2.4) and (2.9) that

w(t)) (et /e RO w(8)\1/a
—w'(t) ZaL—i-p(t)exp (a/t ( ( )) / ds)

Tl/a(t) 7’(8)
(w(t)) >+t w(t)\1/a
e - 0Gw)
P(t)\1/a
> O‘w(t)(m) )
hence,
w(t) < w(ty)exp < — a/t (1:<(j)))1/ads). (2.23)

On the other hand, by induction, we have w(t) > v,(t), n =0,1,2,.... Combining
this with (2.23]), we obtain
t P o
Un(t) exp (a/ (ﬂ)” ds) <w(t), n=12.... (2.24)
11 T‘(S)
Note that from Theorem it follows that lim, . v, (t) = v(t), then by (2.24]),
we have

" P(s)y1/a " P(s)\1/a
lim vy, (t ds) = v(t ds) < w(ty),
risoo ¢ () exp (a/tl (r(s) ) S) v(#) exp (a/tl (r(s)) 8) < w(th)

and then we obtain the desired inequality (2.22)). O

As a direct consequence of Theorem we obtain the following theorem.

Theorem 2.10. Let (2.5) hold, and v, (t) be defined for n =1,2,...,m. If one of
the following conditions holds:

1) Timy o v () exp (a [F (2 Vegs) = 00,
( p to \ r(s)
(2) Condition (2.17) holds, and lim;_,o v(t) exp (a ffto (1:((;)))1/&(13) = oo,
then 1s oscillatory.
Theorem 2.11. Let (2.5) hold and

lim texp ( - a/s (P(T))l/adT)ds < 00. (2.25)

t—0o0 Ji, to T(T)

If there exists m > 1 such that

¢
lim [ wvy(s)ds = oo, (2.26)

t—o0 to

then (1.1)) is oscillatory.

Proof. Assume that x(t) # 0 is a non-oscillatory solution of (1.1)) for ¢ > ¢;. Let
w(t) be defined by ([2.2)), similar to the proof of Theorem we have
¢
P
onlt) < w(t)esp (—a [ (22

4 T(s)

Integrating (2.27)) from ¢; to ¢, and then letting ¢ — oo makes (2.25) contradict

(2.26)). Hence, (1.1} is oscillatory. (I

)”"‘ds), m>1. (2.27)
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3. EXAMPLES

In this section, we will give some examples to illustrate our main results.

Example 3.1. Consider the equation

1 _ !
(g|x’(t)| U%’(t)) +2t5/2|m(3t)\ V24(3t) =0, t> to, (3.1)
where

azia T(t): ta h<t):3t7 A > 0.

Then R'/2(t)P(t) = Av/3/3. By Corollary [2.7] if there exists Ao > 2v/3/3 such that
A > /3, ie., A > 2, then (3.1)) is oscillatory.

Example 3.2. Consider the equation
k
/!
(tl2" (012" (1) + Zl(20)[(2t) = 0, ¢ = 1o, (3.2)

where o = 2, r(t) = t, h(t) = 2t, k > 0. Then P(t) = k/t. If k > 1/27, then (3.2)
is oscillatory. Indeed, note that there exists vy € (?, \/E)7 then

%) P1+1/o¢(8) k3/2 k k P(t)
A /N .\ —
~/t ’I"l/o‘(g) S ; t\[ > ’YOt (a+ 1)(a+1)/a

for all sufficiently large ¢. Hence, by Corollary the conclusion holds.

Example 3.3. Consider the equation

(5 Ol )+ (5 g + o o2 =0, 021, (33)

21Ht ln
where
3 1 k 3 3 1
k = - t) = — h(t) = 2t t)= —(=+ —+ —).
>0, a=g, 1) 7 ) =2t pt) = 555 2lnt+1n2t)
Note that
k 1 9ks/3  k 1
UO(t) 7P(t) = W(l+m), ’Ul(t) > 7t7/6 +t3w(1+m)
Then

tlgglo v1(t) exp (a /j (I:((j)))l/o‘ds>

1—|— )) exp(g/lt (%)W%ﬁ)

> lim

k
t—o00 ( 7t7/6 7/
k

(
i (B e (3 )

S

where ky = ke=%/2""* and ky = 9k2/3 /2. Thus, Theorem m (1) is satisfied for
m = 1. Hence (3.3) is oscillatory.
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