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EXISTENCE AND STABILITY OF SOLUTIONS TO NEUTRAL
EQUATIONS WITH INFINITE DELAY

XIANLONG FU

Abstract. In this article, by using a fixed point theorem, we study the exis-
tence and regularity of mild solutions for a class of abstract neutral functional

differential equations with infinite delay. The fraction power theory and α-

norm is used to discuss the problem so that the obtained results can be ap-
plied to equations with terms involving spatial derivatives. A stability result

for the autonomous case is also established. We conclude with an example

that illustrates the applications of the results obtained.

1. Introduction

In this article, we study the existence, regularity and stability of mild solutions
for the following abstract neutral functional evolution equation with infinite delay:

d

dt
[x(t) + F (t, xt)] +Ax(t) = G(t, xt), 0≤t≤a,

x0 = φ ∈ Bα.
(1.1)

where x(·) takes values in a subspace of Banach space X, the operator −A : D(A)→
X generates an analytic semigroup (S(t))t≥0, and F,G : [0, a] × Bα → X are
appropriate functions, Bα ⊂ B, and B is the phase space to be specified later.

Since many practical functional differential models can be studied by rewritten
to abstract equation (1.1), in these years there has been an increasing interest in
the study of semilinear evolution equations of form (1.1), such as existence and
asymptotic behavior of solutions (mild solutions, strong solutions and classical so-
lutions), and existence of (almost) periodic solutions, etc. Here we mention the
work of Travis and Webb [25], Rankin III [21], Bátkai1 and Piazzera [4] for the
case of finite delay, and Henŕıquez [12], Adimy et al [1]-[3], Liu [19], Diagana and
Hernández[6], Hernández et al [15, 16, 17] and Ye [28] for the case of infinite delay.
In [13] and [14] Hernández and Henŕıquez have extended the problem studied in
[12] to neutral equations and established the corresponding existence results of so-
lutions and periodic solutions. In their work, the operator A generates an analytic
semigroup so that the theory of fractional power has been used effectively there
to obtain the existence of mild solutions, strong solutions and periodic solutions
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for (1.1). In the subsequent years, various similar results have been established
by many mathematicians. In paper [1]-[3] Adimy et al have discussed this topic
for the equations where the linear parts are non-densely defined and have also
achieved some similar results. Particularly, in paper [2] the authors have discussed
the following functional differential system with infinite delay:

d

dt
[x(t) + F (t, xt)] = A[x(t) + F (t, xt)] +G(t, xt), 0≤t≤a,

x0 = φ ∈ B,
(1.2)

where A is non-densely defined Hille-Yosida operator and generates an integrated
semigroup. The authors have proved there the existence, uniqueness and the regu-
larity of integral solutions, and have investigated the stability near an equilibrium
associated to the autonomous case of (1.2).

The purpose of this article is to extend the work in [13] and [2] so that the
corresponding results can be applied to the system

∂

∂t
[u(t, x) + f(t, u(·, x),

∂

∂x
u(·, x))] +

∂2

∂x2
u(t, x) = g(t, u(·, x),

∂

∂x
u(·, x)),

z(t) = z(t, π) = 0,

z(θ, x) = φ(θ, x), θ ≤ 0, 0 ≤ x ≤ π.

(1.3)

Evidently, this system can be treated as the abstract equation (1.1), however, the
results established in [13] become invalid for this situation, since the functions
f, g in (1.3) involve spatial derivatives. As one will see in Section 5, if take X =
L2([0, π]), then the third variables of f and g are defined on X 1

2
and so the solutions

can not be discussed on X like in [13]. In this paper, inspired by the work in [26],[27]
and [8], we shall discuss this problem by using fractional power operators theory
and α−norm, that is, we shall restrict this equation in a Banach space Xα(⊂ X)
and investigate the existence and regularity of mild solutions for (1.1), as well as
the stability for the autonomous equation via ‖ · ‖α. We mention here that, for the
regularity of mild solutions, other than paper [13], we obtain the existence of strict
solutions (not strong solutions) for Eq. (1.1) under Hölder continuous conditions,
see Section 3.2.

This article is organized as follows: we firstly introduce some preliminaries about
analytic semigroup and phase space for infinite delay in Section 2, particularly, to
make them to be still valid in our situation, we have restated the axioms of phase
space on the space Xα. The existence and uniqueness results of mild solutions
are discussed in Section 3 by applying fixed point theorem. In this section we also
provide some sufficient conditions to guarantee the regularity of mild solutions, that
is, we obtain the existence of strict solutions. In section 4, we are concerned with
the stability of mild solutions. As in [2], we state in this part some properties of the
solution operator associated to the autonomous case of (1.1). Also, we investigate
here the stability near an equilibrium for this situation by using linearized technique.
Finally, an example is presented in Section 5 to show the applications of the results
obtained.
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2. Preliminaries

Throughout this paper X is a Banach space with norm ‖·‖. And, −A : D(−A)→
X is the infinitesimal generator of a compact analytic semigroup (S(t))t≥0 of uni-
formly bounded linear operators. Let 0 ∈ ρ(A). Then it is possible to define the
fractional power Aα , for 0 < α ≤ 1 , as a closed linear operator on its domain
D(Aα) . Furthermore, the subspace D(Aα) is dense in X and the expression

‖x‖α = ‖Aαx‖, x ∈ D(Aα),

defines a norm on D(Aα). Hereafter we denote by Xα the Banach space D(Aα)
normed with ‖x‖α. Then for each α > 0, Xα is a Banach space, and Xα ↪→ Xβ for
0 < β < α and the imbedding is compact whenever the resolvent operator of A is
compact.

For the semigroup (S(t))t≥0, the following properties will be used:
(a) There exist M ≥ 1 and ω ∈ R such that

‖S(t)‖ ≤Meωt, for all t ≥ 0; (2.1)

(b) For any α > 0, there exists a constant Cα > 0 such that

‖AαS(t)‖ ≤ Cα
tα
eωt , t > 0. (2.2)

(c) For every α > 0, there exists a constant C ′α > 0 such that

‖(S(t)− I)A−α‖ ≤ C ′αtα , 0 < t ≤ a. (2.3)

In the sequel, we will use directly the estimates ‖S(t)‖ ≤ M and ‖AαS(t)‖ ≤ Cα
tα

on finite intervals. For more details about the theory of operator semigroups and
fraction powers of operators, we refer to [7] and [22].

To study (1.1), we assume that the histories xt : (−∞, 0]→ X, xt(θ) = x(t+ θ),
belong to some abstract phase space B, which is defined axiomatically. In this
article, we employ an axiomatic definition of the phase space B introduced by Hale
and Kato [10] and follow the terminology used in [18]. Thus, B will be a linear
space of functions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B. We
assume that B satisfies the following axioms:

(A1) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a) and xσ ∈ B,
then for every t ∈ [σ, σ + a) the following statements hold:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H‖xt‖B;

(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t − σ)‖xσ‖Bα . Here
H ≥ 0 is a constant, K,M : [0,+∞) → [0,+∞), K(·) is continuous
and M(·) is locally bounded, and H, K(·), M(·) are independent of
x(t).

(A2) For the function x(·) in (A1), xt is a B-valued continuous function on
[σ, σ + a].

(B1) The space B is complete.
We denote by Bα the set of all the elements in B that take values in space Xα;
that is,

Bα := {φ ∈ B : φ(θ) ∈ Xα for all θ ≤ 0}.
ThenBα becomes a subspace of B endowed with the seminorm ‖ · ‖Bα which is
induced by ‖ · ‖B through ‖ · ‖α. More precisely, for any φ ∈ Bα, the seminorm
‖ · ‖Bα

is defined by ‖Aαφ(θ)‖, instead of ‖φ(θ)‖. For example, let the phase space
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B = Cr × Lp(g : X), r ≥ 0, 1 ≤ p < ∞ (cf. [18]), which consists of all classes of
functions φ : (∞, 0]→ X such that φ is continuous on [−r, 0], Lebesgue-measurable,
and g‖φ(·)‖p is Lebesgue integrable on (−∞,−r), where g : (−∞,−r) → R is a
positive Lebesgue integrable function. The seminorm in B is defined by

‖φ‖B = sup{φ(θ) : −r ≤ θ ≤ 0}+
(∫ −r
−∞

g(θ)‖φ(θ)‖pdθ
)1/p

.

Then the seminorm in Bα is defined by

‖φ‖Bα
= sup{‖Aαφ(θ)‖ : −r ≤ θ ≤ 0}+

(∫ −r
−∞

g(θ)‖Aαφ(θ)‖pdθ
)1/p

.

See also the space Cg, 12 presented in Section 5. Hence, since Xα is still a Banach
space, we will assume that the subspace Bα also satisfies the following conditions:

(A1’) If x : (−∞, σ + a) → Xα, a > 0, is continuous on [σ, σ + a) (in α−norm)
and xσ ∈ Bα, then for every t ∈ [σ, σ + a) the followings hold:
(i) xt is in Bα;
(ii) ‖x(t)‖α ≤ H‖xt‖Bα

;
(iii) ‖xt‖Bα

≤ K(t− σ) sup{‖x(s)‖α : σ ≤ s ≤ t}+M(t− σ)‖xσ‖Bα
.

Here H, K(·) and M(·) are as in (A)(iii) above.
(A2’) For the function x(·) in (A), xt is a Bα-valued continuous function on

[σ, σ + a].
(B1’) The space Bα is complete.

Finally we conclude this section by stating the following two theorems, which
play an essential role for our proofs in the next section.

Theorem 2.1 ([24]). Let P be a condensing operator on a Banach space X; i.e.,
P is continuous and takes bounded sets into bounded sets, and α(P (B)) ≤ α(B) for
every bounded set B of X with α(B) > 0. If P (H) ⊂ H for a convex, closed and
bounded set H of X, then P has a fixed point in H (where α(·) denotes Kuratowski’s
measure of non-compactness).

Theorem 2.2 ([5]). Let (V (t))t≥0 be a nonlinear strongly continuous semigroup on
subset Ω of a Banach space X. Assume that x0 ∈ Ω is an equilibrium of (V (t))t≥0

and V (t) is Fréchet-differentiable at x0 for t ≥ 0, with W (t) the Fréchet derivative
at x0 of V (t). Then (W (t))t≥0 is a strongly continuous semigroup of bounded linear
operators on X. Moreover, if the zero equilibrium of (W (t))t≥0 is exponentially
stable, then x0 is a locally exponentially stable equilibrium of (U(t))t≥0.

3. Existence results

We devote this section to study the existence and regularity of mild solutions for
(1.1).

3.1. Existence of mild solutions. A mild solution of (1.1) is defined as follows.

Definition 3.1. A function x(·) : (−∞, b] → D(Aα), b > 0, is a mild solution of
(1.1), if x0 = φ, the restriction of x(·) to the interval [0, b] is continuous and for each
0 ≤ t ≤ b, the function AS(t− s)F (s, xs), s ∈ [0, t) is integrable and the following
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integral equality is satisfied:

x(t) = S(t)[φ(0) + F (0, φ)]− F (t, xt) +
∫ t

0

AS(t− s)F (s, xs)ds

+
∫ t

0

S(t− s)G(s, xs)ds, 0 ≤ t ≤ b.
(3.1)

The last two terms are integrals in sense of Bocher (see [20]).

We now give the basic assumptions for (1.1) in our discussion. Let Ω ⊂ Bα be
an open set.

(H1) F : [0, a]×Ω→ D(Aα+β) is a continuous function for some β ∈ (0, 1) with
α+ β ≤ 1, and there exists l > 0 such that the function AβF satisfies:

‖AβF (s1, φ1)−AβF (s2, φ2)‖α ≤ l(|s1 − s2|+ ‖φ1 − φ2‖Bα
) (3.2)

for any 0 ≤ s1, s2 ≤ a, φ1, φ2 ∈ Ω, and the inequality

M1lK(0) < 1 (3.3)

holds, where M1 := ‖A−β‖.
(H2) The function G : [0, a]× Ω→ X is continuous.

Theorem 3.2. Let φ ∈ Ω. If assumptions (H1), (H2) are satisfied, then (1.1)
admits at least one mild solution on (−∞, bφ] for some bφ < a.

Proof. Let y(·) : (−∞, a]→ Xα be the function defined by

y(t) :=

{
S(t)φ(0), t ≥ 0,
φ(t), −∞ < t < 0,

then y0 = φ, yt ∈ Bα for any t ∈ [0, a], and it is easy to prove that the map t→ y(t)
is continuous in α− norm on [0, a], hence t→ yt is continuous in seminorm ‖ · ‖Bα .
We denote N1 := sup{‖yt‖Bα : 0 ≤ t ≤ a}. Since AβF (·, ·) satisfies Lipschitz
condition, G is continuous and Ω is open, there exists r > 0 such that Br(φ) ⊂ Ω
and ‖AβF (t, ψ)‖ ≤ N2 and ‖G(t, ψ)‖ ≤ N3 for constants N2, N3 ≥ 0 and all
(t, ψ) ∈ [0, a]×Br(φ). In the sequel, we always denote

Kt := sup
s∈[0,t]

K(s), Mt := sup
s∈[0,t]

M(s).

As y0 = φ, we may choose 0 < b1 < a such that ‖yt−φ‖Bα
≤ r/2 for all 0 ≤ t ≤ b1.

Let ρ = r
2Kb1

, and define the set

S(ρ) := {z ∈ C([0, bφ];Xα) : z(0) = 0, ‖z(t)‖α ≤ ρ, 0 ≤ t ≤ bφ},
where bφ (< b1) will be determined below. Then S(ρ) is clearly a non-empty
bounded, closed and convex subset of C([0, bφ];Xα). For each z ∈ S(ρ), we denote
by z̄ the function defined by

z̄(t) :=

{
z(t), 0 ≤ t ≤ bφ,
0, −∞ < t < 0.

Obviously, if x(·) satisfies (3.1), we can decompose it as x(t) = z(t) + y(t), 0 ≤ t ≤
bφ, which implies xt = z̄t + yt for every 0 ≤ t ≤ bφ and the function z(·) satisfies

z(t) = S(t)F (0, φ)− F (t, z̄t + yt) +
∫ t

0

AS(t− s)F (s, z̄s + ys)ds
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+
∫ t

0

S(t− s)G(s, z̄s + ys)ds, 0 ≤ t ≤ bφ.

Let P , P1, P2 be the operators on S(ρ) defined, respectively, by

(Pz)(t) := S(t)F (0, φ)− F (t, z̄t + yt) +
∫ t

0

AS(t− s)F (s, z̄s + ys)ds

+
∫ t

0

S(t− s)G(s, z̄s + ys)ds,

(P1z)(t) := S(t)F (0, φ)− F (t, z̄t + yt) +
∫ t

0

AS(t− s)F (s, z̄s + ys)ds

and

(P2z)(t) :=
∫ t

0

S(t− s)G(s, z̄s + ys)ds.

Then, the assertion that (1.1) admits a mild solution is equivalent to P = P1 + P2

has a fixed point. Next we prove that P has a fixed point by using Theorem 2.1. For
this purpose, we will show that P maps S(ρ) into itself and P1 verifies a contraction
condition while P2 is a completely continuous operator.

Initially, we see that if z(t) ∈ S(ρ), then z̄t + yt ∈ Br(φ) for all 0 ≤ t ≤ bφ. In
fact, Axiom (A1’) of the phase space Bα yields that

‖z̄t + yt − φ‖Bα
≤ ‖z̄t‖Bα

+ ‖yt − φ‖Bα

≤ K(t) sup
0≤s≤t

‖z(s)‖α + ‖yt − φ‖Bα

≤ Kbφρ+
r

2
≤ r.

To show that P maps S(ρ) into S(ρ), let z ∈ S(ρ). Then

(P1z)(t) = S(t)A−β [AβF (0, φ)−AβF (t, yt)]

+ (S(t)− I)F (t, yt)

+A−β [AβF (t, yt)−AβF (t, z̄t + yt)]

+
∫ t

0

AS(t− s)F (s, z̄s + ys)ds,

then from assumption (H1), (2.1) and (2.3) it follows that

‖(P1z)(t)‖α ≤ ‖S(t)‖‖A−β‖‖Aα(AβF (0, φ)−AβF (t, yt))‖

+ ‖Aα(S(t)− I)A−βAβF (t, yt)‖

+ ‖A−β‖‖Aα(AβF (t, yt)−AβF (t, z̄t + yt))‖

+
∫ t

0

‖A1−βS(t− s)‖‖AαAβF (s, z̄s + ys)‖ds

≤MM1l(t+ ‖yt − φ‖Bα) +M1C
′
βN2t

β

+M1lKbφρ+ C1−βN2

∫ t

0

1
(t− s)β

ds.

for 0 ≤ t ≤ bφ. And we have also that

‖(P2z)(t)‖α = ‖
∫ t

0

AαS(t− s)G(s, z̄s + ys)ds‖ ≤ CαN3

∫ t

0

1
(t− s)α

ds.
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Therefore, by (3.3) we may choose bφ, 0 < bφ < b1 such that

MM1l(t+ ‖yt − φ‖Bα
) +M1C

′
βN2t

β +
C1−βN2

β
tβ +

CαN3

1− α
t1−α

≤ (1−M1lKbφ)ρ
(3.4)

for all 0 < t ≤ bφ, and

l∗ := lKbφ(M1 + C1−β
b1−βφ

1− β
) < 1. (3.5)

Hence from (3.4) we obtain that

‖(Pz)(t)‖α ≤ ‖(P1z)(t)‖α + ‖(P2z)(t)‖α
≤ (1−M1lKbφ)ρ+M1lKbφρ = ρ,

which shows P maps S(ρ) into itself.
Now we prove that P1 is a contraction map. Take z1, z2 ∈ S(ρ), then for each

t ∈ [0, bφ] and by Axiom (A1)(ii) and (3.2), we have

‖(P1z1)(t)− (P1z2)(t)‖α
≤ ‖F (t, z̄1,t + yt)− F (t, z̄2,t + yt)‖α

+ ‖
∫ t

0

AS(t− s)[F (s, z̄1,s + ys)− F (s, z̄2,s + ys)]ds‖α

≤M1l‖z̄1,t − z̄2,t‖Bα
+
∫ t

0

C1−β

(t− s)β
l‖z̄1,s − z̄2,s‖Bα

ds

≤ lKbφ(M1 + C1−β
b1−βφ

1− β
) sup

0≤s≤bφ
‖z1(s)− z2(s)‖α

= l∗ sup
0≤s≤bφ

‖z1(s)− z2(s)‖α,

where l∗ < 1 by (3.5). Thus

‖P1z1 − P1z2‖α < l∗‖z1 − z2‖α,

and so P1 is a contraction.
To prove that P2 is a completely continuous operator, first we note that P2 is

obviously continuous on S(ρ). Then we prove that the family {P2z : z ∈ S(ρ)} is a
family of equi-continuous functions. To do this, let 0 < t ≤ bφ, h > 0 be sufficient
small, then

‖(P2z)(t+ h)− (P2z)(t)‖α

= ‖
∫ t+h

0

AαS(t+ h− s)G(s, z̄s + ys)ds−
∫ t

0

AαS(t− s)G(s, z̄s + ys)ds‖

≤
∫ t−ε

0

‖Aα(S(t+ h− s)− S(t− s))‖‖G(s, z̄s + ys)‖ds

+
∫ t

t−ε
‖Aα(S(t+ h− s)− S(t− s))‖‖G(s, z̄s + ys)‖ds

+
∫ t+h

t

‖AαS(t+ h− s)‖‖G(s, z̄s + ys)‖ds.
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≤ N3‖S(h+ ε)− S(ε)‖
∫ t−ε

0

‖AαS(t− s− ε)‖ds

+N3

∫ t

t−ε
‖Aα[S(t+ h− s)− S(t− s)]‖ds

+N3‖
∫ t+h

t

AαT (t+ h− s)ds‖

≤ Cα
1− α

N3(t− ε)1−α‖S(h+ ε)− S(ε)‖

+
Cα

1− α
N3[h1−α − (h− ε)1−α + ε1−α] +

Cα
1− α

N3h
1−α.

The right-hand side tends to zero as h → 0 with ε sufficiently small, since S(t)
is strongly continuous, and the compactness of S(t), t > 0, implies the continuity
in the uniform operator topology. Hence, P2 maps S(ρ) into a family of equi-
continuous functions.

It remains to prove that V (t) = {(P2z)(t) : z ∈ S(ρ)} is relatively compact in
Xα. Obviously it is true in the case t = 0. Observe that for 0 < α < α1 < 1, t > 0,

‖Aα1(P2z)(t)‖ =
∥∥∫ t

0

Aα1S(t− s)G(s, z̄s + ys)ds
∥∥

≤ Cα1N3

∫ t

0

1
(t− s)α1

ds,

which implies that Aα1(P2z)(t) is bounded in X, Hence, by the compactness of
operator A−α1 : X → Xα (note the imbedding X−α1 ↪→ Xα is compact), we infer
that the set V (t) is relatively compact in Xα. Thus, by Arzela-Ascoli theorem P2

is a completely continuous operator. These arguments enable us to conclude that
P = P1 +P2 is a condensing map on S(ρ), and by Theorem 2.1 there exists a fixed
point z(·) for P on S(ρ), which implies equation (1.1) admits a mild solution on
(−∞, bφ]. Then the proof is complete. �

We can easily prove the following result on uniqueness of solutions.

Theorem 3.3. Assume the condition (H1) of the preceding theorem holds. If there
exists l′ > 0 such that

‖G(t, φ1)−G(t, φ2)‖ ≤ l′‖φ1 − φ2‖Bα

for all 0 ≤ t ≤ a, and φ1, φ2 ∈ Ω. Then, for any φ ∈ Ω, the problem (1.1) has a
unique mild solution on (−∞, bφ] for some bφ ∈ (0, a).

The extension of solutions to (1.1) can also be obtained by standard arguments.
Here we only state the result as a theorem, the proof is very similar to that in Paper
[12] and [26].

Theorem 3.4. Assume that the conditions of Theorem 3.2 or Theorem 3.3 are
satisfied. Then, for any φ ∈ Ω, the equation (1.1) has a solution x(t) on a maximal
interval of existence (−∞, bmax). And, if bmax <∞, then limt→b−max

‖x(t)‖α =∞.

3.2. Existence of strict solutions. In this subsection, we discuss the regularity
of mild solutions for (1.1); that is, we will provide conditions to allow the differ-
entiability of mild solutions of (1.1). For this purpose we need some additional
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properties of the phase subspace Bα. Let BCα be the set of bounded and continu-
ous functions mapping (−∞, 0] into Xα, and C00 its subset consisting of functions
with compact support. If Bα also satisfies the additional axiom:

(C1) If a uniformly bounded sequence {φn(θ)} in C00 converges to a function
φ(θ) uniformly on every compact set on (−∞, 0], then φ ∈ Bα and

lim
n→+∞

‖φn − φ‖Bα
= 0.

Then BCα is continuously imbedded into Bα. Put

‖φ‖∞ = sup{‖φ(θ)‖α : θ ≤ 0},

for φ ∈ BCα, then one has the following result.

Lemma 3.5 ([10]). If the phase space Bα satisfies the axiom (C1), then BCα ⊂ Bα,
and there exists a constant J > 0 such that ‖φ‖Bα

≤ J‖φ‖∞ for all φ ∈ BCα
Definition 3.6. A function x(·) : (−∞, b] → Xα, b > 0, is said to be a strict
solution of problem (1.1), if

(1) x(t) + F (t, xt) ∈ C([0, b];Xα) ∩ C1((0, b];X);
(2) x(·) ∈ D(A) satisfies

d

dt
[x(t) + F (t, xt)] +Ax(t) = G(t, xt),

on [0, b] and
x0 = φ ∈ Bα.

Theorem 3.7. Let the phase space Bα satisfies the axiom (C1) additionally. Sup-
pose that condition (H1) and (H2) are satisfied. Also the following conditions hold:

(H1’) Let x : (−∞, a]→ Xα be a function such that xt ∈ Ω for t ∈ [0, a] and x(·)
is continuous on [0, a], then the map t → AβF (t, xt) is Hölder continuous
in α−norm with exponent 0 < θ1 < 1 satisfying θ1 > 1− α− β.

(H2’) Function G(·, ·) is locally Hölder continuous; i.e., for each (t0, φ0) ∈ [0, a]×
Ω, there exists a neighborhood W of (t0, φ0), and constants l2 > 0, 0 <
θ2 < 1, such that

‖G(s2, φ2)−G(s1, φ1)‖ ≤ l2[|s2 − s1|θ2 + ‖φ2 − φ1‖θ2Bα
]

for (si, φi) ∈W ⊂ ([0, a]× Ω), i = 1, 2;
(H3) The initial function φ ∈ Ω is Hölder continuous, and φ(0)+F (0, φ) ∈ D(A).

Then the equation (1.1) has a strict solution on (−∞, bφ] for some bφ > 0.

Proof. By Theorem 3.2, we see that (1.1) has a mild solution x(·) on (−∞, bφ]. For
this x(·), let

m(t) = S(t)[φ(0) + F (0, φ)],

p(t) =
∫ t

0

AS(t− s)F (s, xs)ds,

q(t) =
∫ t

0

S(t− s)G(s, xs)ds.

It follows from (2.1) and (2.3) that

‖m(t+ h)−m(t)‖α = ‖S(t)(S(h)− I)A−(α′−α)Aα
′
[φ(0) + F (0, φ)]‖
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≤MC ′αh
α′−α‖φ(0) + F (0, φ)‖α′ ,

where α′ > 0 is a constant chosen to satisfy α < α′ < α+ β,

‖p(t+ h)− p(t)‖α

≤ ‖
∫ t

0

AS(t− s)[S(h)− I]F (s, xs)ds‖α + ‖
∫ t+h

t

AS(t+ h− s)F (s, xs)ds‖α

≤ ‖
∫ t

0

A1−(α′−α)S(t− s)[S(h)− I]A−(α+β−α′)AαAβF (s, xs)ds‖

+ ‖
∫ t+h

t

A1−βS(t+ h− s)AαAβF (s, xs)ds‖

≤ [
∫ t

0

C1−(α′−α)C
′
α+β−α′(t− s)(α

′−α)−1hα+β−α′ds

+
∫ t+h

t

C1−β(t+ h− s)β−1ds] max
0≤s≤bφ

‖AβF (s, xs)‖α

≤ [
C1−(α′−α)C

′
α+β−α′

α′ − α
tα
′−αhα+β−α′ +

C1−β

β
hβ ] max

0≤s≤bφ
‖AβF (s, xs)‖α,

and

‖q(t+ h)− q(t)‖α

≤ ‖
∫ t

0

S(t− s)[S(h)− I]G(s, xs)ds‖α + ‖
∫ t+h

t

S(t+ h− s)G(s, xs)ds‖α

≤ ‖
∫ t

0

Aα
′
S(t− s)[S(h)− I]Aα−α

′
G(s, xs)ds‖

+ ‖
∫ t+h

t

AαS(t+ h− s)G(s, xs)ds‖

≤
[ ∫ t

0

Cα′C
′
α′−α(t− s)−α

′
hα
′−αds+

∫ t+h

t

Cα(t+ h− s)−αds
]

max
0≤s≤bφ

‖G(s, xs)‖

≤ [
Cα′C/− α′ − α

1− α′
t1−α

′
hα
′−α +

Cα
1− α

h1−α] max
0≤s≤bφ

‖G(s, xs)‖,

from which we see that m(t), p(t) and q(t) are all Hölder continuous on [0, bφ].
So combined condition (H ′1) it is easy to deduce that x(·) is Hölder continuous
on [0, bφ]. Since φ is Hölder continuous on (−∞, 0] we infer that x(·) is Hölder
continuous on (−∞, bφ]. Thus, by Lemma 3.5 the map t → xt(·, φ) is also Hölder
continuous on [0, bφ]. Hence the map

s→ G(s, xs)

is Hölder continuous on [0, bφ]. Therefore, from the proof of [22, Corollary 4.3.3] it
is not difficult to see that q(t) ∈ D(A), and

q′(t) = G(t, xt)−A
∫ t

0

S(t− s)G(s, xs)ds.
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On the other hand, we can also show p(t) has the similar property as q(t). Indeed,
let t ∈ [0, bφ) and h > 0, then

S(h)p(t)− p(t)
h

=
1
h

[S(h)
∫ t

0

AS(t− s)F (s, xs)ds−
∫ t

0

AS(t− s)F (s, xs)ds]

=
1
h

(p(t+ h)− p(t))− 1
h

∫ t+h

t

AS(t+ h− s)F (s, xs)ds,

(3.6)

and

‖ 1
h

∫ t+h

t

AS(t+ h− s)F (s, xs)ds−AF (t, xt)‖

≤ ‖ 1
h

∫ t+h

t

AS(t+ h− s)[F (s, xs)− F (t, xt)]ds‖

+ ‖ 1
h

∫ t+h

t

AS(t+ h− s)F (t, xt)ds−AF (t, xt)‖ → 0, as h→ 0+.

(3.7)

Let

p(t) = p1(t) + p2(t)

:=
∫ t

0

AS(t− s)[F (s, xs)− F (t, xt)]ds+
∫ t

0

AS(t− s)F (t, xt)ds.

Then S(t)X ⊂ ∩+∞
n=1D(An) and Aα is closed for any α > 0 imply that p2(t) ∈ D(A).

Since

Ap2(t) =
∫ t

δ

A2S(t− s)F (t, xt)ds+
∫ δ

0

A2S(t− s)F (t, xt)ds, (3.8)

the first term on the right side of (3.8) is clearly continuous and the second term
is O(δ), this means Ap2(t) is continuous. Set

p1,ε(t) :=
∫ t−ε

0

AS(t− s)[F (s, xs)− F (t, xt)]ds,

then condition (H1’) yields

Ap1,ε(t) =
∫ t−ε

0

A2S(t− s)[F (s, xs)− F (t, xt)]ds

=
∫ t−ε

0

A2−α−βS(t− s)Aα+β [F (s, xs)− F (t, xt)]ds

→
∫ t

0

A2S(t− s)[F (s, xs)− F (t, xt)]ds, as ε→ 0.

Hence from the closure of A it follows that p1(t) ∈ D(A) and

Ap1(t) =
∫ t

0

A2S(t− s)[F (s, xs)− F (t, xt)]ds.

The continuity of Ap(t) can be shown as that of Ap2(t). Hence we deduce that
p(t) ∈ D(A) and Ap(t) is continuous. Thus, (3.6) and (3.7) indicate that p(t) is
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differentiable and
p′(t) = Ap(t) +AF (t, xt).

Therefore, x(t) + F (t, xt) is differentiable in t on [0, bφ] and satisfies that

d

dt
[x(t) + F (t, xt)] =

d

dt
S(t)[φ(0) + F (0, φ)] + p′(t) + q′(t)

= −A(t)S(t)[φ(0) + F (0, φ)]

+A(t)F (t, xt)−A(t)p(t) +G(t, xt)−A(t)q(t)

= −A(t)x(t) +G(t, xt).

This shows that x(·) is a strict solution of the Cauchy problem (1.1). Thus the
proof is complete. �

4. Stability of mild solutions

In this section, we study the stability of mild solutions for (1.1) with F and G
autonomous; namely, we discuss the stability of the equilibrium of the autonomous
equation

d

dt
[x(t) + F (xt)] +Ax(t) = G(xt), t≥0,

x0 = φ ∈ Bα.
(4.1)

In this equation F and G satisfy the following conditions:
(H4) F,G satisfy the Lipschitz condition; i.e,

‖AβF (φ1)−AβF (φ2)‖α ≤ l3‖φ1 − φ2‖Bα
,

‖G(φ1)−G(φ2)‖ ≤ l4‖φ1 − φ2‖Bα
,

for φ1, φ2 ∈ Bα.
(H5) There holds

K(0)(l3‖A−β‖+ l3C1−βΓ(β) + l4CαΓ(1− α)) < 1, (4.2)

where Γ(·) is the gamma function satisfying the formula
∫ +∞
0

e−βtt−αdt =
Γ(1− α)βα−1, for 0 < α < 1 and β > 0.

First we consider the solution semigroup for (4.1). For each t ≥ 0, define the
nonlinear operator semigroup (U(t))t≥0 as

U(t)(φ) = xt(·, φ),

where xt(·, φ) denotes the unique mild solution of (4.1) through (0, φ). Then
(U(t))t≥0 is a nonlinear strongly continuous semigroup on Bα; that is,

(i) U(0) = I;
(ii) U(t+ s) = U(t)U(s) for all t, s ≥ 0;
(iii) For all φ ∈ Bα, the map t→ U(t)(φ) is continuous in Bα.

And it satisfies the translation property

(U(t)(φ))(θ) =

{
(U(t+ θ)(φ))(0), t+ θ ≥ 0,
φ(t+ θ), −∞ < t+ θ < 0,

for t ≥ 0 and θ ∈ (−∞, 0]. Moreover, we have the following result.
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Theorem 4.1. For the nonlinear semigroup (U(t))t≥0, there exist a µ ∈ R+ and
a function P (·, µ) ∈ L∞((0,+∞); R+) such that, for φ1, φ2 ∈ Bα,

‖U(t)φ1 − U(t)φ2‖Bα
≤ P (t, µ)eµt‖φ1 − φ2‖Bα

.

Proof. Let t0 > 0, Kt0 = max0≤s≤t0 K(s), Mt0 = sup0≤s≤t0 M(s), and x1(·) =
x(·, φ1), x2(·) = x(·, φ2). For t ∈ [0, t0], there holds

‖U(t)φ1 − U(t)φ2‖Bα

= ‖x1
t − x2

t‖Bα

≤ K(t) sup
0≤s≤t

‖x1(s)− x2(s)‖α +M(t)‖φ1 − φ2‖Bα

≤ Kt0 sup
0≤s≤t

{‖S(s)[φ1(0)− φ2(0) + F (φ1)− F (φ2)]‖α + ‖F (x1
s)− F (x2

s)‖α

+ ‖
∫ s

0

AS(s− τ)[F (x1
τ )− F (x2

τ )]dτ‖α

+ ‖
∫ s

0

S(s− τ)[G(x1
τ )−G(x2

τ )]dτ‖α}+Mt0‖φ1 − φ2‖Bα

≤ Kt0 sup
0≤s≤t

(MeωsH + l3‖A−β‖)‖φ1 − φ2‖Bα

+Kt0‖A−β‖l3 sup
0≤s≤t

‖x1
s − x2

s‖Bα

+Kt0 l3 sup
0≤s≤t

[
∫ s

0

C1−β(s− τ)β−1eω(s−τ)‖x1
τ − x2

τ‖Bαdτ

+Kt0 l4 sup
0≤s≤t

∫ s

0

Cα(s− τ)−αeω(s−τ)‖x1
τ − x2

τ‖Bα
dτ ] +Mt0‖φ1 − φ2‖Bα

.

Choose µ ∈ R+ such that ω − µ < −1, then the above estimate implies that

e−µt‖x1
t − x2

t‖Bα
≤ e−µtKt0 sup

0≤s≤t
(MeωsH + l3‖A−β‖)‖φ1 − φ2‖Bα

+Kt0 l3‖A−β‖e−µt sup
0≤s≤t

‖x1
s − x2

s‖Bα

+Kt0 l3 sup
0≤s≤t

[
∫ s

0

C1−β(s− τ)β−1eω(s−τ)e−µt‖x1
τ − x2

τ‖Bα
dτ

+Kt0 l4 sup
0≤s≤t

∫ s

0

Cα(s− τ)−αeω(s−τ)e−µt‖x1
τ − x2

τ‖Bαdτ ]

+Mt0e
−µt‖φ1 − φ2‖Bα

.

Put W (s) := e−µs‖x1
s − x2

s‖Bα
, then

sup
0≤s≤t

W (s)

≤ Kt0 sup
0≤s≤t

(
MeωsH + l3‖A−β‖

)
‖φ1 − φ2‖Bα

+Kt0 l3‖A−β‖ sup
0≤s≤t

W (s)

+Kt0 l3 sup
0≤s≤t

[ ∫ s

0

C1−β(s− τ)β−1e(ω−µ)(s−τ)W (τ)dτ

+Kt0 l4 sup
0≤s≤t

∫ s

0

Cα(s− τ)−αe(ω−µ)(s−τ)W (τ)dτ
]

+Mt0‖φ1 − φ2‖Bα



14 XIANLONG FU EJDE-2013/55

≤ Kt0 sup
0≤s≤t

(
MeωsH + l3‖A−β‖

)
‖φ1 − φ2‖Bα

+Kt0 l3‖A−β‖ sup
0≤s≤t

W (s) +Kt0 l3C1−βΓ(β)(µ− ω)−β sup
0≤s≤t

W (s)

+Kt0 l4CαΓ(1− α)(µ− ω)α−1 sup
0≤s≤t

W (s) +Mt0‖φ1 − φ2‖Bα
.

So, by (4.2) we may take t0 > 0 sufficiently small such that 1 − Kt0(l3‖A−β‖ +
l3C1−βΓ(β)(µ− ω)−β + l4CαΓ(1− α)(µ− ω)α−1) > 0, then

sup
0≤s≤t

W (s)

≤
(
Kt0 sup

0≤s≤t
(MeωsH + l3‖A−β‖) +Mt0

)
‖φ1 − φ2‖Bα

÷
(

1−Kt0(l3‖A−β‖+ l3C1−βΓ(β)(µ− ω)−β + l4CαΓ(1− α)(µ− ω)α−1)
)

:= P (t, µ)‖φ1 − φ2‖Bα ,

or
‖x1

t − x2
t‖Bα ≤ P (t, µ)eµt‖φ1 − φ2‖Bα , (4.3)

for all t ∈ [0, t0]. For any t > t0, find an n ∈ N such that t ∈ (nt0, (n+ 1)t0], then
we may repeat the above computation for n times and obtain that (4.3) holds for
t > t0. Thus we complete the proof of the assertion. �

In what follows, we investigate the stability of an equilibrium of (4.1). For each
u ∈ Xα, the corresponding constant function ũ ∈ Bα is defined by ũ(θ) ≡ u,
θ ∈ (−∞, 0]. Here by an equilibrium of (4.1) we mean a constant function ũ ∈ Bα

satisfying
u ∈ D(A) and −Au+G(ũ) = 0.

If ũ is an equilibrium of (4.1), then it is trivial to verify that 0 is the equilibrium
solution of the equation

d

dt
[x(t) + F1(xt)] +Ax(t) = G1(xt),

where F1(φ) = F (φ+ ũ)− F (ũ), G1(φ) = G(φ+ ũ)−G(ũ). Accordingly, without
loss of generality we may assume that ũ = 0 and G(0) = F (0) = 0. Moreover, we
suppose that

(H6) AβF is Fréchet-differentiable at 0 in space Xα, G is Fréchet-differentiable
at 0 in X.

Let L1 = A−β(AβF )′(0), L2 = G′(0). Then the linearized equation of Equation
(4.1) around the equilibrium 0 is

d

dt
[x(t) + L1xt] +Ax(t) = L2xt, t≥0,

x0 = φ ∈ Bα.
(4.4)

Denote by (T (t))t≥0 the linear solution semigroup associated to (4.4). Then we
have the following result.

Theorem 4.2. Suppose that conditions (H4)–(H6) are satisfied. Then, for t ≥ 0,
the Fréchet derivative of U(t) at zero is T (t).
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Proof. It suffices to prove that for any φ ∈ Bα, t > 0 and ε > 0, there exists a
δ > 0 such that

‖U(t)φ− T (t)φ‖Bα
≤ ε‖φ‖Bα

, for ‖φ‖Bα
< δ. (4.5)

In fact, we have

‖U(t)φ− T (t)φ‖Bα

≤ K(t) sup
0≤s≤t

‖(U(s)(φ))(0)− (T (s)(φ))(0)‖α

≤ Kt sup
0≤s≤t

{
‖S(s)[F (φ)− L1(φ)]‖α

+ ‖F (U(s)φ)− F (T (s)φ) + F (T (s)φ)− L1(T (s)φ)‖α

+
∥∥∫ s

0

AS(s− τ)[F (U(τ)φ)− F (T (τ)φ) + F (T (τ)φ)− L1(T (τ)φ)]dτ
∥∥
α

+
∥∥∫ s

0

S(s− τ)[G(U(τ)φ))−G(T (τ)φ)) +G(T (τ)φ))− L2((τ)φ))]dτ
∥∥
α

}
.

Take t0 > 0 such that 1−Kt0(l3‖A−β‖+ l3C1−βΓ(β)(µ−ω)−β + l4CαΓ(1−α)(µ−
ω)α−1) > 0, and by virtue of the continuous differentiability of AβF and G at 0
and from Theorem 4.1 we infer that, for any ε > 0, there is a δ0 > 0 such that, for
each 0 < t < t0 and any ‖φ‖Bα

< δ0,

‖S(s)[F (φ)− L1(φ)]‖α ≤ ε‖φ‖Bα ,∥∥F (T (s)φ)− L1(T (s)φ)
∥∥
α
≤ ε‖φ‖Bα

,∥∥∫ s

0

AS(s− τ)[F (T (τ)φ)− L1(T (τ)φ)]dτ
∥∥
α
≤ ε‖φ‖Bα ,∥∥∫ s

0

S(s− τ)[G(T (τ)φ))− L2((τ)φ))]dτ
∥∥
α
≤ ε‖φ‖Bα

.

Hence,

e−µt‖U(t)φ− T (t)φ‖Bα

≤ 4εKt‖φ‖Bα +Kt‖A−β‖l3e−µt sup
0≤s≤t

‖U(s)φ− T (s)φ‖Bα

+Ktl3 sup
0≤s≤t

[ ∫ s

0

C1−β(s− τ)β−1eω(s−τ)e−µt‖U(τ)φ− T (τ)φ‖Bαdτ

+Ktl4 sup
0≤s≤t

∫ s

0

Cα(s− τ)−αeω(s−τ)e−µt‖U(τ)φ− T (τ)φτ‖Bα
dτ
]

≤ 4εKt‖φ‖Bα
+Ktl3‖A−β‖ sup

0≤s≤t
e−µs‖U(s)φ− T (s)φ‖Bα

+Ktl3C1−βΓ(β)(µ− ω)−β sup
0≤s≤t

e−µs‖U(s)φ− T (s)φ‖Bα

+Ktl4CαΓ(1− α)(µ− ω)α−1 sup
0≤s≤t

e−µs‖U(τ)φ− T (τ)φ‖Bα
.

So, using (4.2) again we obtain that (4.5) is true for all 0 < t ≤ t0, and then as in
the Proof of Theorem 4.1 we can conclude that (4.5) holds for all t > 0. �

As a consequence of the above two results we obtain the following theorem.
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Theorem 4.3. Under the assumptions of Theorems 4.1 and 4.2, if the zero equi-
librium of (T (t))t≥0 is exponentially stable, then the zero equilibrium of (U(t))t≥0

is locally exponentially stable in the sense that there exist µ, µ > 0 and k ≥ 1 such
that, for t ≥ 0 and any φ ∈ Bα with ‖φ‖Bα

< µ,

‖U(t)φ‖Bα
≤ ke−µt‖φ‖Bα

.

Proof. Based on Theorems 4.1,4.2 and 2.2 this theorem can be proved by using the
similar method as that in [11] and [3], and we omit the proof here. �

5. An Example

To apply Theorems 3.2 and 3.7, we consider the system

∂

∂t

[
z(t, x) +

∫ t

−∞

∫ π

0

b(s− t, x, y)
[
z(s, y) +

∂

∂y
z(s, y)

]
dy ds

]
=

∂2

∂x2
z(t, x) + h

(
z(·, x),

∂

∂x
z(·, x)

)
, 0 ≤ t ≤ a, 0 ≤ x ≤ π,

z(t, 0) = z(t, π) = 0,

z(θ, x) = φ(θ, x), θ ≤ 0, 0 ≤ x ≤ π,

(5.1)

where the functions b and h will be described below.
Let X = L2([0, π]) and operator A be defined by

Af = −f ′′

with the domain

D(A) = H2
0 ([0, π]) = {f(·) ∈ X : f ′, f ′′ ∈ X, f(0) = f(π) = 0}.

then −A generates a strongly continuous semigroup (S(·))t≥0 which is analytic,
compact and self-adjoint. Furthermore, −A has a discrete spectrum, the eigenvalues

are −n2, ∈ N , with the corresponding normalized eigenvectors zn(x) =
√

2
π sin(nx).

Then the following properties hold:
(a) If f ∈ D(A), then

Af =
∞∑
n=1

n2〈f, zn〉zn.

(b) For every f ∈ X,

S(t)f =
∞∑
n=1

e−n
2t〈f, zn〉zn,

A−1/2f =
∞∑
n=1

1
n
〈f, zn〉zn.

In particular, ‖S(t)‖ ≤ e−t, ‖A−1/2‖ = 1.
(c) The operator A1/2 is given by

A1/2f =
∞∑
n=1

n〈f, zn〉zn.

on the space D(A1/2) = {f(·) ∈ X,
∑∞
n=1 n〈f, zn〉zn ∈ X}.
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Here we take α = β = 1/2 and the phase space B = Cg, where the space Cg is
defined as: let g be a continuous function on (−∞, 0] with g(0) = 1, limθ→−∞ g(θ) =
∞, and g is decreasing on (−∞, 0], then

Cg = {φ ∈ C((−∞, 0];X) : sup
s≤0

‖φ(s)‖
g(s)

<∞},

and the norm is defined by, for φ ∈ Cg,

|φ|g = sup
s≤0

‖φ(s)‖
g(s)

.

It is known that Cg satisfies the axioms (A1), (A2), and (B1), see [18]. Further, the
subspace Cg, 12 is defined by

Cg, 12 = {φ ∈ C((−∞, 0];X 1
2
) : sup

s≤0

‖A 1
2φ(s)‖
g(s)

<∞},

endowed with the norm |φ|g, 12 = sups≤0
‖A

1
2 φ(s)‖
g(s) . Clearly, Cg 1

2
satisfies correspond-

ingly the axioms (A1’),(A2’), and (B1’), and we may choose a proper g such that
H,K(·),M(·) ≤ 1 (also see [9]).

We assume that the following conditions hold:
(i) The function b(·, ·, ·) ∈ C2 with b(·, ·, 0) = b(·, ·, π) ≡ 0, and

c := {
∫ π

0

[
∫ 0

−∞
g(θ)(

∫ π

0

(
∂2

∂x2
b(θ, y, x))2dy)1/2dθ]2dx}1/2 <∞.

(ii) The function h : R× R→ R is continuous in the two variables.
(iii) The function φ defined by φ(θ)(x) = φ(θ, x) belongs to Cg, 12 .

Now define the abstract functions F,G : Cg, 12 → X 1
2

by

F (φ) =
∫ 0

−∞

∫ π

0

b(θ, y, x)[φ(θ)(y) + φ(θ)′(y)] dy dθ,

G(φ) = h(φ(·)(x), φ(·)′(x)).

Then the system (5.1) is rewritten as the abstract form (1.1), and condition (i)
implies that R(F ) ⊂ D(A), since

〈F (φ), zn〉 = − 1
n

〈∫ 0

−∞

∫ π

0

∂

∂x
b(θ, y, x)[φ(θ)(y) + φ(θ)′(y)]dydθ, z̄n(x)

〉
=

1
n2

〈∫ 0

−∞

∫ π

0

∂2

∂x2
b(θ, y, x)[φ(θ)(y) + φ(θ)′(y)]dydθ, zn(x)

〉
,

where z̄n(x) =
√

2
π cos(nx), n = 1, 2, . . . . Observe that, for any θ ∈ (−∞, 0],

‖φ2(θ)(x)− φ1(θ)(x)‖2 =
∞∑
n=1

〈φ2 − φ1, zn〉2

≤
∞∑
n=1

n2〈φ2 − φ1, zn〉2

≤ ‖φ2(θ)(x)− φ1(θ)(x)‖ 1
2

2
,
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and

‖φ2(θ)′(x)− φ1(θ)′(x)‖2 =
∞∑
n=1

〈φ′2 − φ′1, zn〉
2

=
∞∑
n=1

〈φ2 − φ1, z
′
n〉

2

=
∞∑
n=1

∞∑
m=1

n2〈φ2 − φ1, zn〉〈φ2 − φ1, zm〉〈−z′′n, z′m〉

≤ ‖φ2(θ)(x)− φ1(θ)(x)‖ 1
2

2
,

we see that

|φ2(·)− φ1(·)|g ≤ |φ2(·)− φ1(·)|g, 12 ,
|φ2(·)′ − φ1(·)′|g ≤ |φ2(·)− φ1(·)|g, 12 .

Thus, conditions (i) and (ii) ensure that A
1
2F (·) satisfies the Lipschitz continuous

on Cg, 12 , F and G verify assumption (H1) and (H2 ) respectively. Consequently, by
Theorem 3.2 the system (5.1) has a mild solution on (−∞, bφ] for some bφ > 0.

Furthermore, if take B = C 0
g, 12

, where

C 0
g, 12

= {φ ∈ Cg, 12 ;X 1
2
) : lim

s≤0

‖A 1
2φ(s)‖
g(s)

= 0},

so that Axiom (C1) is satisfied (see [18]) and assume that h is Hölder continuous
in two variables, then condition (H1’) and (H2’) are satisfied. Therefore, if φ(·, x)
is uniformly Hölder continuous and φ(0, x) ∈ D(A), then the system (5.1) has a
strict solution on (−∞, bφ].
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