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INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL
ORDER WITH NONLOCAL FRACTIONAL BOUNDARY

CONDITIONS ASSOCIATED WITH FINANCIAL ASSET MODEL

BASHIR AHMAD, SOTIRIS K. NTOUYAS

Abstract. In this article, we discuss the existence of solutions for a boundary-
value problem of integro-differential equations of fractional order with nonlocal

fractional boundary conditions by means of some standard tools of fixed point

theory. Our problem describes a more general form of fractional stochastic
dynamic model for financial asset. An illustrative example is also presented.

1. Formulation and basic result

Fractional calculus, regarded as a branch of mathematical analysis dealing with
derivatives and integrals of arbitrary order, has been extensively developed and ap-
plied to a variety of problems appearing in sciences and engineering. It is worthwhile
to mention that this branch of mathematics has played a crucial role in exploring
various characteristics of engineering materials such as viscoelastic polymers, foams,
gels, and animal tissues, and their engineering and scientific applications. For a re-
cent detailed survey of the activities involving fractional calculus, we refer a recent
paper by Machado, Kiryakova and Mainardi [16]. Some recent work on the topic
can be found in [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 17] and references therein.

The underlying dynamics of equity prices following a jump process or a Levy
process provide a basis for modeling of financial assets. The CGMY, KoBoL and
FMLS are examples of some interesting financial models involving the dynamics of
stock prices. In [8], it is shown that the prices of financial derivatives are expressible
in terms of fractional derivative.

In [15], the author described the dynamics of a financial asset by the fractional
stochastic differential equation of order µ (representing the dynamical memory
effects in the market stochastic evolution) with fractional boundary conditions. In
the present paper, we study a more general model associated with financial asset.
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Precisely, we consider the following problem:

−Dαx(t) = Af(t, x(t)) +BIβg(t, x(t)), (n− 1) < α ≤ n, t ∈ [0, 1],

Dδx(0) = 0, Dδ+1x(0) = 0, . . . , Dδ+(n−2)x(0) = 0, Dδx(1) =
∫ η

0

Dδx(s)ds,

(1.1)
where 0 < δ ≤ 1, α − δ > n, 0 < β < 1, 0 < η < 1, D(·) denotes the Riemann-
Lioville fractional derivative of order (·), f, g are given continuous function, and
A,B are real constants.

We remark that the problem (1.1) also arises in real estate asset securitization
modeling [18].

By the substitution x(t) = Iδy(t) = D−αy(t), the problem (1.1) takes the form

−Dα−δy(t) = Af(t, Iδy(t)) +BIβg(t, Iδy(t)), t ∈ [0, 1],

y(0) = 0, y′(0) = 0, . . . , y(n−2)(0) = 0, y(1) =
∫ η

0

y(s)ds.
(1.2)

Lemma 1.1. For any h ∈ C(0, 1) ∩ L(0, 1), the unique solution of the linear frac-
tional boundary-value problem

−Dα−δy(t) = h(t), t ∈ [0, 1],

y(0) = 0, y′(0) = 0, . . . , y(n−2)(0) = 0, y(1) =
∫ η

0

y(s)ds,
(1.3)

is

y(t) = −Iα−δh(t) +
(α− δ)tα−δ−1

α− δ − ηα−δ
(
Iα−δh(1)− Iα−δ+1h(η)

)
,

where I(·)(·) denotes Riemann-Liouville integral.

Proof. It is well known that the solutions of fractional differential equation in (1.1)
can be written as

y(t) = −Iα−δh(t) + c1t
α−δ−1 + c2t

α−δ−2 + c3t
α−δ−3 + · · ·+ cnt

α−δ−n, (1.4)

where c1, c2, . . . , cn ∈ R are arbitrary constants [12]. Using the given boundary
conditions, we find that c2 = 0, c3 = 0, . . . , cn = 0 and

c1 =
α− δ

α− δ − ηα−δ
(
Iα−δh(1)− Iα−δ+1h(η)

)
.

Substituting these values in (1.1) yields

y(t) = −Iα−δh(t) +
(α− δ)tα−δ−1

α− δ − ηα−δ
(
Iα−δh(1)− Iα−δ+1h(η)

)
.

This completes the proof. �

Thus, the solution of the linear variant of the problem (1.1) can be written as

x(t) = Iδy(t)

= Iδ
[
− Iα−δh(t) +

(α− δ)tα−δ−1

α− δ − ηα−δ
(
Iα−δh(1)− Iα−δ+1h(η)

)]
= −Iαh(t) +

(α− δ)
α− δ − ηα−δ

(
Iα−δh(1)− Iα−δ+1h(η)

)∫ t

0

(t− s)δ−1

Γ(δ)
sα−δ−1ds
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= −Iαh(t) +
(α− δ)

α− δ − ηα−δ
(
Iα−δh(1)− Iα−δ+1h(η)

)
×

×
{ tα−1

Γ(δ)

∫ 1

0

(1− ν)δ−1να−δ−1dν
}
,

where we have used the substitution s = νt in the integral of the last term. Using
the relation for Beta function B(·, ·):

B(β + 1, α) =
∫ 1

0

(1− u)α−1uβdu =
Γ(α)Γ(β + 1)
Γ(α+ β + 1)

,

we obtain

x(t) = −Iαh(t) +
Γ(α− δ + 1)tα−1

(α− δ − ηα−δ)Γ(α)

(
Iα−δh(1)− Iα−δ+1h(η)

)
. (1.5)

The solution of the original nonlinear problem (1.1) can be obtained by replacing
h with the right hand side of the fractional equation of (1.1) in (1.5).

Let C = C([0, 1],R) denote the Banach space of all continuous functions from
[0, 1]→ R endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}.

In relation to problem (1.1), we define an operator U : C → C as

(Ux)(t)

= −A
∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds−B

∫ t

0

(t− s)α+β−1

Γ(α+ β)
g(s, x(s))ds

+Qtα−1
[
A

∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
f(s, x(s))ds+B

∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
g(s, x(s))ds

−A
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
f(s, x(s))ds−B

∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
g(s, x(s))ds

]
,

where

Q =
Γ(α− δ + 1)

(α− δ − ηα−δ)Γ(α)
, α 6= δ + ηα−δ.

For the sake of convenience, we set

Ω = sup
t∈[0,1]

{
|A|
[ tα

Γ(α+ 1)
+ |Q|tα−1

( 1
Γ(α− δ + 1)

+
ηα−δ+1

Γ(α− δ + 2)

)]
+ |B|

[ tα+β

Γ(α+ β + 1)
+ |Q|tα−1

( 1
Γ(α− δ + β + 1)

+
ηα−δ+β+1

Γ(α− δ + β + 2)

)]}
.

(1.6)

1.1. Existence results via Banach’s fixed point theorem.

Theorem 1.2. Assume that f, g : [0, 1]×R→ R are continuous functions satisfying
the condition:

(A1) |f(t, x)− f(t, y)| ≤ L1|x− y|, |g(t, x)− g(t, y)| ≤ L2|x− y|, for all t ∈ [0, 1],
L1, L2 > 0, x, y ∈ R.

Then the boundary-value problem (1.1) has a unique solution if L < 1/Ω, where
L = max{L1, L2} and Ω is given by (1.6).
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Proof. Let us define M = max{M1,M2}, where M1,M2 are finite numbers given by
supt∈[0,1] |f(t, 0)| = M1, supt∈[0,1] |g(t, 0)| = M2. Selecting r ≥ ΩM

1−LΩ , we show that
UBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. Using that |f(s, x(s)) ≤ |f(s, x(s)) −
f(s, 0)|+|f(s, 0)| ≤ L1r+M1, |g(s, x(s))| ≤ |g(s, x(s))−g(s, 0)|+|g(s, 0)| ≤ L2r+M2

for x ∈ Br and (1.6), it can easily be shown that

‖(Ux)‖

≤ (Lr +M) sup
t∈[0,1]

{
|A|
[ tα

Γ(α+ 1)
+ |Q|tα−1

( 1
Γ(α− δ + 1)

+
ηα−δ+1

Γ(α− δ + 2)

)]
+ |B|

[ tα+β

Γ(α+ β + 1)
+ |Q|tα−1

( 1
Γ(α− δ + β + 1)

+
ηα−δ+β+1

Γ(α− δ + β + 2)

)]}
= (Lr +M)Ω ≤ r,

which implies that UBr ⊂ Br. Now, for x, y ∈ C we obtain

‖Ux− Uy‖

≤ sup
t∈[0,1]

{
|A|
∫ t

0

(t− s)α−1

Γ(α)
|f(s, x(s))− f(s, y(s))|ds

+ |B|
∫ t

0

(t− s)α+β−1

Γ(α+ β)
|g(s, x(s))− g(s, y(s))|ds

+ |Q|tα−1
[
|A|
∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
|f(s, x(s))− f(s, y(s))|ds

+ |B|
∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
|g(s, x(s))− g(s, y(s))|ds

+ |A|
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
|f(s, x(s))− f(s, y(s))|ds

+ |B|
∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
|g(s, x(s))− g(s, y(s))|ds

]}
≤ L sup

t∈[0,1]

{
|A|
[ tα

Γ(α+ 1)
+ |Q|tα−1

( 1
Γ(α− δ + 1)

+
ηα−δ+1

Γ(α− δ + 2)

)]
+ |B|

[ tα+β

Γ(α+ β + 1)
+ |Q|tα−1

( 1
Γ(α− δ + β + 1)

+
ηα−δ+β+1

Γ(α− δ + β + 2)

)]}
× ‖x− y‖

= LΩ‖x− y‖.

By the given assumption, L < 1/Ω. Therefore U is a contraction. Thus, the
conclusion of the theorem follows by the contraction mapping principle (Banach
fixed point theorem). �

Now we present another variant of existence-uniqueness result. This result is
based on the Hölder’s inequality.

Theorem 1.3. Suppose that the continuous functions f and g satisfy the following
assumptions:

(H1) |f(t, x)−f(t, y)| ≤ m(t)|x−y|, |g(t, x)−g(t, y)| ≤ n(t)|x−y|, for t ∈ [0, 1],
x, y ∈ R, and m,n ∈ L

1
γ ([0, 1],R+), γ ∈ (0, α− δ − n).
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(H2) |A|‖m‖Z1 + |B|‖n‖Z2 < 1, where

Z1 =
1

Γ(α)

( 1− γ
α− γ

)1−γ
+

|Q|
Γ(α− δ)

( 1− γ
α− δ − γ

)1−γ

+
|Q|

Γ(α− δ + 1)

( 1− γ
α− δ + 1− γ

)1−γ
ηα−δ+1−γ ,

Z2 =
1

Γ(α+ β)

( 1− γ
α+ β − γ

)1−γ
+

|Q|
Γ(α− δ + β)

( 1− γ
α− δ + β − γ

)1−γ

+
|Q|

Γ(α− δ + β + 1)

( 1− γ
α− δ + β + 1− γ

)1−γ
ηα−δ+β+1−γ ,

and ‖µ‖ =
( ∫ 1

0
|µ(s)|

1
γ ds
)γ , µ = m,n. Then the boundary value problem (1.1) has

a unique solution.

Proof. For x, y ∈ R and for each t ∈ [0, 1], by Hölder inequality, we have

‖Ux− Uy‖

≤ sup
t∈[0,1]

{
|A|
∫ t

0

(t− s)α−1

Γ(α)
m(s)|x(s)− y(s)|ds

+ |B|
∫ t

0

(t− s)α+β−1

Γ(α+ β)
n(s)|x(s)− y(s)|ds

+ |Q|
[
|A|
∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
m(s)|x(s)− y(s)|ds

+ |B|
∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
n(s)|x(s)− y(s)|ds

+ |A|
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
m(s)|x(s)− y(s)|ds

+ |B|
∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
n(s)|x(s)− y(s)|ds

]}
≤ sup
t∈[0,1]

{ |A|‖m‖
Γ(α)

( 1− γ
α− γ

)1−γ
tα−γ +

|B|‖n‖
Γ(α+ β)

( 1− γ
α+ β − γ

)1−γ
tα+β−γ

+ |Q|
[ |A|‖m‖

Γ(α− δ)

( 1− γ
α− δ − γ

)1−γ
+

|B|‖n‖
Γ(α− δ + β)

( 1− γ
α− δ + β − γ

)1−γ

+
|A|‖m‖

Γ(α− δ + 1)

( 1− γ
α− δ + 1− γ

)1−γ
ηα−δ+1−γ

+
|B|‖n‖

Γ(α− δ + β + 1)

( 1− γ
α− δ + β + 1− γ

)1−γ
ηα−δ+β+1−γ

]}
‖x− y‖

≤ |A|‖m‖
[ 1

Γ(α)

( 1− γ
α− γ

)1−γ
+

|Q|
Γ(α− δ)

( 1− γ
α− δ − γ

)1−γ

+
|Q|

Γ(α− δ + 1)

( 1− γ
α− δ + 1− γ

)1−γ]
‖x− y‖

+ |B|‖n‖
[ 1

Γ(α+ β)

( 1− γ
α+ β − γ

)1−γ
+

|Q|
Γ(α− δ + β)

( 1− γ
α− δ + β − γ

)1−γ
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+
|Q|

Γ(α− δ + β + 1)

( 1− γ
α− δ + β + 1− γ

)1−γ
ηα−δ+β+1−γ

]
‖x− y‖

= [|A|‖m‖Z1 + |B|‖n‖Z2]‖x− y‖.

In view of condition (H2), it follows that U is a contraction mapping. Hence,
Banach’s fixed point theorem applies and U has a unique fixed point which is the
unique solution of problem (1.1). This completes the proof. �

1.2. Existence result via Leray-Schauder Alternative.

Lemma 1.4 (Nonlinear alternative for single valued maps [11]). Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U . Suppose
that F : U → C is a continuous, compact (that is, F (U) is a relatively compact
subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 1.5. Assume that f, g : [0, 1]×R→ R are continuous functions. Assume
that:

(A3) There exist functions p1, p2 ∈ L1([0, 1],R+), and nondecreasing functions
ψ1, ψ2 : R+ → R+ such that

|f(t, x)| ≤ p1(t)ψ1(‖x‖), |g(t, x)| ≤ p2(t)ψ2(‖x‖),

for all (t, x) ∈ [0, 1]× R.
(A4) There exists a constant M > 0 such that

M

|A|Λ1ψ1(M)‖p1‖L1 + |B|Λ1ψ2(M)‖p2‖L1
> 1,

where

Λ1 =
1

Γ(α+ 1)
+

|Q|
Γ(α− δ + 1)

+
|Q|

Γ(α− δ + 2)
,

Λ2 =
1

Γ(α+ β + 1)
+

|Q|
Γ(α− δ + β + 1)

+
|Q|

Γ(α− δ + β + 2)
.

Then the boundary-value problem (1.1) has at least one solution on [0, 1].

Proof. Consider the operator U : C → C with x = Ux, where

(Ux)(t)

= −A
∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds−B

∫ t

0

(t− s)α+β−1

Γ(α+ β)
g(s, x(s))ds

+Qtα−1
[
A

∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
f(s, x(s))ds+B

∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
g(s, x(s))ds

−A
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
f(s, x(s))ds−B

∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
g(s, x(s))ds

]
.

We show that F maps bounded sets into bounded sets in C([0, 1],R). For a positive
number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a bounded set in C([0, 1],R).
Then

|(Ux)(t)|
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≤ |A|
∫ t

0

(t− s)α−1

Γ(α)
p1(s)ψ1(‖x‖)ds+ |B|

∫ t

0

(t− s)α+β−1

Γ(α+ β)
p2(s)ψ2(‖x‖)ds

+ |Q|tα−1
[
|A|
∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
p1(s)ψ1(‖x‖)ds

+ |B|
∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
p2(s)ψ2(‖x‖)ds

+ |A|
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
p1(s)ψ1(‖x‖)ds

+ |B|
∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
p2(s)ψ2(‖x‖)ds

]
≤ |A|ψ1(r)‖p1‖L1

{ 1
Γ(α+ 1)

+
|Q|

Γ(α− δ + 1)
+

|Q|
Γ(α− δ + 2)

}
+ |B|ψ2(r)‖p2‖L1

{ 1
Γ(α+ β + 1)

+
|Q|

Γ(α− δ + β + 1)
+

|Q|
Γ(α− δ + β + 2)

}
.

Consequently

‖Ux‖

≤ |A|ψ1(r)‖p1‖L1

{ 1
Γ(α+ 1)

+
|Q|

Γ(α− δ + 1)
+

|Q|
Γ(α− δ + 2)

}
+ |B|ψ2(r)‖p2‖L1

{ 1
Γ(α+ β + 1)

+
|Q|

Γ(α− δ + β + 1)
+

|Q|
Γ(α− δ + β + 2)

}
.

Next we show that F maps bounded sets into equicontinuous sets of C([0, 1],R).
Let t1, t2 ∈ [0, 1] with t1 < t2 and x ∈ Br, where Br is a bounded set of C([0, 1],R).
Then we obtain

‖(Ux)(t2)− (Ux)(t1)‖

≤
∥∥∥ |A|

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]f(s, x(s))ds

+
|A|

Γ(α)

∫ t2

t1

(t2 − s)α−1f(s, x(s))ds

+
|B|

Γ(α+ β)

∫ t1

0

[(t2 − s)α+β−1 − (t1 − s)α+β−1]g(s, x(s))ds

+
|B|

Γ(α+ β)

∫ t2

t1

(t2 − s)α+β−1g(s, x(s))ds

+ |Q|[(t2)α−1 − (t1)α−1]
[
|A|
∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
|f(s, x(s))|ds

+ |B|
∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
|g(s, x(s))|ds

+ |A|
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
|f(s, x(s))|ds+ |B|

∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
|g(s, x(s))|ds

]∥∥∥
≤
∥∥∥ |A|

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]p1(s)ψ1(r)ds
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+
|A|

Γ(α)

∫ t2

t1

(t2 − s)α−1p1(s)ψ1(r)ds

+
|B|

Γ(α+ β)

∫ t1

0

[(t2 − s)α+β−1 − (t1 − s)α+β−1]p2(s)ψ2(r)ds

+
|B|

Γ(α+ β)

∫ t2

t1

(t2 − s)α+β−1p2(s)ψ2(r)ds

+ |Q|[(t2)α−1 − (t1)α−1]
[
|A|
∫ 1

0

(1− s)α−δ−1

Γ(α− δ)
p1(s)ψ1(r)ds

+ |B|
∫ 1

0

(1− s)α−δ+β−1

Γ(α− δ + β)
p2(s)ψ2(r)ds

+ |A|
∫ η

0

(η − s)α−δ

Γ(α− δ + 1)
p1(s)ψ1(r)ds+ |B|

∫ η

0

(η − s)α−δ+β

Γ(α− δ + β + 1)
p2(s)ψ2(r)ds

]∥∥∥.
Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Br as t2 − t1 → 0. As U satisfies the above assumptions, therefore it follows
by the Arzelá-Ascoli theorem that U : C([0, 1],R) → C([0, 1],R) is completely
continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma
1.4) once we have proved the boundendness of the set of all solutions to equations
x = λUx for λ ∈ [0, 1].

Let x be a solution. Then, for t ∈ [0, 1], and using the computations in proving
that U is bounded, we have

|x(t)|

= |λ(Ux)(t)| ≤ |A|ψ1(‖x‖)‖p1‖L1

{ 1
Γ(α+ 1)

+
|Q|

Γ(α− δ + 1)
+

|Q|
Γ(α− δ + 2)

}
+ |B|ψ2(‖x‖)‖p2‖L1

{ 1
Γ(α+ β + 1)

+
|Q|

Γ(α− δ + β + 1)
+

|Q|
Γ(α− δ + β + 2)

}
.

Consequently,

‖x‖
|A|Λ1ψ1(‖x‖)‖p1‖L1 + |B|Λ1ψ2(‖x‖)‖p2‖L1

≤ 1.

In view of (A4), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, 1], X) : ‖x‖ < M}.

Note that the operator U : U → C([0, 1],R) is continuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x = λU(x) for
some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Lemma 1.4), we deduce that U has a fixed point x ∈ U which is a solution of the
problem (1.1). This completes the proof. �

Example. Consider a boundary-value problem of integro-differential equations of
fractional order with nonlocal fractional boundary conditions given by

−D5/2x(t) = Af(t, x(t)) +BIβg(t, x(t)), t ∈ [0, 1],

D1/4x(0) = 0, D5/4x(0) = 0, D1/4x(1) =
∫ η

0

D1/4x(s)ds,
(1.7)
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where n = 3, A = B = 1, β = 3/4, η = 2/3, f(t, x) = 3|x|(2+|x|)
8(1+|x|) + 4t, g(t, x) =

1
2 tan−1 x+ sin2 t. With the given data, we find that

Q =
Γ(α− δ + 1)

(α− δ − ηα−δ)Γ(α)
= 1.037485,

and

Ω = sup
t∈[0,1]

{
|A|
[ tα

Γ(α+ 1)
+ |Q|tα−1

( 1
Γ(α− δ + 1)

+
ηα−δ+1

Γ(α− δ + 2)

)]
+ |B|

[ tα+β

Γ(α+ β + 1)
+ |Q|tα−1

( 1
Γ(α− δ + β + 1)

+
ηα−δ+β+1

Γ(α− δ + β + 2)

)]}
= 1.043555,

and L1 = 3/4, L2 = 1/2 as |f(t, x)−f(t, y)| ≤ 3
4 |x−y|, |g(t, x)−g(t, y)| ≤ 1

2 |x−y|.
Clearly L = max{L1, L2} = 3/4 and L < 1/Ω. Thus all the assumptions of
Theorem 1.2 are satisfied. Hence, by the conclusion of Theorem 1.2, the problem
(1.7) has a unique solution.

Acknowledgments. The authors gratefully acknowledge the editor for his con-
structive comments.
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