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SIGN-CHANGING SOLUTIONS OF p-LAPLACIAN EQUATION
WITH A SUB-LINEAR NONLINEARITY AT INFINITY

XIAN XU, BIN XU

Abstract. In this article we obtain some existence and multiplicity results
for sign-changing solutions of a p-Laplacian equation. We use the method of

lower and upper solutions and Leray-Schauder degree theory. Moreover, the

sign-changing solutions are located by using lower and upper solutions.

1. Introduction

In this article we present existence and multiplicity results for sign-changing
solutions for the problem

(ϕp(u′(t)))′ + f(t, u(t), u′(t)) = 0 a.e. t ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where ϕp(s) = |s|p−2s, s ∈ R1, p > 1, f : [0, 1]× R2 → R1.
In recent years there have been many studies on the existence of non-zero solu-

tions of p-Laplacian differential boundary value problems, especially the existence
of positive solutions of the p-Laplacian differential boundary value problems; see
[1, 2, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18] and the references therein. Recently, there were
some papers considered the existence of sign-changing solutions of p-Laplacian dif-
ferential boundary value problems by using the Leray-Schauder degree method, or
the global bifurcation theorem or the variation method. For instance, in [6] the
authors studied the p-Laplacian differential boundary value problems of the form

(ϕp(u′(t))′ + λh(t)f(u(t)) = 0 a.e. t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

where λ is a positive parameter, h a nonnegative measurable function on (0, 1) and
f ∈ C(R1,R1). By applying the global bifurcation theorem, the authors in paper [6]
obtained existence results for positive solutions as well as sign-changing solutions
of (1.2).

Zhang and Li [16] studied the problem
−∆pu = h(u) in Ω,

u|∂Ω = 0,
(1.3)
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where −∆pu = −div(|∇u|p−2)∇u is the p-laplacian operator, Ω a smooth bounded
domain in RN . The authors of [16] assumed that the boundary value problems
(1.3) are with jumping nonlinearities at zero or infinity, then they get sign-changing
solutions theorems of the p-Laplacian boundary value problems (1.3).

The main purpose of this paper is to obtain some existence and multiplicity
results for sign-changing solutions of (1.1). We will employ the lower and upper
solutions method and the Leary-Schauder degree method to show the existence and
multiplicity results of sign-changing solutions of (1.1). Some sub-linear conditions
on the nonlinearity f at infinity will be assumed. To show the multiplicity results
for sign-changing solutions a pair of well ordered strict lower and upper solutions
also be assumed. Then we will first construct another pair of well ordered (or
non-well ordered) strict lower and upper solutions near the zero element θ of the
Banach space C1

0 [0, 1]. Next by computing the Leray-Schauder degree on differ-
ent areas defined by the strict lower and upper solutions, we obtain the existence
and multiplicity results for sign-changing solutions as well as positive and negative
solutions of (1.1). The main feature of our results is that we not only obtain mul-
tiplicity results for sign-changing solutions of (1.1), but also give clear description
of the locations of the sign-changing solutions of (1.1) through the strict lower and
upper solutions.

In recent years, by using the method of invariant sets of the descending flow cor-
responding to the functional of the nonlinear problems some authors studied the
existence results of sign-changing solutions of some partial differential boundary
value problems, see [16, 17, 18] and the references therein. To show their results
the authors always assumed the nonlinearities satisfy some kinds of monotony prop-
erties and therefore they always assumed the nonlinearities are without the gradient
terms. For instance, Li and Li [7] considered the elliptic equation with Neumann
boundary condition

−∆u+ au = f(u), x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω,

(1.4)

where Ω is a bounded domain with smooth boundary. The authors of [7] assumed
that the nonlinearity f satisfies some increasing properties and obtained some mul-
tiplicity results for sign-changing solutions of (1.4) by using the method of invariant
sets of the descending flow as well as the method of lower and upper solutions. Since
we allow the nonlinearity f in (1.1) are with u′, generally speaking, any monotony
type conditions can not be assumed in (1.1) and therefore our main results can not
be obtained by the method in [16, 17, 18].

This paper is organized in the following way. In the section 2, we give gen-
eral hypothesis and technical results about the p-Laplacian differential boundary
value problems. Then, we give degree information in terms of the lower and up-
per solutions. In the section 3, we will give existence and multiplicity results for
sign-changing solutions of (1.1).

2. Some Lemmas

Let N+ denote the set of natural numbers. Let C[0, 1] and C1[0, 1] be the
usual Banach spaces with the norms ‖ · ‖0 and ‖ · ‖, respectively. Let C1

0 [0, 1] =
{x ∈ C1[0, 1]|x(0) = x(1) = 0}, P0 = {x ∈ C[0, 1]|x(t) > 0, t ∈ [0, 1]} and
P = P0 ∩ C1

0 [0, 1]. Then C1
0 [0, 1] is also a real Banach space with the norm ‖ · ‖,
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P and P0 are cones of C1
0 [0, 1] and C[0, 1], respectively. Let 6 denote both the

orderings induced by P in C1
0 [0, 1] and P0 in C[0, 1]. We write x < y if x 6 y and

x 6= y. Let e(t) = t(1 − t) for all t ∈ [0, 1]. For each x, y ∈ C[0, 1], we denote
by x ≺ y or y � x if y − x > δ0e for some δ0 > 0. For any x0 ∈ C[0, 1], let
Ω1 = {x ∈ C1

0 [0, 1]|x � x0} and Ω2 = {x ∈ C1
0 [0, 1]|x ≺ x0}. Then Ω1 and Ω2 are

open subsets of C1
0 [0, 1].

Now we define the concepts of strict lower and upper solutions of (1.1) in a
manner as that of [3]; see [3, Definition 5.4.47 and 5.4.48].

Definition 2.1. A function u0 ∈ C1[0, 1] with ϕp(u′0(t)) absolutely continuous is
called a lower solution of (1.1) if

u0(0) 6 0, u0(1) 6 0

and
−(ϕp(u′0(t))′ 6 f(t, u0(t), u′0(t)) for a. e. t ∈ (0, 1).

In an analogous way we define an upper solution of (1.1).

Definition 2.2. A lower solution u0 is said to be strict if every possible solution
x of (1.1) such that u0 6 x satisfies u0 ≺ x. In an analogous way we define a strict
upper solution of (1.1).

Remark 2.3. Obviously, if f has the form of f(t, x) and satisfies

f(t, x2)− f(t, x1) > −M(x2 − x1), ∀x2 > x1

for some M > 0, u0 ∈ C2[0, 1] satisfies u0(0) 6 0, u0(1) 6 0 and

u′′0 + f(t, u0(t)) > 0, t ∈ (0, 1),

then u0 will be a strict lower solution in the Definition 2.2 for p = 2 by the Maximum
Principle.

Definition 2.4. Let u0 and v0 be strict lower and upper solutions of (1.1), re-
spectively. Then u0 and v0 are called a pair of well-ordered strict lower and upper
solutions of (1.1) if u0 ≺ v0.

Definition 2.5. A function f : [0, 1] × R2 → R1 is said to be a Carathéodory
function, if f(t, ·, ·) is continuous on R2 for almost all t ∈ [0, 1]; f(·, x, y) is a
measurable function on [0, 1] for all (x, y) ∈ R2; for every R > 0 there exists a
real-valued function Ψ ≡ ΨR ∈ L1(0, 1) such that

|f(t, x, y)| 6 Ψ(t)

for a.e. t ∈ [0, 1] and for every (x, y) ∈ R2 with |x|+ |y| 6 R.

Let α ∈ C1[0, 1]. The function p : [0, 1]× R1 → R1 be defined by

p(t, x) = max{α(t), x}, ∀(t, x) ∈ [0, 1]× R1.

The first result is Lemma 2.6, for which we omit the proof. A similar result and
its proof can be found in [11].

Lemma 2.6. For each u ∈ C1[0, 1], the next two properties hold:
(i) d

dtp(t, u(t)) exists for a.e. t ∈ I.
(ii) If u, um ∈ C1[0, 1] and um → u in C1[0, 1], then

d

dt
p(t, um(t))→ d

dt
p(t, u(t)) for a.e. t ∈ [0, 1].
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Lemma 2.7. Let α1, α2 ∈ C1[0, 1] and ᾱ(t) = max{α1(t), α2(t)} for all t ∈ [0, 1].
Then the following conclusions hold.

(1) ᾱ′(t) = α′1(t) when α1(t) > α2(t);
(2) ᾱ′(t) = α′2(t) when α2(t) > α1(t);
(3) ᾱ′(t) = α′1(t) = α′2(t) when α1(t) = α2(t) and α′1(t) = α′2(t);
(4) ᾱ′−(t) = min{α′1(t), α′2(t)} and ᾱ′+(t) = max{α′1(t), α′2(t)} when α1(t) =

α2(t) and α′1(t) 6= α′2(t);
(5) limτ→t− ᾱ

′(τ) = ᾱ′−(t) and limτ→t+ ᾱ
′(τ) = ᾱ′+(t) when α1(t) = α2(t) and

α′1(t) 6= α′2(t);
(6)

|ᾱ′(t)| 6 max{‖α′1‖0, ‖α′2‖0} a.e. t ∈ [0, 1]. (2.1)

Proof. Let I1 = {t ∈ [0, 1]|α1(t) > α2(t)}, I2 = {t ∈ [0, 1]|α2(t) > α1(t)} and
I3 = [0, 1]\(I1 ∪ I2). Assume without loss of generality that Ii 6= ∅ for i = 1, 2, 3.
Obviously, we have ᾱ′(t) = α′1(t) for each t ∈ I1, and ᾱ′(t) = α′2(t) for each
t ∈ I2. Let I3,1 = {t ∈ I|α1(t) = α2(t), α′1(t) = α′2(t)} and I3,2 = {t ∈ I|α1(t) =
α2(t), α′1(t) 6= α′2(t)}. Then we have I3 = I3,1 ∪ I3,2. Obviously, the conclusions (1)
and (2) hold. Let t0 ∈ I3. Now for each t > t0, by the Mean-Value Theorem, there
exists ξt and ηt with t0 < ξt < t and t0 < ηt < t such that

α1(t) = α1(t0) + α′1(ξt)(t− t0),

α2(t) = α2(t0) + α′2(ηt)(t− t0).

Then, we have for each t > t0,

ᾱ(t) = ᾱ(t0) + [α′1(ξt) ∨ α′2(ηt)](t− t0)

= ᾱ(t0) +
α′1(ξt) + α′2(ηt) + |α′1(ξt)− α′2(ηt)|

2
(t− t0).

Consequently,

ᾱ′+(t0) = lim
t→t+0

ᾱ(t)− ᾱ(t0)
t− t0

= lim
t→t+0

α′1(ξt) + α′2(ηt) + |α′1(ξt)− α′2(ηt)|
2

=
α′1(t0) + α′2(t0) + |α′1(t0)− α′2(t0)|

2

=

{
α′1(t0) = α′2(t0), when t0 ∈ I3,1;
max{α′1(t0), α′2(t0)}, when t0 ∈ I3,2.

Similarly, we have

ᾱ′−(t0) = lim
t→t−0

ᾱ(t)− ᾱ(t0)
t− t0

=

{
α′1(t0) = α′2(t0), when t0 ∈ I3,1;
min{α′1(t0), α′2(t0)}, when t0 ∈ I3,2.

Therefore, ᾱ is differentiable at t0 ∈ I3,1 and ᾱ′(t0) = α′1(t0) = α′2(t0) for each
t0 ∈ I3,1. Thus, the conclusion (3) and (4) hold.

Let t0 ∈ I3,2. Assume without loss of generality that t0 ∈ (0, 1) and α′1(t0) <
α′2(t0). Then there exists δ0 > 0 small enough such that α1(t) > α2(t) for all
t ∈ (t0 − δ0, t0). Thus, we have ᾱ(t) = α1(t) for all t ∈ (t0 − δ0, t0], and thus
ᾱ′(t) = α′1(t) for t ∈ (t0 − δ0, t0]. Therefore, limt→t−0

ᾱ′(t) = α′1(t0) = ᾱ′−(t0).
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Similarly, we have limt→t+0
ᾱ′(t) = α′2(t0) = ᾱ′+(t0). This means that the conclusion

(5) holds. The conclusion (6) follows from (1)-(4). The proof is complete. �

Let h ∈ L1(0, 1). Consider the boundary-value problem

(ϕp(u′(t)))′ = h a.e. t ∈ (0, 1),

u(0) = u(1) = 0.
(2.2)

A function u ∈ C1
0 [0, 1] is called a solution of (2.2), if ϕp(u′(t)) is absolutely con-

tinuous and satisfies (2.2). It is easy to see that (2.2) is equivalent to

u(t) = Gp(h)(t) :=
∫ t

0

ϕ−1
p

(
a(h) +

∫ s

0

h(τ)dτ
)
ds, (2.3)

where a : L1(0, 1)→ R1 is a continuous functional satisfying∫ 1

0

ϕ−1
p

(
a(h) +

∫ s

0

h(τ)dτ
)
ds = 0.

From [10], we see that Gp : L1(0, 1) → C1
0 [0, 1] is continuous and maps equi-

integrable sets of L1(0, 1) into relatively compact sets of C1
0 [0, 1]. One may refer to

Manásevich and Mawhin [9] for more details.
Next we consider the eigenvalues problem of the form (2.4)

(ϕp(u′(t)))′ + λϕp(u(t)) = 0 a.e. t ∈ (0, 1),

u(0) = u(1) = 0.
(2.4)

Define the operator T pλ : C1
0 [0, 1]→ C1

0 [0, 1] by

(T pλu)(t) = Gp(−λϕp(u))(t) =
∫ t

0

ϕ−1
p

(
a(−λϕp(u))−

∫ s

0

λϕp(u(τ))dτ
)
ds.

Then T pλ is completely continuous and problem (2.4) is equivalent to equation u =
T pλu.

From [6, Proposition 2.6, Lemmas 2.7 and 2.8], we have the following Lemmas

Lemma 2.8. The following conditions hold:
(i) the set of all eigenvalues of (2.4) is a countable set {µk(p)|k ∈ N+} satis-

fying
0 < µ1(p) < µ2(p) < · · · < µk(p) < · · · → ∞;

(ii) for each k, ker(I − T pµk(p)) is a subspace of C1[0, 1] and its dimension is 1;
(iii) let φk be a corresponding eigenfunction to µk(p), then the number of interior

zeros of φk is k − 1.

Lemma 2.9. For each k ∈ N+, µk(p) as a function of p ∈ (1,∞) is continuous.

By Lemma 2.9 and the method of homotopy along p which developed in [10], we
have the following Lemma.

Lemma 2.10. For fixed p > 1 and all r > 0, we have

deg(I − T pλ , B(θ, r), θ) =

{
1, when λ < µ1(p);
(−1)k, when λ ∈ (µk(p), µk+1(p)).
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Now let us define the operator F : C1
0 [0, 1]→ L1[0, 1] and Tp : C1

0 [0, 1]→ C1
0 [0, 1]

by
(Fx)(t) = f(t, x(t), x′(t)), t ∈ [0, 1]

and (Tpx)(t) = (GpFx)(t) for all t ∈ [0, 1]. Then, Tp is completely continuous.
For convenience, we make the following assumptions.
(H1) f : [0, 1]×R2 → R1 is a Carathéodory function such that xf(t, x, y) > 0 for

all (t, y) ∈ [0, 1]×R1 and x 6= 0, and there exists β∞ > 0 with (2pβ∞)
1

p−1 <
1 such that

lim
|x|+|y|→∞

|f(t, x, y)|
ϕp(|x|+ |y|)

= β∞ uniformly for t ∈ [0, 1].

(H2) There exists R∗ > 0 and β0 > 0 such that

lim
x→0

f(t, x, y)
ϕp(x)

= β0 uniformly for t ∈ [0, 1] and y ∈ [−R∗, R∗].

(H3) There exist sign-changing functions u1, v1 such that u1 and v1 are a pair
of strict lower and upper solutions of (1.1).

Let f and g be defined by

f(t, x, y) =


β0ϕp(x) + [ϕp(x)]2y2, x2 + y2 6 1;
10, x2 + y2 > 2;
10(
√
x2 + y2 − 1) + (2−

√
x2 + y2)g(x, y), 1 < x2 + y2 < 2,

g(x, y) = β0ϕp

( x√
x2 + y2

)
+
[
ϕp

( x√
x2 + y2

)]2( y√
x2 + y2

)2

, 1 < x2 + y2 < 2.

Obviously, f satisfies the conditions (H1) and (H2).

Lemma 2.11. Suppose that (H1) holds, α1, α2 are strict lower solutions of (1.1)
such that α1(t) ≡ α2(t) or the set {t ∈ [0, 1]|α1(t) = α2(t), α′1(t) 6= α′2(t)} contains
at most finite elements. Then there exists R0 > 0 such that for each R1 > R0,
Tp(B̄(θ,R1)) ⊂ B(θ,R1), α1, α2 ∈ B(θ,R1) and

deg(I − Tp,Ω, θ) = 1,

where Ω = {x ∈ B(θ,R1)|x � α1, x � α2} and B(θ,R1) = {x ∈ C1
0 [0, 1] : ‖x‖ <

R1}.

Proof. We consider only the case of α1(t) 6≡ α2(t). Let ᾱ(t) = max{α1(t), α2(t)}
for each t ∈ [0, 1]. Let β′∞ be such that β′∞ > β∞ and (2pβ′∞)

1
p−1 < 1. From (H1),

there exists R′ > 0 such that

|f(t, x, y)| 6 β′∞ϕp(|x|+ |y|),∀t ∈ [0, 1], |x|+ |y| > R′.
Since f : [0, 1] × R2 → R1 is a Carathéodory function, then there exists ΨR′ ∈
L1(0, 1) such that

|f(t, x, y)| 6 ΨR′(t) a.e. t ∈ [0, 1], |x|+ |y| 6 R′.
Consequently, we have

|f(t, x, y)| 6 β′∞ϕp(|x|+ |y|) + ΨR′(t), a.e. t ∈ [0, 1], (x, y) ∈ R2.

Let

R0 > max
{
‖α1‖, ‖α2‖,

ϕ−1
p (2pMR′) + 2(‖α1‖+ ‖α2‖)

1− (2pβ′∞)
1

p−1

}
.
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and R1 > R0, where MR′ = ‖ΨR′‖L1(0,1). For any x ∈ B̄(θ,R1), by the Rolle’s
Theorem there exists tx ∈ (0, 1) such that (Tpx)′(tx) = 0 and for all t ∈ [0, 1]

|(Tpx)′(t)| =
∣∣∣ϕ−1
p

(∫ tx

t

f(τ, x(τ), x′(τ))dτ
)∣∣∣

and

|(Tpx)(t)| =
∣∣∣ ∫ t

0

ϕ−1
p

(∫ tx

s

f(τ, x(τ), x′(τ))dτ
)
ds
∣∣∣.

Then we have for all t ∈ [0, 1]

|(Tpx)′(t)| 6 ϕ−1
p

(∫ 1

0

|f(τ, x(τ), x′(τ))|dτ
)

6 ϕ−1
p

(∫ 1

0

[β′∞ϕp(|x(τ)|+ |x′(τ)|) + ΨR′(τ)]dτ
)

6 ϕ−1
p (β′∞ϕp(‖x‖) +MR′)

= ϕ−1
p (ϕp((β′∞)

1
p−1 ‖x‖) + ϕp(ϕ−1

p (MR′)))

6 ϕ−1
p (2ϕp((β′∞)

1
p−1 ‖x‖+ ϕ−1

p (MR′)))

= (2β′∞)
1

p−1 ‖x‖+ ϕ−1
p (2MR′)

Similarly, we have that for all t ∈ [0, 1],

|(Tpx)(t)| 6
∫ t

0

ϕ−1
p

(∫ 1

0

|f(τ, x(τ), x′(τ))|dτ
)
ds

6 ϕ−1
p

(∫ 1

0

|f(τ, x(τ), x′(τ))|dτ
)

6 (2β′∞)
1

p−1 ‖x‖+ ϕ−1
p (2MR′).

Thus we have

‖Tpx‖ = ‖(Tpx)′‖0 + ‖Tpx‖0
6 2[(2β′∞)

1
p−1 ‖x‖+ ϕ−1

p (2MR′)]

= (2pβ′∞)
1

p−1 ‖x‖+ ϕ−1
p (2pMR′))

6 (2pβ′∞)
1

p−1R1 + ϕ−1
p (2pMR′) < R1.

This implies that Tp(B̄(θ,R1)) ⊂ B(θ,R1).
Let the function g : [0, 1]× R1 → R1 be defined by

g(t, x) = max{ᾱ(t), x},∀(t, x) ∈ [0, 1]× R1.

We denote by T̃p : C1
0 [0, 1]→ C1

0 [0, 1] the solution operator of

(ϕp(y′(t)))′ + f(t, g(t, x(t)),
d

dt
g(t, x(t)) = 0 a.e. t ∈ (0, 1);

y(0) = y(1) = 0;
(2.5)

that is, for x, y ∈ C1
0 [0, 1],

y = T̃px
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if and only if (2.5) holds. For any x ∈ C1
0 [0, 1] it follows by integration of (2.5)

and the injectivity of ϕ(s) = |s|p−2s that the operator T̃ is well defined. In fact,
T̃p = GpF̃ , where F̃ : C1

0 [0, 1]→ L1[0, 1] is defined by

(F̃ x)(t) = f(t, g(t, x(t)),
d

dt
g(t, x(t))

for a.e. t ∈ [0, 1]. It follows from Lemma 2.6 and 2.7 that F̃ : C1
0 [0, 1]→ L1[0, 1] is

bounded and continuous, and so T̃p : C1
0 [0, 1]→ C1

0 [0, 1] is completely continuous.
For any x ∈ B̄(θ,R1) there exists t̃x ∈ (0, 1) such that (T̃px)′(t̃x) = 0 and for all

t ∈ [0, 1],

|(T̃px)′(t)| =
∣∣∣ϕ−1
p

(∫ etx
t

f(τ, x(τ), x′(τ))dτ
)∣∣∣ (2.6)

and

|(T̃px)(t)| =
∣∣∣ ∫ t

0

ϕ−1
p

(∫ etx
s

f(τ, x(τ), x′(τ))dτ
)
ds
∣∣∣. (2.7)

It follows from Lemma 2.7 that for each x ∈ C1
0 [0, 1],∣∣ d

dt
g(t, x(t))

∣∣ 6 max{‖α′1‖0, ‖α′2‖0, ‖x′‖0} a.e. t ∈ (0, 1) (2.8)

From (2.6)-(2.8) we have that for t ∈ [0, 1],

|(T̃px)′(t)| 6 ϕ−1
p

(∫ 1

0

|f(τ, g(τ, x(τ)),
d

dτ
g(τ, x(τ)))|dτ

)
6 ϕ−1

p

(∫ 1

0

[
β′∞ϕp(|g(τ, x(τ))|+ | d

dτ
g(τ, x(τ))|) + ΨR′(τ)

]
dτ
)

6 ϕ−1
p

(∫ 1

0

(
β′∞ϕp(max{‖x‖0, ‖α1‖0, ‖α2‖0}

+ max{‖x′‖0, ‖α′1‖0, ‖α′2‖0}) + ΨR′(τ)
)
dτ
)

6 ϕ−1
p (β′∞ϕp(‖x‖+ ‖α1‖+ ‖α2‖) +MR′)

6 (2β′∞)
1

p−1 (‖x‖+ ‖α1‖+ ‖α2‖) + ϕ−1
p (2MR′)

6 (2β′∞)
1

p−1 ‖x‖+ ‖α1‖+ ‖α2‖+ ϕ−1
p (2MR′).

Similarly, we have that for t ∈ [0, 1],

|(T̃px)(t)| 6 (2β′∞)
1

p−1 ‖x‖+ ‖α1‖+ ‖α2‖+ ϕ−1
p (2MR′).

Thus we have

‖T̃px‖ 6 (2pβ′∞)
1

p−1 ‖x‖+ 2(‖α1‖+ ‖α2‖) + ϕ−1
p (2pMR′)

6 (2pβ′∞)
1

p−1R1 + 2(‖α1‖+ ‖α2‖) + ϕ−1
p (2pMR′) < R1.

This implies that T̃p(B̄(θ,R1)) ⊂ B(θ,R1). Consequently,

deg(I − T̃p, B(θ,R1), θ) = 1. (2.9)

Then T̃p has fixed points in B(θ,R1). Now we show that x0 ∈ Ω whenever x0 ∈
B̄(θ,R1) with T̃px0 = x0. We need only to show that x0 � α1 and x0 � α2. Note
that α1 and α2 are strict lower solutions of (1.1), then we need to show

x0(t) > ᾱ(t), t ∈ [0, 1]. (2.10)
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Assume on the contrary that (2.10) does not hold. Then there exists t0 ∈ [0, 1]
such that

ᾱ(t0)− x0(t0) = max
t∈[0,1]

(ᾱ(t)− x0(t)) > 0.

Since x0 is a fixed point of T̃p and α1, α2 are strict lower solutions of (1.1), we easily
see that t0 ∈ (0, 1). Thus, there exists an interval I+ ⊂ (0, 1) such that ᾱ(t) > x0(t)
for all t ∈ I+ and ᾱ(t) = x0(t) (∀t ∈ ∂I+). Let

(ᾱ(t)− x0(t))∗ =

{
ᾱ(t)− x0(t), ∀t ∈ I+,
0, ∀t ∈ [0, 1]\I+.

Then we have ∫
[0,1]

ϕp(x′0(t))
d

dt
(ᾱ(t)− x0(t))∗dt

=
∫

[0,1]

f(t, g(t, x0(t)),
d

dt
g(t, x0(t))(ᾱ(t)− x0(t))∗dt

=
∫

[0,1]

f(t, ᾱ(t), ᾱ′(t))(ᾱ(t)− x0(t))∗dt.

(2.11)

Since {t ∈ [0, 1]|α1(t) = α2(t), α′1(t) 6= α′2(t)} is a subset of [0, 1] which contains at
most finite elements, for simplicity we assume that {t ∈ [0, 1]|α1(t) = α2(t), α′1(t) 6=
α′2(t)} = {t1}, t1 ∈ (0, 1) and α′1(t1) < α′2(t1). Then we have ᾱ(t) = α1(t) for all
t ∈ [0, t1], and ᾱ(t) = α2(t) for all t ∈ [t1, 1]. From Lemma 2.7 we see that ϕp(ᾱ′(t))
is absolutely continuous on [0, t1] and [t1, 1], respectively. Using the formula of
Integrating by part, we have∫

[0,1]

ϕp(ᾱ′(t))
d

dt
(ᾱ(t)− x0(t))∗dt

= ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗
∣∣∣t1
0

+ ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗
∣∣∣1
t1

−
(∫

[0,t1)

+
∫

[t1,1]

) d
dt

(ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗dt

= (ᾱ(t1)− x0(t1))∗[ϕp(α′1(t1))− ϕp(α′2(t1))]

−
(∫

[0,t1)

+
∫

[t1,1]

) d
dt

(ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗dt

6 −
(∫

[0,t1)

+
∫

[t1,1]

) d
dt

(ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗dt.

(2.12)

Now since α1 is a strict lower solution of (1.1), we have∫
[0,t1)

− d

dt
ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗dt = −

∫
[0,t1)

d

dt
ϕp(α′1(t))(α1(t)− x0(t))∗dt

6
∫

[0,t1)

f(t, α1(t), α′1(t))(α1(t)− x0(t))∗dt

=
∫

[0,t1)

f(t, ᾱ(t), ᾱ′(t))(ᾱ(t)− x0(t))∗dt.

(2.13)
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In the same way, we have∫
[t1,1]

− d

dt
ϕp(ᾱ′(t))(ᾱ(t)− x0(t))∗dt 6

∫
[t1,1]

f(t, ᾱ(t), ᾱ′(t))(ᾱ(t)− x0(t))∗dt.

(2.14)
From (2.12)-(2.14) it follows that∫

[0,1]

ϕp(ᾱ′(t))
d

dt
(ᾱ(t)− x0(t))∗dt 6

∫
[0,1]

f(t, ᾱ(t), ᾱ′(t))(ᾱ(t)− x0(t))∗dt. (2.15)

By (2.11) and (2.15) we have∫
[0,1]

[ϕp(x′0(t))− ϕp(ᾱ′(t))](ᾱ′(t)− x′0(t))dt > 0.

This is a contradiction to that s 7→ ϕp(s) is strictly increasing, which proves that
x0 � α1 and x0 � α2. Now by the properties of the Leray-Schauder degree and
(2.9) we have

deg(I − T̃p,Ω, θ) = 1. (2.16)

The assertion now follows from the fact that Tp and T̃p coincides in Ω̄. The proof
is complete.

�

As in the proof of Lemma 2.11 we have the following result.

Lemma 2.12. Suppose that (H1) holds, β1, β2 are strict upper solutions of (1.1)
such that β1(t) ≡ β2(t) or the set {t ∈ [0, 1]|β1(t) = β2(t), β′1(t) 6= β′2(t)} contains
at most finite elements. Then there exists R0 > 0 such that for each R1 > R0,
Tp(B̄(θ,R1)) ⊂ B(θ,R1), β1, β2 ∈ B(θ,R1) and

deg(I − Tp,Ω, θ) = 1,

where Ω = {x ∈ B̄(θ,R1)|x ≺ β1, x ≺ β2}.

Lemma 2.13. Suppose that (H1) and (H2) hold. Let R1 > 0,

SR1 = {x ∈ C1
0 [0, 1]|x is a solution of (1.1) and ‖x‖ 6 R1},

S+
R1

= {x ∈ SR1 |x > θ} and S−R1
= {x ∈ SR1 |x < θ}. Then there exists ζR1 > 0

such that
S+
R1
> ζR1e, S−R1

6 −ζR1e.

Proof. Let x0 ∈ S+
R1

be fixed at present. Take t0 ∈ (0, 1) such that x0(t0) = ‖x0‖0.
Then we have

−(ϕp(x′0(t)))′ = f(t, x0(t), x′0(t)) a.e. t ∈ (0, 1),

x0(1) = 0, x0(t0) = ‖x0‖0.
(2.17)

Assume that v ∈ C1[0, 1] satisfying

−(ϕp(v′(t)))′ = 0 a.e. t ∈ (0, 1),

v(1) = 0, v(t0) = ‖x0‖0.
(2.18)

Now we show that
x0(t) > v(t), ∀t ∈ (t0, 1). (2.19)
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Assume (2.19) is not true. Let ω(t) = x0(t) − v(t) for all t ∈ [t0, 1]. Then there
exists t∗ ∈ (t0, 1) such that ω(t∗) = mint∈[t0,1] ω(t) < 0. Take [t1, t2] ⊂ [t0, 1] such
that t∗ ∈ (t1, t2), ω(t1) = ω(t2) = 0, and

ω(t) < 0, ∀t ∈ (t1, t2). (2.20)

By (2.17) and (2.18) we have

(ϕp(x′0(t)))′ − (ϕp(v′(t)))′ = −f(t, x0(t), x′0(t)) 6 0, a.e. t ∈ (t1, t2). (2.21)

By (2.20) and (2.21), we have∫ t2

t1

[(ϕp(x′0(t)))′ − (ϕp(v′(t)))′]ω(t)dt > 0. (2.22)

On the other hand, by (2.20) and the inequality

(ϕp(b)− ϕp(a))(b− a) > 0,∀b, a ∈ R1, (2.23)

we have∫ t2

t1

[(ϕp(x′0(t)))′−(ϕp(v′(t)))′]ω(t)dt = −
∫ t2

t1

[(ϕp(x′0(t)))−(ϕp(v′(t)))]ω′(t)dt 6 0,

which contradicts to (2.22). This implies that (2.19) holds. Obviously, we have

v(t) =
‖x0‖0
1− t0

(1− t), t ∈ [t0, 1].

Thus, we have

x0(t) >
‖x0‖0
1− t0

(1− t) > ‖x0‖0t(1− t), t ∈ [t0, 1]. (2.24)

Similarly, we can show that

x0(t) > ‖x0‖0e(t), ∀t ∈ [0, t0]. (2.25)

By (2.24) and (2.25) we have x0 > ‖x0‖0e. Thus, we have x > ‖x0‖0
2 e for any

x ∈ B(x0,
‖x0‖

4 ). Obviously,
{
B(x, ‖x‖4 )|x ∈ S+

R1

}
is an open cover of the set S+

R1
.

Since Tp(S+
R1

) = S+
R1

and Tp : C1
0 [0, 1] → C1

0 [0, 1] is completely continuous, then
S+
R1

is a compact set. Therefore, there exist finite subsets of
{
B(x, ‖x‖4 ) : x ∈ S+

R1

}
,

assume without loss of generality that

B
(
x1,
‖x1‖

4
)
, B
(
x2,
‖x2‖

4
)
, . . . , B

(
xn,
‖xn‖

4
)

such that

∪ni=1B
(
xi,
‖xi‖

4
)
⊃ S+

R1
.

Let

ε+ = min
{‖x1‖0

2
,
‖x2‖0

2
, . . . ,

‖xn‖0
2

}
> 0.

Then we have S+
R1
> ε+e. Similarly, we can prove that there exists ε− > 0 such

that S−R1
6 −ε−e. Let ζR1 = min{ε+, ε−}. Then the conclusion holds. The proof

is complete. �
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3. Main Results

Theorem 3.1. Suppose that (H1) and (H2) hold, β0 ∈ (µ2k0(p), µ2k0+1(p)) for
some positive integer k0. Then (1.1) has at least one sign-changing solution. More-
over, (1.1) has at least one positive solution and one negative solution.

Proof. By (H1), Lemma 2.11 and Lemma 2.12, there exists R1 > 0 such that
Tp(B̄(θ,R1)) ⊂ B(θ,R1), and so

deg(I − Tp, B(θ,R1), θ) = 1. (3.1)

Let {µk(p)|k ∈ N+} be the sequence of eigenvalues of the problem (2.4) and φk the
eigenfunction of (2.4) corresponding to the eigenvalue µk(p). From (iii) of Lemma
2.8, φ1 is a non-negative function on [0, 1]. Take ε0 > 0 small enough such that
β0 − ε0 > µ1(p). By (H2), there exists δ1 > 0 such that

f(t, x, y) > (β0 − ε0)ϕp(x), t ∈ [0, 1], |x| 6 δ1, |y| 6 R∗, x > 0, (3.2)

f(t, x, y) 6 (β0 − ε0)ϕp(x), t ∈ [0, 1], |x| 6 δ1, |y| 6 R∗, x 6 0. (3.3)

Assume that R∗ < R1, where R∗ as in (H2). Take δ2 > 0 small enough such that
‖δφ1‖ < min{δ1, R∗, R1} for each δ ∈ (0, δ2]. Then from (3.2) we have for any
δ ∈ (0, δ2),

(ϕp(δφ′1))′ + f(t, δφ1, δφ
′
1) > (ϕp(δφ′1))′ + (β0 − ε0)ϕp(δφ1)

= δp−1[(ϕp(φ′1))′ + (β0 − ε0)ϕp(φ1)]

= δp−1(β0 − ε0 − µ1(p))ϕp(φ1) > 0, a.e. t ∈ (0, 1).
(3.4)

and
δφ1(0) = δφ1(1) = 0. (3.5)

From (3.4) and (3.5), we see that δφ1 is a lower solution of (1.1). Similarly, by (3.3)
we can easily see that −δφ1 is an upper solution of (1.1) for each δ ∈ (0, δ2). Let

SR1 = {x ∈ C1
0 [0, 1]|x is a solution of (1.1) and ‖x‖ < R1},

S+
R1

= {x ∈ SR1 |x > θ} and S−R1
= {x ∈ SR1 |x < θ}. By Lemma 2.13, there exists

ζR1 > 0 such that
S+
R1
> ζR1e, S−R1

6 −ζR1e. (3.6)
Since φ1 ∈ C1

0 [0, 1] satisfies

(ϕp(φ′1))′ + µ1(p)ϕp(φ1) = 0 a.e. t ∈ (0, 1),

φ1(0) = φ1(1) = 0,
(3.7)

by Rolle’s Theorem, there exists t∗ ∈ (0, 1) such that φ′1(t∗) = 0 and

φ1(t) =
∫ 1

t

ϕ−1
p

(∫ s

t∗
µ1(p)ϕp(φ1(τ))dτ

)
ds

6 (1− t)ϕ−1
p

(
µ1(p)

∫ 1

0

ϕp(φ1(τ))dτ
)

6
1
t∗
e(t)ϕ−1

p

(
µ1(p)

∫ 1

0

ϕp(φ1(τ))dτ
)
,∀t ∈ (t∗, 1).

(3.8)

Similarly, we can show that

φ1(t) 6
1

1− t∗
e(t)ϕ−1

p

(
µ1(p)

∫ 1

0

ϕp(φ1(τ))dτ
)
, ∀t ∈ (0, t∗). (3.9)
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By (3.8) and (3.9) we have

φ1(t) 6
1

t∗(1− t∗)
e(t)ϕ−1

p

(
µ1(p)

∫ 1

0

ϕp(φ1(τ))dτ
)
, ∀t ∈ [0, 1]. (3.10)

Take

0 < δ3 < min
{
δ2, t

∗(1− t∗)
[
ϕ−1
p

(
µ1(p)

∫ 1

0

ϕp(φ1(τ))dτ
)]−1

ζR1

}
.

Let u0 = δ3φ1 and v0 = −δ3φ1. Then by (3.6) and (3.10), we see that u0, v0 ∈
B̄(θ,R1), u0 and v0 are strict lower and upper solutions of (1.1) in B̄(θ,R1), respec-
tively. Moreover, we have S+

R1
� u0 and S−R1

≺ v0. Let Ω1 = {x ∈ B̄(θ,R1)|x � u0}
and Ω2 = {x ∈ B̄(θ,R1)|x ≺ v0}. By Lemmas 2.11 and 2.12 we have

deg(I − Tp,Ω1, θ) = 1, (3.11)

deg(I − Tp,Ω2, θ) = 1. (3.12)

Let h(t, x, y) = f(t, x, y)− β0ϕp(x) for all (t, x, y) ∈ [0, 1]× R2. By (H2) we have

lim
x→0

h(t, x, y)
ϕp(x)

= 0 uniformly for t ∈ [0, 1] and y ∈ [−R∗, R∗]. (3.13)

For each τ ∈ [0, 1], denote by H(τ, ·) : C1
0 [0, 1]→ C1

0 [0, 1] the solution operator of

−(ϕp(y′(t)))′ = τβ0ϕp(x(t)) + (1− τ)f(t, x(t), x′(t)) a.e. t ∈ (0, 1)

y(0) = y(1) = 0;
(3.14)

that is, for x, y ∈ C1
0 [0, 1],

y = H(τ, x)

if and only if the equality in (3.14) holds. Then H(·, ·) : C1
0 [0, 1]→ C1

0 [0, 1] is com-
pletely continuous. Now we will show that there exists 0 < r0 < min{‖u0‖0, ‖v0‖0}
such that

H(s, x) 6= x, s ∈ [0, 1], x ∈ ∂B(θ, r0). (3.15)

Assume that (3.15) does not holds, then there exists {τn} ⊂ [0, 1], {xn} ⊂ C1
0 [0, 1]

with ‖xn‖ > 0 for each n = 1, 2, . . . and ‖xn‖ → 0 as n→∞ such that H(τn, xn) =
xn. Obviously, ‖xn‖0 > 0 for each n = 1, 2, . . . . Assume without loss of generality
that τn → τ0 as n→∞. Then we have for each n = 1, 2, . . .

−(ϕp(x′n(t)))′ = τnβ0ϕp(xn(t)) + (1− τn)f(t, xn(t), x′n(t))

= β0ϕp(xn(t)) + (1− τn)h(t, xn(t), x′n(t)) a.e. t ∈ (0, 1)
(3.16)

xn(0) = xn(1) = 0. (3.17)

Let vn(t) = xn(t)
ϕp(‖xn‖0) . Then by (3.16) and (3.17) we have

−(ϕp(v′n(t)))′ = β0(ϕp(vn(t))) + (1− τn)
h(t, xn(t), x′n(t))

ϕp(‖xn‖0)
a.e. t ∈ (0, 1),

vn(0) = vn(1) = 0.
(3.18)

Let

un(t) = β0ϕp(vn(t)) + (1− τn)
h(t, xn(t), x′n(t))

ϕp(‖xn‖0)
, t ∈ [0, 1].
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By (3.13) and (H2) we see that {un|n = 1, 2, . . . } ⊂ L1[0, 1]. By (3.18) and Rolle’s
Theorem, there exists tn ∈ (0, 1) such that v′n(tn) = 0 for each n = 1, 2, . . . . Then
we have by (3.18)

|v′n(t)| =
∣∣∣ϕ−1
p (
∫ tn

t

un(s)ds)
∣∣∣ 6 ϕ−1

p (
∫ 1

0

|un(s)|ds), t ∈ [0, 1].

Thus, {v′n(t)|n = 1, 2, . . . } is a bounded set. Consequently, {vn : n = 1, 2, . . . } is a
relatively compact set of C[0, 1]. Assume without loss of generality that vn → v̄0

in C[0, 1] as n→∞. From (3.18) we have

vn(t) =
∫ t

0

ϕ−1
p

(
α(un) +

∫ 1

s

un(τ)dτ
)
ds, t ∈ [0, 1]. (3.19)

where the continuous functional α(un) ∈ (0, 1) satisfies∫ 1

0

ϕ−1
p

(
α(un) +

∫ 1

s

un(τ)dτ
)
ds = 0, n = 1, 2, . . . .

Assume without loss of generality that α(un) → a0 as n → ∞. Letting n → ∞ in
(3.19), by Lebesgue dominated convergence theorem we have

v̄0(t) =
∫ t

0

ϕ−1
p

(
a0 +

∫ 1

s

β0ϕp(v̄0(τ))dτ
)
ds, t ∈ [0, 1].

Consequently, v̄0 ∈ C1[0, 1]. By direct computation we have

− (ϕp(v̄′0(t)))′ = β0ϕp(v̄0(t)) a.e. t ∈ (0, 1). (3.20)

Obviously,
v̄0(0) = v̄0(1) = 0. (3.21)

By (3.20) and (3.21) we see that β0 is an eigenvalue of (2.4) and v̄0 is the corre-
sponding eigenfunction, which is a contradiction. Therefore, there exists r0 > 0
small enough such that (3.15) holds. Assume without loss of generality that
u0, v0 6∈ B̄(θ, r0). By the properties of the Leray-Schauder degree and Lemma
2.10 we have

deg(I − Tp, B(θ, r0), θ) = deg(I −H(0, ·), B(θ, r0), θ)

= deg(I −H(1, ·), B(θ, r0), θ)

= deg(I − T pβ0
, B(θ, r0), θ)

= (−1)2k0 = 1.

(3.22)

By (3.1), (3.11), (3.12) and (3.22), we have

deg(Tp, B̄(θ,R1)\(B̄(θ, r0) ∪ ClB̄(θ,R1)Ω1 ∪ ClB̄(θ,R1)Ω2), θ) = −1. (3.23)

It follows from (3.11), (3.12) and (3.23) that Tp has at least three fixed points x1 ∈
Ω1, x2 ∈ Ω2 and x3 ∈ B̄(θ,R1)\(B̄(θ, r0) ∪ ClB̄(θ,R1)Ω1 ∪ ClB̄(θ,R1)Ω2). Obviously
x1 is a positive solution of (1.1), x2 is a negative solution of (1.1). Since S+

R1
� u0

and S−R1
≺ v0, then S+

R1
⊂ Ω1 and S−R1

⊂ Ω2. Therefore, x3 is a sign-changing
solution of (1.1). The proof is complete. �

Now we will give some multiplicity results for sign-changing solutions of (1.1).
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Theorem 3.2. Suppose that (H1)–(H3) hold, β0 > µ1(p), β0 6= µk(p) for each
k = 1, 2, . . . . Moreover, there exists δ̄0 > 0 such that both {t ∈ [0, 1]|δφ1(t) = u1(t)}
and {t ∈ [0, 1]|−δφ1(t) = v1(t)} contain at most finite elements for each δ ∈ (0, δ̄0).
Then (1.1) has at least four sign-changing solutions. Moreover, (1.1) has at least
one positive solution and one negative solution.

Proof. From (H1), there exists R1 > 0 such that Tp(B̄(θ,R1)) ⊂ B(θ,R1) and so
(3.1) holds. Since β0 > µ1(p) and β0 6= µk(p) for each k = 1, 2, . . . , in the same
way as the proof of Theorem 3.1, we see that there exists 0 < δ2 < δ̄0 such that
for any δ ∈ (0, δ2), δφ1 is a lower solution of (1.1) and −δφ1 is an upper solution
of (1.1). Let S+

R1
and S−R1

be defined as Theorem 3.1. Then by Lemma 2.13, there
exists ζR1 > 0 such that (3.6) holds. In the same way as the proof of Theorem
3.1, we can take δ3 > 0 small enough such that u0 ∈ B̄(θ,R1) and v0 ∈ B̄(θ,R1),
where u0 := δ3φ1 and v0 := −δ3φ1. Moreover, u0 and v0 are strict lower and upper
solutions of (1.1), respectively, and S+

R1
� u0, S−R1

≺ v0. Also, assume δ3 > 0 small
enough such that u0 6> u1 and v0 66 v1. Define the subsets Ω1,Ω2,Ω3 and Ω4 of
C1

0 [0, 1] by

Ω1 = {x ∈ B(θ,R1) : x � u0}, Ω2 = {x ∈ B(θ,R1) : x ≺ v0},
Ω3 = {x ∈ B(θ,R1) : x ≺ v1}, Ω4 = {x ∈ B(θ,R1) : x � u1}.

Then Ω1,Ω2,Ω3,Ω4 are four closed convex subsets of C1
0 [0, 1]. Let

O2,3 = Ω2 ∩ Ω3, Ω3,4 = Ω3 ∩ Ω4, O4,1 = Ω4 ∩ Ω1.

By Lemmas 2.11 and 2.12 we have

deg(I − Tp,Ωi, θ) = 1, i = 1, 2, 3, 4, (3.24)

deg(I − Tp, O2,3, θ) = 1, (3.25)

deg(I − Tp, O3,4, θ) = 1, (3.26)

deg(I − Tp, O4,1, θ) = 1. (3.27)

Since β0 > µ1(p), β0 6= µk(p), k = 1, 2, . . . , then by a similar way as that of the
proof of Theorem 3.1 we see that, there exists r0 > 0 small enough such that
B(θ, r0) ∩ Ωi = ∅(i = 1, 2, 3, 4) and

deg(I − Tp, B(θ, r0), θ) = (−1)k0 = ±1, (3.28)

where k0 is the sum of all algebraic multiplicities of all eigenvalues µk(p) of (Epλ)
with β0 > µk(p). Let

O1 = Ω3\(ClB̄(θ,R1)O2,3 ∪ ClB̄(θ,R1)O3,4),

O2 = Ω4\(ClB̄(θ,R1)O3,4 ∪ ClB̄(θ,R1)O4,1).

Then, by (3.24)-(3.27) we have

deg(I − Tp, O1, θ) = 1− 1− 1 = −1, (3.29)

deg(I − Tp, O2, θ) = 1− 1− 1 = −1. (3.30)

It follows from (3.1), (3.24), (3.28)-(3.30) that

deg
(
I − Tp, B̄(θ,R1)\(ClB̄(θ,R1)Ω1 ∪ ClB̄(θ,R1)O1 ∪ ClB̄(θ,R1)Ω3,4 ∪ ClB̄(θ,R1)O2

∪ ClB̄(θ,R1)Ω2 ∪ B̄(θ, r0)), θ
)

= 1− 1− (−1)− 1− (−1)− 1− (±1) = ∓1.
(3.31)
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It follows from (3.24), (3.26), (3.29), (3.30) and (3.31) that Tp has fixed points
x1 ∈ Ω1, x2 ∈ Ω2, x3 ∈ O1 x4 ∈ O2, x5 ∈ Ω3,4 and x6 ∈ B̄(θ,R1)\(ClB̄(θ,R1)Ω1 ∪
ClB̄(θ,R1)O1∪ClB̄(θ,R1)Ω3,4∪ClB̄(θ,R1)O2∪ClB̄(θ,R1)Ω2∪B̄(θ, r0)). It is easy to see
that x1 is a positive solution of (1.1), x2 is a negative solution of (1.1), x3, x4, x5, x6

are four sign-changing solutions of (1.1). The proof is complete. �

Remark 3.3. To show multiplicity results for sign-changing solutions of (1.1) in
Theorem 3.2 we constructed a pair of lower and upper solutions u0 and v0 which
satisfy u0 66 v0. We call this pair of lower and upper solutions is non-well ordered.
For other discussions concerning the non-well ordered upper and lower solutions,
the reader is refereed to [3, 5.4B].

Remark 3.4. In Theorem 3.2 we obtained not only multiplicity results for sign-
changing solutions of (1.1) but also the existence results for positive solutions as
well as negative solution of (1.1).

Theorem 3.5. Suppose that (H1)–(H3) hold, β0 < µ1(p). Moreover, there exists
δ̄0 > 0 such that both {t ∈ [0, 1]|δφ1(t) = v1(t)} and {t ∈ [0, 1]| − δφ1(t) = u1(t)}
contain at most finite elements for each δ ∈ (0, δ̄0). Then (1.1) has at least four
sign-changing solutions. Moreover, (1.1) has at least two positive solutions and two
negative solutions.

Proof. By (H1), there exists R1 > 0 such that Tp(B̄(θ,R1)) ⊂ B(θ,R1) and so (3.1)
holds. Let S+

R1
and S−R1

be defined as Theorem 3.1. By Lemma 2.13, there exists
ζR1 > 0 such that (3.6) holds. Since β0 < µ1(p), in the same way as that of Theorem
3.1 we can show that, there exists δ̄0 > δ2 > 0 such that for any δ ∈ (0, δ2), −δφ1

is a lower solution of (1.1) and δφ1 is an upper solution of (1.1). Also by a similar
argument as the proof of (3.15) we can show that, there exists r0 > 0 small enough
such that θ is the unique fixed point of Tp in B̄(θ, r0), and for any 0 < r 6 r0,

deg(I − Tp, B(θ, r), θ) = 1. (3.32)

Let

Si = {x ∈ C1
0 [0, 1] : x(t) has exactly i− 1 simple zeros on (0, 1)},

S+
i = {x ∈ Si : lim

t→0+
signx(t) = 1}, S−i = Si\S+

i , i = 1, 2, . . . .

Then we have S+
R1

= S+
1 ∩ B̄(θ,R1), S−R1

= S−1 ∩ B̄(θ,R1) and SR1 ⊂
(
∪∞i=1 Si

)
∩

B̄(θ,R1). Moreover, for each i = 1, 2, . . . , Si is an open subset of C1
0 [0, 1]. We say

that there exists δ3 ∈ (0, δ2) small enough such that

{x ∈ C1
0 [0, 1] : −δ3φ1 6 x, ‖x‖ 6 R1} ∩ (SR1\{θ}) ∩

(
(∪∞i=2Si) ∪ S−R1

)
= ∅,

(3.33)

{x ∈ C1
0 [0, 1] : x 6 δ3φ1, ‖x‖ 6 R1} ∩ (SR1\{θ}) ∩

(
(∪∞i=2Si) ∪ S+

R1

)
= ∅. (3.34)

We prove only (3.33). In a similar way we can prove (3.34). If (3.33) does not hold,
then there exists a sequence of positive numbers {δ̄n} with δ̄n → 0 as n→∞ such
that for each n = 1, 2, . . . ,

{x ∈ C1
0 [0, 1] : −δnφ1 6 x, ‖x‖ 6 R1} ∩ (SR1\{θ}) ∩

(
(∪∞i=2Si) ∪ S−R1

)
6= ∅.
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For each n = 1, 2, . . . , take

xn ∈ {x ∈ C1
0 [0, 1] : −δnφ1 6 x, ‖x‖ 6 R1} ∩ (SR1\{θ}) ∩

(
(∪∞i=2Si) ∪ S−R1

)
.

Obviously, ‖xn‖ > r0 for each n = 1, 2, . . . . Let D = {xn|n = 1, 2, . . . }. Then we
have D = Tp(D). Therefore, D is a relatively compact subset of C1

0 [0, 1]. Assume
without loss of generality that xn → x0 as n→∞ for some x0 ∈ C1

0 [0, 1]. Obviously,
x0 is a solution of (1.1) and ‖x0‖ > r0, and thus x0 ∈

(
∪∞i=1 Si

)
∩ B̄(θ,R1). Note

that −δ̄nφ1 6 xn, letting n → ∞ then we have x0 ∈ S+
1 ∩ B̄(θ,R1). Since S+

1

is an open subset of C1
0 [0, 1], then there exists r1 > 0 such that B(x0, r1) ⊂ S+

1 .
Now since xn → x0 as n → +∞, then we can take n0 large enough such that
xn0 ∈ B(x0, r1) ⊂ S+

1 , which contradicts to

xn ∈ (∪∞i=2Si) ∪ S−R1

for each n = 1, 2, . . . . Therefore, (3.33) and (3.34) hold. Take 0 < δ4 < δ3.
Then −δ4φ1 is a strict lower solution of (1.1) and δ4φ1 is a strict upper solution
of (1.1). Also, assume that δ4 > 0 small enough such that −δ4φ1 66 v1, δ4φ1 6> u1

and −δ4φ1, δ4φ1 ∈ B̄(θ,R1). Let u0 = −δ4φ1 and v0 = δ4φ1. Let the subsets
Ω1,Ω2,Ω3,Ω4 of C1

0 [0, 1] be defined by

Ω1 = {x ∈ B̄(θ,R1) : x � u0}, Ω2 = {x ∈ B̄(θ,R1) : x ≺ v0},
Ω3 = {x ∈ B̄(θ,R1) : x ≺ v1}, Ω4 = {x ∈ B̄(θ,R1) : x � u1}.

Let O1,2 = Ω1 ∩ Ω2, O2,3 = Ω2 ∩ Ω3, O3,4 = Ω3 ∩ Ω4 and O4,1 = Ω4 ∩ Ω1. Then
Ω1,Ω2,Ω3,Ω4 and O1,2, O2,3, O3,4, O4,1 are nonempty open subsets of B̄(θ,R1). It
follows from Lemmas 2.11 and 2.12 that

deg(I − Tp,Ω1, θ) = 1, (3.35)

deg(I − Tp,Ω2, θ) = 1, (3.36)

deg(I − Tp,Ω3, θ) = 1, (3.37)

deg(I − Tp,Ω4, θ) = 1, (3.38)

deg(I − Tp, O1,2, θ) = 1, (3.39)

deg(I − Tp, O2,3, θ) = 1, (3.40)

deg(I − Tp, O3,4, θ) = 1, (3.41)

deg(I − Tp, O4,1, θ) = 1. (3.42)

Let

O1 = Ω1\(ClB̄(θ,R1)O1,2 ∪ ClB̄(θ,R1)O4,1),

O2 = Ω2\(ClB̄(θ,R1)O1,2 ∪ ClB̄(θ,R1)O2,3),

O3 = Ω3\(ClB̄(θ,R1)O2,3 ∪ ClB̄(θ,R1)O3,4),

O4 = Ω4\(ClB̄(θ,R1)O3,4 ∪ ClB̄(θ,R1)O4,1).

Then by (3.35)-(3.42) we have

deg(I − Tp, O1, θ) = −1, (3.43)

deg(I − Tp, O2, θ) = −1, (3.44)

deg(I − Tp, O3, θ) = −1, (3.45)

deg(I − Tp, O4, θ) = −1. (3.46)
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It follows from (3.36), (3.38), (3.43),(3.45) that

deg
(
I − Tp, B̄(θ,R1)\

(
ClB̄(θ,R1)O1 ∪ ClB̄(θ,R1)O3 ∪ ClB̄(θ,R1)Ω2

∪ ClB̄(θ,R1)Ω4

)
, θ
)

= 1− (−1)− (−1)− 1− 1 = 1.

(3.47)

From (3.35)-(3.47), Tp has fixed points x1 ∈ O3,4, x2 ∈ O4, x3 ∈ O3,

x4 ∈ B̄(θ,R1)\(ClB̄(θ,R1)O1 ∪ ClB̄(θ,R1)O3 ∪ ClB̄(θ,R1)Ω2 ∪ ClB̄(θ,R1)Ω4).

Then x1, . . . , x4 are four sign-changing solutions of (1.1). From (3.42) and (3.43),
Tp has fixed points x5 ∈ O4,1, x6 ∈ O1. Obviously, x5 > u0, x6 > u0 and x5 6= θ,
x6 6= θ. Then we see from (3.33) that x5 and x6 are two positive solutions of (1.1).
Similarly we can show that there exist x7 ∈ O3,4 and x8 ∈ O2, and x7, x8 are two
negative solutions of (1.1). The proof is complete. �

Now we study the existence and multiplicity of sign-changing solutions of (1.1)
when f has jumping nonlinearity at zero. Let us first introduce the following
conditions.

(H4) There exist R∗, β+ > 0 such that

lim
x→0+

f(t, x, y)
ϕp(x)

= β+ uniformly for t ∈ [0, 1] and y ∈ [−R∗, R∗].

(H5) There exist R∗, β− > 0 such that

lim
x→0−, x<0

f(t, x, y)
ϕp(x)

= β− uniformly for t ∈ [0, 1] and y ∈ [−R∗, R∗].

In the same way as the proof of Theorems 3.1, 3.2 and 3.5, we can prove the
following Theorems 3.6–3.12. For brevity, we only give the sketch of the proof of
Theorem 3.6.

Theorem 3.6. Suppose that (H1), (H3), (H4) hold, and β+ > µ1(p). Moreover,
there exists δ̄0 > 0 such that {t ∈ [0, 1]|δφ1(t) = u1(t)} contains at most finite
elements for each δ ∈ (0, δ̄0). Then (1.1) has at least two sign-changing solutions.
Moreover, (1.1) has at least one positive solution.

Theorem 3.7. Suppose that (H1), (H3), (H4) hold, β+ < µ1(p). Moreover, there
exists δ̄0 > 0 such that {t ∈ [0, 1]|δφ1(t) = v1(t)} contains at most finite elements
for each δ ∈ (0, δ̄0). Then (1.1) has at least two sign-changing solutions. Moreover,
(1.1) has at least one negative solution.

Theorem 3.8. Suppose that (H1), (H3), (H5) hold, β− > µ1(p). Moreover, there
exists δ̄0 > 0 such that {t ∈ [0, 1]|−δφ1(t) = v1(t)} contains at most finite elements
for each δ ∈ (0, δ̄0). Then (1.1) has at least two sign-changing solutions. Moreover,
(1.1) has at least one negative solution.

Theorem 3.9. Suppose that (H1), (H3), (H5) hold, β− < µ1(p). Moreover, there
exists δ̄0 > 0 such that {t ∈ [0, 1]|−δφ1(t) = u1(t)} contains at most finite elements
for each δ ∈ (0, δ̄0). Then (1.1) has at least two sign-changing solutions. Moreover,
(1.1) has at least one positive solution.
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Theorem 3.10. Suppose that (H1), (H3), (H4), (H5) hold, β− > µ1(p), and β+ >
µ1(p). Moreover, there exists δ̄0 > 0 such that both {t ∈ [0, 1] : −δφ1(t) = v1(t)}
and {t ∈ [0, 1] : δφ1(t) = u1(t)} contain at most finite elements for each δ ∈ (0, δ̄0).
Then (1.1) has at least three sign-changing solutions. Moreover, (1.1) has at least
one positive solution and one negative solution.

Theorem 3.11. Suppose that (H1), (H3), (H4), (H5) hold, β− < µ1(p), β+ <
µ1(p). Moreover, there exists δ̄0 > 0 such that both {t ∈ [0, 1]|δφ1(t) = v1(t)} and
{t ∈ [0, 1]| − δφ1(t) = u1(t)} contain at most finite elements for each δ ∈ (0, δ̄0).
Then (1.1) has at least four sign-changing solutions. Moreover, (1.1) has at least
two positive solutions and two negative solutions.

Theorem 3.12. Suppose that (H3) holds, f is a Carathéodory function. Then
(1.1) has at least one sign-changing solution.

Sketch of the Proof of Theorem 3.6. By assumption (H1), there exists R1 > 0 such
that Tp(B̄(θ,R1)) ⊂ B(θ,R1). Let S+

R1
be defined as Theorem 3.1. By Lemma

2.13, there exists ζR1 > 0 such that S+
R1
> ζR1e. Since β+ > µ1(p), there exists

δ̄0 > δ2 > 0 such that for any δ ∈ (0, δ2), δφ1 is a lower solution of (1.1). Take
a δ3 ∈ (0, δ2) small enough such that u0 := δ3φ1 is a strict lower solution of (1.1)
in B̄(θ,R1), S+

R1
> u0, u1 66 u0. Let us define the sets Ω1,Ω3,Ω4, O3,4, O4,1 and

O4 as in Theorem 3.5. Then (3.38), (3.41), (3.42) and (3.46) hold. Therefore, Tp
has fixed points x1 ∈ O3,4, x2 ∈ O4 and x3 ∈ Ω1. Obviously, x1 and x2 are two
sign-changing solutions of (1.1), and x3 is a positive solution of (1.1). The proof is
complete. �

Remark 3.13. We should point out, the condition that f is sub-linear at infinity
can be substituted by a pair of well ordered lower and upper solutions u3 and v3

such that u1 and v1 belongs to the ordered interval [u3, v3]. However, in those cases
we need a condition of Nagumo type, see [12, 14]. Also, in those case we can study
the multiplicity of sign-changing solutions when f both has jumping nonlinearity
at zero and infinity.

Remark 3.14. In Theorem 3.5 the two pairs of well ordered lower and upper
solutions u0 and v0, u1 and v1 satisfy

u0 66 v1, u1 66 v0. (3.48)

We say two pairs of well ordered lower and upper solutions u0 and v0, u1 and v1

are parallelled to each other when (3.48) holds. The concept of parallelled pairs of
well ordered lower and upper solutions is put forward by Sun Jingxian. For other
discussions concerning parallelled pairs of well ordered lower and upper solutions,
the reader is refereed to [13].

Remark 3.15. In Theorems 3.2 and 3.5, we employed a pair of sign-changing strict
lower and upper solutions. Generally speaking, it is difficult to construct a pair of
sign-changing strict lower and upper solutions. However, we can use the method
of [14] to give an example of this kind strict lower and upper solutions; see [14,
Example 3.1].
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