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GLOBAL SOLUTIONS WITH Ck-ESTIMATES FOR ∂̄-EQUATIONS
ON q-CONCAVE INTERSECTIONS

SHABAN KHIDR, MOULAY-YOUSSEF BARKATOU

Abstract. We construct a global solution to the ∂̄-equation with Ck-estimates

on q-concave intersections in Cn. Our main tools are integral formulas.

1. Introduction and statement of main result

This article is a continuation of [4] and concerns the study of the ∂̄-equation
on q-concave intersection in Cn from the viewpoint of Ck-estimates by means of
integral formulas. For this study we first solve the ∂̄-equation with Ck-estimates on
local q-concave wedges in Cn and then we apply the pushing out method used by
Kerzman [11].

We recall the notion of q-convexity in the sense of Andreotti-Grauert [4, 8, 17].

Definition 1.1. A bounded domain G of class C2 in Cn is called strictly q-convex
if there exist an open neighborhood U of ∂G and a smooth C2-function ρ : U→ R
such that G ∩ U = {ζ ∈ U : ρ(ζ) < 0} and the Levi form

Lρ(ζ)t =
∑ ∂2ρ(ζ)

∂ζj∂ζ̄k
tj t̄k, t = (t1, . . . , tn) ∈ Cn

has at least q + 1 positive eigenvalues at each point ζ ∈ U.
A domain G in Cn is said to be strictly q-concave if G is in the form G = G1\G2,

where G2 b G1 is strictly q-convex and G1 b Cn is strictly (n − 1)-convex or
compact. A point in ∂G2, as a boundary point of G, is said to be strictly q-concave.

Applications to the tangential Cauchy-Riemann equations require that Defini-
tion 1.1 be extended to q-convex and q-concave domains with piecewise-smooth
boundaries.

Definition 1.2. A bounded domain D in Cn is called a Cd q-convex intersection of
order N , d ≥ 3, if there exists a bounded neighborhood U of D and a finite number
of real-valued Cd functions ρ1(z), . . . , ρN (z), 1 ≤ N ≤ n−1, defined on U such that
D = {z ∈ U : ρ1(z) < 0, . . . , ρN (z) < 0} and the following conditions are fulfilled:

(H1) For 1 ≤ i1 < i2 < · · · < i` ≤ N the 1-forms dρi1 , . . . , dρi` are R−linearly
independent on the set ∩j=`j=1{ρij (z) ≤ 0}.
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(H2) For 1 ≤ i1 < i2 < · · · < i` ≤ N , for every z ∈ ∩j=`j=1{ρij (z) ≤ 0}, if we
set I = (i1, . . . , i`), there exists a linear subspace T Iz of Cn of complex
dimension at least q + 1 such that for i ∈ I the Levi forms Lρi restricted
on T Iz are positive definite.

A domainD in Cn is said to be a Cd q-concave intersection of orderN ifD = D1\D2,
where D2 b D1 is a Cd q-convex intersection of order N and D1 b Cn is a Cd (n−1)-
convex intersection. A point in ∂D2, as a boundary point of D, is said to be strictly
q-concave.

Condition (H2) was first introduced by Grauert [6], it implies that at every wedge
the Levi forms of the corresponding {ρi} have their positive eigenvalues along the
same directions.

The study of the ∂̄-equation on piecewise smooth intersections in Cn was initiated
by Range and Siu [22] and then followed by many authors (see e.g., [1, 8, 12, 10,
18, 19, 20, 21]).

Motivated by the same problem, Laurent-Thiébaut and Leiterer [15] solved the
∂̄-equation on piecewise smooth intersections of q-concave domains in Cn with
uniform estimates for (n, s)-forms, 1 ≤ s ≤ q − N ; q − N ≥ 1, where instead of
condition (H2) they required the following Henkin’s condition [1, 8]:

(H3) The Levi form of any nontrivial convex combination of {ρi}Ni=1 has at least
q + 1 positive eigenvalues.

In addition, under slightly stronger hypotheses than those of [15], the authors ex-
tended their results in [16] to the case when s = q −N + 1.

Barkatou [2] obtained local solutions with Ck-estimates for ∂̄ on q-convex wedges
in Cn, his proof requires actually the following condition:

there is a subdivision of the simplex4N such that for every compo-
nent [a1 . . . aN ] in this subdivision, the Leray maps of ρa1 , . . . , ρaN

are q + 1-holomorphic in the same directions with respect to the
variable z ∈ Cn, where for a = (λ1, . . . , λN ), ρa =

∑
λiρi

which is weaker than condition (H2) and stronger than condition (H3).
Ricard [23] proved weaker Ck-estimates than those obtained in [2] but for general

q-convex (q-concave) wedges satisfying condition (3).
Recently, Barkatou and Khidr [4] constructed a global solution for ∂̄ with Ck-

estimates with small loss of smoothness for (0, s)-forms, n − q ≤ s ≤ n − 1, on
q-convex intersections in Cn.

Let V be a bounded open set in Cn. We use Ckr,s(V ), k ∈ R+, to denote the space
of all continuous (r, s)-forms defined on V and having a continuous derivatives up
to [k] on V satisfying Hölder condition of order k− [k]. The corresponding norm is
denoted by ‖ · ‖k,V . Our main result is the following theorem.

Theorem 1.3. Let D be a Cd q-concave intersection of order N in Cn, d ≥ 3, and
let f ∈ C0n,s(D), ∂̄f = 0, 1 ≤ s ≤ q −N . Then there is a form g ∈ C0n,s−1(D) such
that ∂̄g = f on D. If f ∈ Ckn,s(D), 1 < k ≤ d − 2; ε > 0, then g ∈ Ck−εn,s−1(D) and
there exists a constant Ck,ε > 0 such that

‖g‖k−ε,D ≤ Ck,ε‖f‖k,D. (1.1)

We note that for q = n−1 (i.e., the pseudoconvex case) this theorem was proved
by Michel and Perotti [20] and for arbitrary q, but smooth ∂D, sharp Ck estimates
were obtained by Lieb and Range [18].
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The paper is organized in the following way: In section 1 we introduce the
definition of a q-concave intersection in Cn and state our main result (Theorem
1.3). In section 2 we recall the generalized Koppelman lemma which plays a key
role in the construction of the solution operators. Section 3 is devoted to the
construction of the local solution operators with Ck-estimates for ∂̄. The main
theorem is proved in section 4. The proof is based on pushing out the method of
Kerzman [11].

2. Generalized Koppelman Lemma

In this section we recall a formal identity (the generalized Koppelman lemma)
which is essential for our purposes. The exterior calculus we use here was developed
by Harvey and Polking in [7] and Boggess [5].

Let D be an open set in Cn × Cn. Let G : D → Cn be a C1 map and write
G(ζ, z) = (g1(ζ, z), . . . , gn(ζ, z)). We define

〈G(ζ, z), ζ − z〉 =
n∑
j=1

gj(ζ, z)(ζj − zj)

〈G(ζ, z), d(ζ − z)〉 =
n∑
j=1

gj(ζ, z)d(ζj − zj)

〈∂̄ζ,zG(ζ, z), d(ζ − z)〉 =
n∑
j=1

∂̄ζ,zgj(ζ, z)d(ζj − zj),

where ∂̄ζ,z = ∂̄ζ + ∂̄z (in the sense of distributions).
The Cauchy-Fantappiè form ωG is defined by

ωG =
〈G(ζ, z), d(ζ − z)〉
〈G(ζ, z), (ζ − z)〉

on the set where 〈G(ζ, z), (ζ − z)〉 6= 0.
Given m such maps, Gj , 1 ≤ j ≤ m, the generalized Cauchy-Fantappiè kernel is

given by

Ω(G1, . . . , Gm)

= (2πi)−nωG
1
∧ · · · ∧ ωG

m

∧
∑

α1+···+αm=n−m
(∂̄ζ,zωG

1
)α1 ∧ · · · ∧ (∂̄ζ,zωG

m

)αm

on the set where all the denominators are nonzero.

Lemma 2.1 (generalized Koppelman lemma).

∂̄ζ,zΩ(G1, . . . , Gm) =
m∑
j=1

(−1)jΩ(G1, . . . , Ĝj , . . . , Gm)

on the set where the denominators are nonzero.

If β(ζ, z) = (ζ1 − z1, . . . , ζn − zn), then Ω(β) = B(ζ, z) is the usual Bochner-
Martinelli-Koppelman kernel. Denote by Br,s(ζ, z) the component of B(ζ, z) of
type (r, s) in z and of type (n − r, n − s − 1) in ζ. Then one has the following
formula which is known as the Bochner-Martinelli-Koppelman formula (see e.g.,
[13, Theorem 1.7]).
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Theorem 2.2. Let D b Cn be a bounded domain with C1-boundary, and let f be
a continuous (r, s)-form on D such that ∂̄f , in the sense of distributions, is also
continuous on D, 0 ≤ r, s ≤ n. Then for any z ∈ D we have

(−1)r+sf(z) =
∫
ζ∈∂D

f(ζ) ∧Br,s(ζ, z)−
∫
ζ∈D

∂̄f(ζ) ∧Br,s(ζ, z)

+ ∂̄z

∫
ζ∈D

f(ζ) ∧Br,s−1(ζ, z).

3. Solution operators on local q-concave wedges

In this section, we construct local solution operators Ts on the complement of a
q-convex intersection. The plan of the construction is similar to that of Theorem
3.1 in [4]. The main differences are due to the fact that in this case the function
ρm+1 has convexity properties opposite to those of the functions ρ1, . . . , ρm. Before
we go further, we fix the following notation:

• Let J = (j1, . . . , j`), 1 ≤ ` <∞, be an ordered collection of elements in N.
Then we write |J | = `, J(ν̂) = (j1, . . . , jν−1, jν+1, . . . , j`) for ν = 1, . . . , `,
and j ∈ J if j ∈ {j1, . . . , j`}.

• Let N ≥ 1 be an integer. Then we denote by P (N) the set of all ordered
collections K = (k1, . . . , k`), ` ≥ 1, of integers with 1 ≤ k1, . . . , k` ≤ N .
We call P ′(N) the subset of all K = (k1, . . . , k`) with k1 < · · · < k`.

• For I = (j1, . . . , j`) ∈ P ′(N) and j /∈ {j1, . . . , j`}, we set Ij = (k1, . . . , k`+1)
if {k1, . . . , k`+1} ⊂ {k1, . . . , k`, j} and k1 < · · · < k`+1.

Theorem 3.1. Let D be a Cd (d ≥ 3) q-convex intersection of order n in Cn. Then
for each ξ ∈ ∂D, there is a radius R > 0 such that on the set W = (U \D) ∩ {z ∈
Cn : |z − ξ| < R} there are linear operators Ts : C0n,s(W) → C0n,s−1(W) such that
∂̄Tsf = f for all f ∈ C0n,s(W), 1 ≤ s ≤ q − N , with ∂̄f = 0 (in the sense of
distributions) on W. If f ∈ Ckn,s(W), 1 < k ≤ d − 2; ε > 0, then there exists a
constant Ck,ε > 0 (independent of f) satisfying the estimates

‖Tsf‖k−ε,W ≤ Ck,ε‖f‖k,W . (3.1)

For N = 1 (i.e., the case of local q-concave domains) this theorem was proved
by Laurent-Thiébaut and Leiterer [14].

Proof. Let D = {z ∈ U |ρ1(z) < 0, . . . , ρN (z) < 0} ⊂ U be a q-convex intersection.
We suppose for example that E = {ξ ∈ U |ρ1(ξ) = · · · = ρm(ξ) = 0}. If we
set ρm+1(ζ) = |ζ − ξ|2 − R2 for R > 0, it follows from [15, Lemma 2.3] that
(E, (U \D) ∩ {z ∈ Cn : |z − ξ| < R}) is a local q-concave wedge.

Denote by Fρi
(ζ, .) the Levi polynomial of ρi at ζ ∈ U . For ζ ∈ U , z ∈ Cn,

Fρi
(ζ, z) = 2

n∑
j=1

∂ρi(ζ)
∂ζj

(ζj − zj)−
n∑

j,k=1

∂2ρi
∂ζj∂ζk

(ζj − zj)(ζk − zk).

By Definition 1.2, there exists an (q+1)-linear subspace T of Cn such that the Levi
forms L−ρi

at ξ are all positive definite on T .
Denote by P the orthogonal projection of Cn onto T and set Q := Id−P . Then

it follows from Taylor’s expansion theorem that there exist a number R and two
positive constants A and B such that the following estimate holds:

− ReFρi
(ζ, z) ≥ ρi(z)− ρi(ζ) +B|ζ − z|2 −A|Q(ζ − z)|2, (3.2)
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for every i ∈ {1, . . . ,m} and all (z, ζ) ∈ Cn × U with |ξ − ζ| < R and |ξ − z| < R.
Let i ∈ {1, . . . ,m}. As ρi is of class C2 on U , we then can find C∞ functions

akji (U), j, k = 1, . . . , n, such that for all ζ ∈ U ,∣∣akji (ζ)− ∂2ρ(ζ)
∂ζk∂ζj

∣∣ < B

2n2
. (3.3)

Denote by Qkj the entries of the matrix Q; i.e.,

Q = (Qkj)nk,j=1 (k = column index).

We set, for (z, ζ) ∈ Cn × U ,

gij(ζ, z) = 2
∂ρi(ζ)
∂ζj

−
n∑
k=1

akji (ζ)(ζk − zk)−A
n∑
k=1

Qkj(ζk − zk),

Gi(ζ, z) = (g1
i (ζ, z), . . . , gni (ζ, z)),

Φi(ζ, z) = 〈Gi(ζ, z), ζ − z〉.
As Q is an orthogonal projection, we then have

Φi(ζ, z) = 2
n∑
j=1

∂ρi(ζ)
∂ζj

(ζj − zj)−
n∑

k,j=1

akji (ζ)(ζk − zk)(ζj − zj)−A|Q(ζ − z)|2.

The estimates (3.2) and (3.3) imply that

Re Φi(ζ, z) ≥ ρi(ζ)− ρi(z) +
B

2
|ζ − z|2

for (z, ζ) ∈ Cn × U with |z0 − ζ| ≤ R and |z0 − z| ≤ R. �

We recall that a map f defined on a complex manifold X is called k-holomorphic
if, for each point ξ ∈ X , there exist holomorphic coordinates h1, . . . , hk in a neigh-
borhood of ξ such that f is holomorphic with respect to h1, . . . , hk.

Lemma 3.2. For every fixed ζ ∈ U , the maps Gi(ζ, z) and the function Φi(ζ, z)
are (q + 1)-holomorphic in the same directions in z ∈ Cn.

Proof. Choose complex linear coordinates h1, . . . , hn on Cn with

{z ∈ Cn : Q(z) = 0} = {z ∈ Cn : hq+2(z) = · · · = hn(z) = 0}.

The map z → Q(ζ − z) is then independent of h1, . . . , hq+1. This implies that the
map Gi(ζ, z) is complex linear with respect to h1, . . . , hq+1 for all i, and the function
Φi(ζ, z) is a quadratic complex polynomial with respect to h1, . . . , hq+1. �

Set

Gm+1(ζ, z) = 2
(∂ρm+1(ζ)

∂ζ1
, . . . ,

∂ρm+1(ζ)
∂ζn

)
,

Φm+1(ζ, z) = 〈Gm+1(ζ, z), (ζ − z)〉.

As Gm+1(ζ, z) and Φm+1(ζ, z) are independent of R, we can choose R1 > 0 such
that for all R ≤ R1 there exists β > 0 satisfying

Re Φm+1(ζ, z) ≥ ρm+1(ζ)− ρm+1(z) + β|ζ − z|2

for all (z, ζ) ∈ Cn × U with |z0 − ζ| ≤ R and |z0 − z| ≤ R. We define

W = {z ∈ U |ρj > 0 for j = 1, . . . ,m} ∩ {z ∈ Cn : |z − ξ| < R}.
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For I = (j1, . . . , j`) ∈ P ′(m+ 1), we define

Ω̃[I] := Ω(Gj1 , . . . , Gj`),

Ω̃[∂I] :=
∑̀
k=1

(−1)kΩ(Gj1 , . . . , Ĝjk , . . . , Gj`).

Then, we can rewrite Lemma 2.1 in the following way.

Lemma 3.3. For every I ∈ P ′(m + 1), we have ∂̄ζ,zΩ̃[I] = Ω̃[∂I] outside the
singularities.

For every 0 ≤ r ≤ n, 0 ≤ s ≤ n − p (p ≥ 1) and any I, we define Ω̃r,s[I] as the
component of Ω̃[I] which is of type (r, s) in z. One has the following lemma.

Lemma 3.4. For any I ∈ P ′(m+ 1). For any r ≥ 0 and s ≥ n− q we have

(i) Ω̃r,s(I) = 0,
(ii) ∂̄zΩ̃r,n−q−1(I) = 0,

on the set where all the denominators are non-zero.

Proof. Statement (i) follows from Lemma 2.1 and the fact that the map z 7→
Gm+1(ζ, z) is holomorphic. Lemmas 3.3 and 2.1 imply that

∂̄zΩ̃r,s−1(I) = −∂̄ζΩ̃r,s(I) + Ω̃r,s(∂I).

Statement (ii) follows from (i). �

Let β(ζ, z) = (ζ1 − z1, . . . , ζn − zn) be the classical section that defines the usual
Bochner-Martinelli kernel in Cn and define

Ω̃β [I] := Ω(β,Gj1 , . . . , Gj`)

for any I ∈ P ′(m+ 1). Lemma 3.4 implies that

∂̄ζ,zΩ̃β [I] = −Ω̃[I]− Ω̃β [∂I]

outside the singularities, where Ω̃β [∂I] := Ω(β) if |I| = 1. Define, for |I| ≥ 1,

KI(ζ, z) = Ω̃β [I](ζ, z),

BI(ζ, z) = −Ω̃β [∂I](ζ, z).

Then we obtain the following lemma.

Lemma 3.5. For any I ∈ P ′(m+ 1),

∂̄ζ,zK
I(ζ, z) = BI(ζ, z)− Ω̃[I](ζ, z)

outside the singularities.

Proof. For every I = (j1, . . . , j`) ∈ P ′(m+ 1), define

SI = {z ∈ ∂W|ρj1(z) = · · · = ρj`(z) = 0}
and choose the orientation of SI such that the orientation is skew symmetric in the
components of I and the following two equations hold when W is given the natural
orientation:

∂W =
m+1∑
j=1

Sj , ∂SI =
∑
j /∈I

SIj .
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Denote by KI
r,s(ζ, z) the component of KI(ζ, z) which is of type (r, s) in z.

Then Lemmas 3.4 and 3.5, Theorem 2.2, and Stoke’s theorem imply that the
following formulas hold in the sense of distribution in W (see [3, Theorem 2.7]):

For any continuous (n, s)-form f on W, 1 ≤ s ≤ q − m, such that ∂̄f is also
continuous on W. We have

(−1)n+sf(ζ)

=
∑

I∈P ′(m+1)

(−1)(n+s)|I|+ |I|(|I|−1)
2

∫
z∈SI

∂̄f(z) ∧KI
0,n−|I|−s(ζ, z)

+
∑

I∈P ′(m+1)

(−1)(n+s)|I|+ |I|(|I|+1)
2 +1 ∂̄ζ

∫
z∈SI

f(z) ∧KI
0,n−|I|−s+1(ζ, z)

−
∫
z∈W

∂̄f(z) ∧B0,n−s−1(ζ, z) + ∂̄ζ

∫
z∈W

f(z) ∧B0,n−s(ζ, z) + Lf(ζ)

where Lf is a linear combination of the integrals
∫
z∈SIm+1

f(z) ∧ Ω̃[I](ζ, z), where

I ∈ P ′(m).
It is easy to see that Lf is of class Cd−2 in a neighborhood of ξ; moreover if

∂̄f = 0, then ∂̄Lf = 0. Let H be the Henkin operator for solving the ∂̄-equation
in a ball B(ξ,R′). From the smootness properties of H, it follows that H(Lf) is of
class Cd−2+ 1

2 . Note that

Ts(f)(ζ) =
∑

I∈P ′(m+1)

(−1)(n+s)|I|+ |I|(|I|+1)
2 +1

∫
z∈SI

f(z) ∧KI
0,n−|I|−s+1(z, ζ)

+ (−1)n+s

∫
z∈W

f(z) ∧B0,n−s(z, ζ) +H(Lf)(ζ)

satisfies the equation ∂̄u = f on W ∩B(ξ,R′) with u = Ts(f)(ζ).
The Ck-estimates follows, as in [2], by using arguments similar to those in [18].

�

4. Proof of Theorem 1.3

Theorem 3.1 yields the following continuation lemma which in turn enables us
to complete the proof of Theorem 1.3.

Lemma 4.1 (An extension lemma with bounds). Let D be a Cd, d ≥ 3, q-concave
intersection of order N in Cn. Then there exists another slightly larger q-concave
intersection of order N , D̃ b Cn such that D b D̃ and for any f ∈ C0n,s(D),
1 ≤ s ≤ q − N , with ∂̄f = 0 there exist two linear operators N1, N2, a form
f̃ = N1f ∈ C0n,s(D̃) and a form u = N2f ∈ C0n,s−1(D) such that:

(i) ∂̄f̃ = 0 in D̃.
(ii) f̃ = f − ∂̄u in D.
(iii) If f ∈ Ckn,s(D), 1 < k ≤ d− 2, ε > 0, then f̃ ∈ Ck−εn,s (D̃), u ∈ Ck−εn,s−1(D) and

we have the estimates:

‖f̃‖k−ε, eD ≤ Ck,ε‖f‖k,D, (4.1)

‖u‖k−ε,D ≤ Ck,ε‖f‖k,D. (4.2)
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Proof. As ∂D is compact, there are finitely many open neighborhoods (Bξj
)j=1,...,K

of ξj covering ∂D. Let (θj)j=1,...,K be a partition of unity such that θj ∈ C∞0 (B′ξj
),

B′ξj
b Bξj , 0 ≤ θj ≤ 1, and

∑K
j=1 θj = 1 on a neighborhood V0 of ∂D. We choose

V1 b V0 b U . We enlarge D to D̃ in K step as follows. For δ > 0, sufficiently small
to be chosen fixed later on, and for j = 1, . . . ,K we define

Dj =
{
z ∈ D ∪ V1 : ρ1(z) > −δ

j∑
k=1

θk(z), . . . , ρN (z) > −δ
j∑

k=1

θk(z)
}
.

We set D0 = D and D̃ = DK . Clearly

D ⊆ Dj ⊆ Dj+1 ⊆ · · · ⊆ D̃ = DK .

Reducing δ if necessary, we see that all Dj , j ∈ {= 1, . . . ,K} (in particular D̃) are
Cd q-concave intersections.

Claim: For any fj ∈ C0n,s(Dj) with ∂̄fj = 0, j ∈ {1, . . . ,K − 1}, there exist
two forms fj+1 ∈ C0n,s(Dj+1) and uj ∈ C0n,s−1(Dj) such that (i), (ii) and (iii) of
Lemma 4.1 hold when f , f̃ , u, D and D̃ are replaced by fj , fj+1, uj , Dj and Dj+1

respectively.

Proof. (see [11, p. 318]): Fix δ > 0 so small that we can apply Theorem 3.1, we
obtain a solution gj of ∂̄g = fj defined in Dj ∩ Bξj+1 and satisfies the estimates
of the local theorem. Let ηj+1 ∈ C∞0 (Bξj+1), ηj+1 = 1 in a neighborhood of the
support of θj+1. We set

fj+1 =

{
fj − ∂̄uj in Dj ,

0 in Dj+1 \Dj ,
uj =

{
gjηj+1 in Dj ∩Bξj+1 ,

0 in Dj\Bξj+1 .

The estimates for fj+1 and uj follow from those of the local theorem. The claim is
proved. �

Using the above claim, we can now complete the proof of Lemma 4.1. Applying
the claim K-times, starting with D0 = D, f0 = f and ending with DK = D̃,
fK = f̃ , yield f̃ = f − ∂̄u in D, where we set u =

∑K−1
j=0 uj . Collecting the

estimates for fj+1 and uj in each step, we obtain (4.1) and (4.2). Clearly f̃ and u
are linear in f . �

Lemma 4.2. There exists a strictly q-concave domain with smooth boundary D′ b
Cn satisfying

D b D′ b D̃.

Proof. Let V2 be a neighborhood of D such that V2 b V1 and for τ > 0 we define
Dτ := {z ∈ D ∪ V2| ρ1(z) > τ, . . . , ρN (z) > τ}. Recall that D is defined by
the Cd-functions ρ1, . . . , ρN . For each β > 0, let χβ be a fixed non-negative real
C∞ function on R such that, for all x ∈ R, χβ(x) = χβ(−x), |x| ≤ χβ(x) ≤
|x| + β, |χ′β | ≤ 1, χ′′β ≥ 0 and χβ(x) = |x| if |x| ≥ β

2 . Moreover, we assume
that χ′β(x) > 0 if x > 0 and χ′β(x) < 0 if x < 0. We define as in [9, Definition
4.12] maxβ(t, s) = t+s

2 + χβ( t−s2 ), t, s ∈ R, and ϕ1 = ρ1, ϕ2 = maxβ(ρ1, ρ2), . . . ,
ϕN = maxβ(ϕN−1, ρN ). Then it is easy to compute that the Levi form of ϕN has
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at least q + 1 negative eigenvalues at each point in U . For τ > 0 we can choose
positive numbers β = τ

2(N+1) , γ = τ
2 small enough and V3 b V2 such that

D b D∗ = {z ∈ D ∪ V3|ϕN (z)− γ > 0} b Dτ .

then D∗ is a strictly q-concave domain. According to [9, Theorem 6.6], there exists
a strictly q-concave domain D′ with smooth boundary such that D b D′ b D∗.
Choose τ small enough to get Dτ b D̃. �

Let f ∈ Ckn,s(D) be a ∂-closed form. Let D̃, f̃ and u as in Lemma 4.1. Let D′

be given as in Lemma 4.2 and set f1 = f̃ |D′ . It follows from [18, Theorem 2] that
there exists η ∈ Ck−εn,s−1(D) such that ∂̄η = f1 on D and ‖η‖k−ε,D ≤ Ck,ε‖f1‖k−ε,D′ .
Then we have f = ∂̄(u+ η). The form g = u+ η is a global solution that satisfies
the Ck-estimates (1.1) of Theorem 1.3.
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