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GLOBAL SOLUTIONS WITH CF-ESTIMATES FOR 0-EQUATIONS
ON ¢-CONCAVE INTERSECTIONS

SHABAN KHIDR, MOULAY-YOUSSEF BARKATOU

ABSTRACT. We construct a global solution to the d-equation with C*-estimates
on g-concave intersections in C™. Our main tools are integral formulas.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

This article is a continuation of [4] and concerns the study of the d-equation
on g-concave intersection in C" from the viewpoint of C*-estimates by means of
integral formulas. For this study we first solve the d-equation with C*-estimates on
local g-concave wedges in C™ and then we apply the pushing out method used by
Kerzman [I1].

We recall the notion of ¢g-convexity in the sense of Andreotti-Grauert [4], 8, [17].

Definition 1.1. A bounded domain G of class C? in C" is called strictly g-convex
if there exist an open neighborhood U of &G and a smooth C?-function p: U — R
such that GNU ={¢ € U: p({) < 0} and the Levi form

2
LyQOt=>) 0 p(citjtk, t=(t1,...,tn) €C"

has at least ¢ + 1 positive eigenvalues at each point ¢ € U.

A domain G in C" is said to be strictly g-concave if G is in the form G = G\ Ga,
where Gy € G is strictly ¢-convex and G; € C™ is strictly (n — 1)-convex or
compact. A point in G5, as a boundary point of G, is said to be strictly ¢g-concave.

Applications to the tangential Cauchy-Riemann equations require that Defini-
tion be extended to g-convex and g¢-concave domains with piecewise-smooth
boundaries.

Definition 1.2. A bounded domain D in C" is called a C¢ ¢-convex intersection of
order N, d > 3, if there exists a bounded neighborhood U of D and a finite number
of real-valued C? functions p;(z),...,pn(2), 1 < N <n—1, defined on U such that
D={z€eU:pi(2) <0,...,pn(2) < 0} and the following conditions are fulfilled:

(H1) For 1 <y <ig < -+ < iy < N the 1-forms dp;,,...,dp;, are R—linearly
independent on the set ﬂ;j{pij (z) <0}.
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(H2) For 1 < i1 < ig < --- < iy < N, for every z € ﬁgj{pij(z) < 0}, if we
set I = (i1,...,ir), there exists a linear subspace T! of C" of complex
dimension at least g 4 1 such that for ¢ € I the Levi forms L, restricted
on T! are positive definite.

A domain D in C" is said to be a C% g-concave intersection of order N if D = D1\ Do,
where Dy € D is a C% g-convex intersection of order N and D; € C" is a C¢ (n—1)-
convex intersection. A point in D5, as a boundary point of D, is said to be strictly
g-concave.

Condition (H2) was first introduced by Grauert [6], it implies that at every wedge
the Levi forms of the corresponding {p;} have their positive eigenvalues along the
same directions.

The study of the 0-equation on piecewise smooth intersections in C" was initiated
by Range and Siu [22] and then followed by many authors (see e.g., [I}, 8, 12} [10]
18, 19, 201, 21]).

Motivated by the same problem, Laurent-Thiébaut and Leiterer [I5] solved the
0-equation on piecewise smooth intersections of g-concave domains in C™ with
uniform estimates for (n,s)-forms, 1 < s < ¢— N; ¢ — N > 1, where instead of
condition (H2) they required the following Henkin’s condition [T}, 8]:

(H3) The Levi form of any nontrivial convex combination of {p;} ; has at least
q + 1 positive eigenvalues.
In addition, under slightly stronger hypotheses than those of [15], the authors ex-
tended their results in [I6] to the case when s = ¢ — N + 1.

Barkatou [2] obtained local solutions with C*-estimates for 9 on g-convex wedges

in C", his proof requires actually the following condition:
there is a subdivision of the simplex Ay such that for every compo-
nent [a'...a"] in this subdivision, the Leray maps of p,1, ..., pey
are q + 1-holomorphic in the same directions with respect to the
variable z € C", where for a = (A1,...,AN), pa = D \ipi

which is weaker than condition (H2) and stronger than condition (H3).

Ricard [23] proved weaker C*-estimates than those obtained in [2] but for general
g-convex (g-concave) wedges satisfying condition (3).

Recently, Barkatou and Khidr [4] constructed a global solution for 0 with C*-
estimates with small loss of smoothness for (0,s)-forms, n —¢ < s < n—1, on
g-convex intersections in C".

Let V be a bounded open set in C". We use CF (V), k € R, to denote the space
of all continuous (r, s)-forms defined on V and having a continuous derivatives up
to [k] on V satisfying Holder condition of order k — [k]. The corresponding norm is
denoted by || - ||,v. Our main result is the following theorem.

Theorem 1.3. Let D be a C? g-concave intersection of order N in C*, d > 3, and
let feC) (D), df =0,1<s<q—N. Then there is a form g € C} . (D) such

that dg = f on D. If f € Ck (D), 1 <k <d—2;€>0, then g € ngil(ﬁ) and
there exists a constant Ci > 0 such that

I9llk—e.0 < Crell fllk.0- (1.1)

We note that for ¢ = n—1 (i.e., the pseudoconvex case) this theorem was proved
by Michel and Perotti [20] and for arbitrary ¢, but smooth dD, sharp C* estimates
were obtained by Lieb and Range [I8].
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The paper is organized in the following way: In section 1 we introduce the
definition of a g-concave intersection in C™ and state our main result (Theorem
1.3)). In section 2 we recall the generalized Koppelman lemma which plays a key
role in the construction of the solution operators. Section 3 is devoted to the
construction of the local solution operators with C¥F-estimates for 9. The main
theorem is proved in section 4. The proof is based on pushing out the method of
Kerzman [IT].

2. GENERALIZED KOPPELMAN LEMMA

In this section we recall a formal identity (the generalized Koppelman lemma)
which is essential for our purposes. The exterior calculus we use here was developed
by Harvey and Polking in [7] and Boggess [5].

Let D be an open set in C* x C*. Let G : D — C" be a C! map and write
G, 2) =(91(¢, 2)y - - -, gn((, 2)). We define

(G(¢,2),¢—2) = Zgj(C,Z)(Cj — )
(G(G2),d(¢ = 2)) = 3 95(C, )G — %)

(0c,:G (¢, 2),d(¢ — 2)) = Z 295 (¢, 2)d(C5 — 7)),

where O, = 0 + 0, (in the sense of distributions).
The Cauchy-Fantappie form w® is defined by

o (01¢.2), (¢~ 2)
(G(¢2), (€= 2))
on the set where (G((, z), (( —2)) # 0.

Given m such maps, G7, 1 < j < m, the generalized Cauchy-Fantappi¢ kernel is
given by

QGL,...,G™)
= @2r) "W A AWET A > (D wC ) A A (B wC™)om

a1+ Foam=n—m

on the set where all the denominators are nonzero.

Lemma 2.1 (generalized Koppelman lemma).

0 QG ,....G™) =Y (-1YQG,....G7,....G™)

j=1

on the set where the denominators are nonzero.

If 8(¢,z) = (C1 — 21,---,Cn — 2n), then Q(B) = B((, 2) is the usual Bochner-
Martinelli-Koppelman kernel. Denote by B, s(¢,z) the component of B((,z) of
type (r,s) in z and of type (n — r,m — s — 1) in {. Then one has the following
formula which is known as the Bochner-Martinelli-Koppelman formula (see e.g.,
[13, Theorem 1.7]).
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Theorem 2.2. Let D @ C" be a bounded domain with Cl-boundary, and let f be
a continuous (rf,s)—form on D such that Of, in the sense of distributions, is also
continuous on D, 0 < r,s <n. Then for any z € D we have

(—1)7+ f(2) = /< L SQABLG) = [ 0N B

¢eD

+ gz f(C) A Br,s—l(Ca Z)

¢eD
3. SOLUTION OPERATORS ON LOCAL g-CONCAVE WEDGES

In this section, we construct local solution operators T on the complement of a
g-convex intersection. The plan of the construction is similar to that of Theorem
3.1 in []. The main differences are due to the fact that in this case the function
Pm+1 has convexity properties opposite to those of the functions p1, ..., p,. Before
we go further, we fix the following notation:

e Let J = (j1,...,4¢), 1 <€ < 00, be an ordered collection of elements in N.
Then we write |J| =€, J(©) = (J1,- -y Jv—1,Jv+1,---,J¢) for v =1,... ¢,
and j € Jif j € {j1,...,5¢}

e Let N > 1 be an integer. Then we denote by P(N) the set of all ordered
collections K = (ki,...,k¢), £ > 1, of integers with 1 < kq,..., k¢ < N.
We call P/(N) the subset of all K = (ky,...,k¢) with k1 < -+ < ky.

e For I = (j1,...,je) € P(N)and j & {j1,...,Je}, weset I; = (k1,...,kot1)
if{kl,...,kg+1} - {kl,...,kg,j} and k1 < - < k[+1.

Theorem 3.1. Let D be a C? (d > 3) q-convex intersection of order n in C". Then
for each &€ € OD, there is a radius R > 0 such that on the set W = (U\ D)N{z €
C" : |z — €| < R} there are linear operators Ty : C) (W) — Ch) .1 (W) such that

OTf = f for all f € CO (W), 1 < s < q— N, with 0f =0 (in the sense of

distributions) on W. If f € CF (W), 1 < k < d—2; € > 0, then there exists a
constant Cic > 0 (independent of f) satisfying the estimates

I Ts flle—ew < Crell flliw- (3.1)

For N =1 (i.e., the case of local g-concave domains) this theorem was proved
by Laurent-Thiébaut and Leiterer [14].

Proof. Let D ={z € U|p1(z) <0,...,pn(2) <0} C U be a g-convex intersection.
We suppose for example that £ = {£ € Ulp1(§) = -+ = pm(§) = 0}. If we
set pmt1(¢) = [¢ — €2 — R? for R > 0, it follows from [I5, Lemma 2.3] that
(E,(U\D)N{z€C":|z— £ < R}) is a local g-concave wedge.

Denote by Fj,(,.) the Levi polynomial of pjat (e U. For (e U, z € C",

3p2 " 9%
F,. (¢, 2) QZ Z 3C33Ck 2j)(Ck — 2k)-
By Definition [1.2} there exists an (g+ 1)—hnear subspace T of C™ such that the Levi
forms L_,, at & are all positive definite on 7.
Denote by P the orthogonal projection of C™ onto T" and set @ := Id— P. Then
it follows from Taylor’s expansion theorem that there exist a number R and two
positive constants A and B such that the following estimate holds:

—ReF,,(¢,2) 2 pil2) = pi(¢) + B¢ — 2> = A|Q(¢ — 2) %, (3.2)
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for every i € {1,...,m} and all (2,¢) € C" x U with |{ — (| < R and |{ — z| < R.
Let i € {1,...,m}. As p; is of class C? on U, we then can find C* functions
afJ(U)7 j,k=1,...,n, such that for all ¢ € U,

2
|a;7(¢) - 2455(92| < 2%. (3.3)
Denote by Q; the entries of the matrix @; i.e.,
Q = (Qkj)k j—1 (k= column index).
We set, for (2,{) € C" x U,

9;(¢,2) =2 ag’c(C)—Za’”(o« — ) =AY Qui (G — #),
J k=1 k=1

Gi(C7Z) = (gil(g’z)a s 79?(4‘72))7
q)Z(CVZ) = <GZ(<7Z)7C - Z>

As @ is an orthogonal projection, we then have

22 agzc j — j) - Z afJ(C)(Ck: - Zk)(Cj — Zj) — A|Q(C _ z)|2
J k=1

The estimates ) and (3.3]) imply that
B
Re ®i(C,2) 2 pi(¢) = pi(2) + S IC — zf?
for (z,¢) € C" x U with |zp — (| < R and |zp — z| < R. O

We recall that a map f defined on a complex manifold X is called k-holomorphic
if, for each point £ € X, there exist holomorphic coordinates h, ..., g in a neigh-
borhood of £ such that f is holomorphic with respect to hq, ..., hg.

Lemma 3.2. For every fized ( € U, the maps G;((,z) and the function ®,((,2)
are (q + 1)-holomorphic in the same directions in z € C™.

Proof. Choose complex linear coordinates hq, ..., h, on C" with
{€C":Q2) =0} = {2 € C" t hyy(2) =+ = hn(2) = O}.

The map z — Q(¢ — z) is then independent of h1,...,hgy1. This implies that the
map G;(¢, z) is complex linear with respect to k1, ..., hqy1 for all ¢, and the function
®,(¢, 2) is a quadratic complex polynomial with respect to A1, ..., hgy1. [l

Set

0pm, 0pm
Gm+l(€7z):2( pa—gi(C)aa pa-gl(g))a

q)erl(Cv Z) = <Gm+1(<v Z), (C - Z)>

As Gt1(¢, 2) and @,,,41(¢, 2) are independent of R, we can choose Ry > 0 such
that for all R < Ry there exists § > 0 satisfying

Re ®@p41(C,2) > pms1(Q) = g (2) + BIC — 2|2
for all (z,{) € C" x U with |zp — ¢| < R and |zp — z| < R. We define
W={zeUlp;>0forj=1,... min{ze€C":|z—¢ < R}



6 S. KHIDR, M.-Y. BARKATOU EJDE-2013/62

For I = (j1,...,j¢) € P'(m+ 1), we define
QI :=QGy,,...,Gj,),
4
QoI = > (-1)*Q(Gj,,.... Gy, ..., Gj,).
k=1
Then, we can rewrite Lemma [2.1]in the following way.

Lemma 3.3. For every I € P'(m + 1), we have 8;.Q[I] = Q[dI] outside the
singularities.

Forevery 0 <r <n,0<s<n-—p(p>1)and any I, we define (NZT,S[I] as the
component of Q[I] which is of type (r,s) in z. One has the following lemma.
Lemma 3.4. For any I € P'(m+1). For anyr >0 and s > n — q we have

(i) Qug(I) =0,
(i) 0.0 g 1(I) =0,
on the set where all the denominators are non-zero.

Proof. Statement (i) follows from Lemma and the fact that the map z —
Gum+1(¢, 2) is holomorphic. Lemmas [3.3| and [2.1] imply that

8.Qr,s-1(I) = —0c Qo (I) + Q1.5 (01).
Statement (ii) follows from (i). O

Let 5(¢,z) = (€1 — 21, .. .,Cn — 2n) be the classical section that defines the usual
Bochner-Martinelli kernel in C™ and define

Qll] = QB.Giy ., G,)
for any I € P'(m + 1). Lemma [3.4] implies that

8- Qall] = ~QT] — 2l
outside the singularities, where ﬁg[@[] = Q(P) it |[I| = 1. Define, for |I| > 1,

K1(¢,2) = QH[11(C. 2),
BI(¢,2) = ~al01)(C, 2).
Then we obtain the following lemma.
Lemma 3.5. For any I € P'(m+1),
0c,-K"'(¢,2) = B (¢, 2) — QI((, 2)
outside the singularities.
Proof. For every I = (ji,...,J¢) € P'(m + 1), define
S1={z€0Wlp;,(2) = -+ = p;,(2) = 0}

and choose the orientation of S; such that the orientation is skew symmetric in the
components of I and the following two equations hold when W is given the natural

orientation:
m+1

oW =>"8;, 0Sr=> 5.
j=1

J¢l
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Denote by K. ((,2) the component of K'((,z) which is of type (r,s) in z.
Then Lemmas [3.4] and Theorem and Stoke’s theorem imply that the
following formulas hold in the sense of distribution in W (see [3, Theorem 2.7]):
For any continuous (n,s)-form f on W, 1 < s < ¢ — m, such that Jf is also
continuous on W. We have

(=D)"**f(C)
= ¥ (= 1)) 1+ U0 /es Of(2) NK§ o 11-(C, 2)

IeP! (m+1)

et 7] 4 LTI D) -
+ Z (_1)( FalIl+ 2 1 aC s f(Z) A K(inf\l\fs+1(<-7z)
TeP' (m+1) Z€51

- / FF(2) A Bon—s-1(C,2) + 3 / F(2) A Bos(C.2) + LF()
zeW zeW

where Lf is a linear combination of the integrals fZESI fz)A KNZ[I](C, z), where
m-+41

I € P'(m).

It is easy to see that Lf is of class C?2 in a neighborhood of &; moreover if

df =0, then OLf = 0. Let H be the Henkin operator for solving the 0-equation

in a ball B(§, R'). From the smootness properties of H, it follows that H(Lf) is of

class C92+3 . Note that

L Y I SR

TE€P (m+1) 2€81
(e / F(2) A Bons(2,C) + HLE)Q)
zEW

satisfies the equation du = f on W N B(&, R") with u = T,(f)(C).
The C*-estimates follows, as in [2], by using arguments similar to those in [I8].
(]

4. PROOF OF THEOREM [L.3|

Theorem yields the following continuation lemma which in turn enables us
to complete the proof of Theorem

Lemma 4.1 (An extension lemma with bounds). Let D be a C%, d > 3, q-concave
intersection of order N in C™. Then there exists another slightly larger q-concave
intersection of order N, D € C™ such that D € D and for any f € C%S(D),
1 < s < q—N, with Of = 0 there exist two linear operators N1, Na, a form
f=Nife 0275(15) and a form u = Nof € CO ._1(D) such that:

n,s—1
(i) 8f =0 in D.
(i) f=f—0uinD.
(iii) If f €CF (D), 1<k <d—2,e>0, then f € CE74(D), u e Ci . (D) and
we have the estimates:

1Fllj—e.p < Croell flli, (4.1)
lullk—e.0 < Ck.el| fllk.D-
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Proof. As D is compact, there are finitely many open neighborhoods (Bg,);=1,...x
of &; covering dD. Let (6;);=1,.. x be a partition of unity such that 6, € Cg° (Béj),

Béj € Be,, 0<6; <1, and Zijl 6; = 1 on a neighborhood V of 9D. We choose
Vi € Vh € U. We enlarge D to D in K step as follows. For § > 0, sufficiently small
to be chosen fixed later on, and for j =1,..., K we define
J J
D; = {z €DUVI:pi(z) > =8 Ok(2),....pn(2) > —621%(2)}.
k=1 k=1

We set Dy = D and D = Dg. Clearly
DngngHQ'“QB:DK.

Reducing 0 if necessary, we see that all D;, j € {=1,..., K} (in particular 5) are
C? g-concave intersections.

Claim: For any f; € CJ (D;) with 0f; =0, j € {1,...,K — 1}, there exist
two forms fji1 € C) (Dj41) and u; € C) 1 (D;) such that (i), (i) and (iii) of

Lcmmahold when f, f, u, D and D are replaced by f;, fj+1, u;j, D; and Dj4q
respectively.

Proof. (see [I1} p. 318]): Fix ¢ > 0 so small that we can apply Theorem (3.1} we
obtain a solution g; of g = fj defined in D; N Be,,, and satisfies the estimates
of the local theorem. Let n;11 € C§°(Bg,,,), nj+1 = 1 in a neighborhood of the
support of 6;11. We set

fj+1 = {f] - 5Uj in Dj, ‘ {ng]j+1 in Dj n B£j+17

U, =
0 in Dj+1 \ Dj, ! 0 in Dj\ij.H'

The estimates for f;41 and u; follow from those of the local theorem. The claim is
proved. ([l

Using the above claim, we can now complete the proof of Lemma Applying
the claim K-times, starting with Dy = D, fy = f and ending with Dg = D,
fi = f, vield f = f — du in D, where we set u = Z]K:_Ol u;. Collecting the
estimates for f;;; and u; in each step, we obtain and . Clearly f and u
are linear in f. O

Lemma 4.2. There exists a strictly q-concave domain with smooth boundary D' &
C™ satisfying
DeD eD.

Proof. Let V5 be a neighborhood of D such that Vo € V4 and for 7 > 0 we define
D, :={z € DUW|pi(z) > 7,...,pn(2) > 7}. Recall that D is defined by
the C?-functions py,...,pn. For each 8 > 0, let x5 be a fixed non-negative real
C* function on R such that, for all z € R, xg(z) = xg(—=z), |z| < xg(z) <
lz| + B, x5l < 1, x5 > 0 and xg(z) = |z] if [z| > g Moreover, we assume
that xj(z) > 0 if # > 0 and xj3(x) < 0 if z < 0. We define as in [9, Definition
4.12] maxg(t,s) = HTS +Xg(t775),t,s € R, and @1 = p1, g2 = maxg(p1, p2), - -,
on = maxg(pn_1,pn). Then it is easy to compute that the Levi form of ¢y has
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at least ¢ + 1 negative eigenvalues at each point in U. For 7 > 0 we can choose

positive numbers § = m, v = 5 small enough and V3 € V3 such that

DeD"={ze DUVslon(z) —y>0} € D..

then D* is a strictly g-concave domain. According to [9, Theorem 6.6], there exists
a strictly g-concave domain D’ with smooth boundary such that D € D’ € D*.
Choose 7 small enough to get D, € D. |

Let f € C (D) be a d-closed form. Let D, f and v as in Lemma 4.1. Let D’
be given as in Lemma and set f; = f|ps. It follows from [I8, Theorem 2] that
there exists € C*~¢ (D) such that dn = f, on D and IM_c5 < Crell fillk—e,p-

n,s—1 —

Then we have f = 9(u + 7). The form g = u + 7 is a global solution that satisfies

the C*-estimates (1.1]) of Theorem
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