Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 62, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

GLOBAL SOLUTIONS WITH \mathcal{C}^{k}-ESTIMATES FOR $\bar{\partial}$-EQUATIONS ON q-CONCAVE INTERSECTIONS

SHABAN KHIDR, MOULAY-YOUSSEF BARKATOU

Abstract

We construct a global solution to the $\bar{\partial}$-equation with \mathcal{C}^{k}-estimates on q-concave intersections in \mathbb{C}^{n}. Our main tools are integral formulas.

1. Introduction and statement of main result

This article is a continuation of [4] and concerns the study of the $\bar{\partial}$-equation on q-concave intersection in \mathbb{C}^{n} from the viewpoint of \mathcal{C}^{k}-estimates by means of integral formulas. For this study we first solve the $\bar{\partial}$-equation with \mathcal{C}^{k}-estimates on local q-concave wedges in \mathbb{C}^{n} and then we apply the pushing out method used by Kerzman 11.

We recall the notion of q-convexity in the sense of Andreotti-Grauert [4, 8, 17 .
Definition 1.1. A bounded domain G of class \mathcal{C}^{2} in \mathbb{C}^{n} is called strictly q-convex if there exist an open neighborhood \mathbb{U} of ∂G and a smooth \mathcal{C}^{2}-function $\rho: \mathbb{U} \rightarrow \mathbb{R}$ such that $G \cap \mathbb{U}=\{\zeta \in \mathbb{U}: \rho(\zeta)<0\}$ and the Levi form

$$
L_{\rho}(\zeta) t=\sum \frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{j} \partial \bar{\zeta}_{k}} t_{j} \bar{t}_{k}, \quad t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{C}^{n}
$$

has at least $q+1$ positive eigenvalues at each point $\zeta \in \mathbb{U}$.
A domain G in \mathbb{C}^{n} is said to be strictly q-concave if G is in the form $G=G_{1} \backslash \bar{G}_{2}$, where $G_{2} \Subset G_{1}$ is strictly q-convex and $G_{1} \Subset \mathbb{C}^{n}$ is strictly $(n-1)$-convex or compact. A point in ∂G_{2}, as a boundary point of G, is said to be strictly q-concave.

Applications to the tangential Cauchy-Riemann equations require that Definition 1.1 be extended to q-convex and q-concave domains with piecewise-smooth boundaries.

Definition 1.2. A bounded domain D in \mathbb{C}^{n} is called a $\mathcal{C}^{d} q$-convex intersection of order $N, d \geq 3$, if there exists a bounded neighborhood U of \bar{D} and a finite number of real-valued \mathcal{C}^{d} functions $\rho_{1}(z), \ldots, \rho_{N}(z), 1 \leq N \leq n-1$, defined on U such that $D=\left\{z \in U: \rho_{1}(z)<0, \ldots, \rho_{N}(z)<0\right\}$ and the following conditions are fulfilled:
(H1) For $1 \leq i_{1}<i_{2}<\cdots<i_{\ell} \leq N$ the 1 -forms $d \rho_{i_{1}}, \ldots, d \rho_{i_{\ell}}$ are \mathbb{R}-linearly independent on the set $\cap_{j=1}^{j=\ell}\left\{\rho_{i_{j}}(z) \leq 0\right\}$.

[^0](H2) For $1 \leq i_{1}<i_{2}<\cdots<i_{\ell} \leq N$, for every $z \in \cap_{j=1}^{j=\ell}\left\{\rho_{i_{j}}(z) \leq 0\right\}$, if we set $I=\left(i_{1}, \ldots, i_{\ell}\right)$, there exists a linear subspace T_{z}^{I} of \mathbb{C}^{n} of complex dimension at least $q+1$ such that for $i \in I$ the Levi forms $L_{\rho_{i}}$ restricted on T_{z}^{I} are positive definite.
A domain D in \mathbb{C}^{n} is said to be a $\mathcal{C}^{d} q$-concave intersection of order N if $D=D_{1} \backslash \bar{D}_{2}$, where $D_{2} \Subset D_{1}$ is a $\mathcal{C}^{d} q$-convex intersection of order N and $D_{1} \Subset \mathbb{C}^{n}$ is a $\mathcal{C}^{d}(n-1)$ convex intersection. A point in ∂D_{2}, as a boundary point of D, is said to be strictly q-concave.

Condition (H2) was first introduced by Grauert 6], it implies that at every wedge the Levi forms of the corresponding $\left\{\rho_{i}\right\}$ have their positive eigenvalues along the same directions.

The study of the $\bar{\partial}$-equation on piecewise smooth intersections in \mathbb{C}^{n} was initiated by Range and Siu 22 and then followed by many authors (see e.g., [1, 8, 12, 10 , 18, 19, 20, 21).

Motivated by the same problem, Laurent-Thiébaut and Leiterer [15] solved the $\bar{\partial}$-equation on piecewise smooth intersections of q-concave domains in \mathbb{C}^{n} with uniform estimates for (n, s)-forms, $1 \leq s \leq q-N ; q-N \geq 1$, where instead of condition (H2) they required the following Henkin's condition [1, 8]:
(H3) The Levi form of any nontrivial convex combination of $\left\{\rho_{i}\right\}_{i=1}^{N}$ has at least $q+1$ positive eigenvalues.
In addition, under slightly stronger hypotheses than those of [15, the authors extended their results in [16] to the case when $s=q-N+1$.

Barkatou [2] obtained local solutions with \mathcal{C}^{k}-estimates for $\bar{\partial}$ on q-convex wedges in \mathbb{C}^{n}, his proof requires actually the following condition:
there is a subdivision of the simplex \triangle_{N} such that for every compo-
nent $\left[a^{1} \ldots a^{N}\right]$ in this subdivision, the Leray maps of $\rho_{a^{1}}, \ldots, \rho_{a^{N}}$
are $q+1$-holomorphic in the same directions with respect to the
variable $z \in \mathbb{C}^{n}$, where for $a=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, $\rho_{a}=\sum \lambda_{i} \rho_{i}$
which is weaker than condition (H2) and stronger than condition (H3).
Ricard [23] proved weaker \mathcal{C}^{k}-estimates than those obtained in [2] but for general q-convex (q-concave) wedges satisfying condition (3).

Recently, Barkatou and Khidr [4] constructed a global solution for $\bar{\partial}$ with \mathcal{C}^{k} estimates with small loss of smoothness for $(0, s)$-forms, $n-q \leq s \leq n-1$, on q-convex intersections in \mathbb{C}^{n}.

Let V be a bounded open set in \mathbb{C}^{n}. We use $\mathcal{C}_{r, s}^{k}(\bar{V}), k \in \mathbb{R}^{+}$, to denote the space of all continuous (r, s)-forms defined on \bar{V} and having a continuous derivatives up to $[k]$ on \bar{V} satisfying Hölder condition of order $k-[k]$. The corresponding norm is denoted by $\|\cdot\|_{k, V}$. Our main result is the following theorem.
Theorem 1.3. Let D be a $\mathcal{C}^{d} q$-concave intersection of order N in $\mathbb{C}^{n}, d \geq 3$, and let $f \in \mathcal{C}_{n, s}^{0}(D), \bar{\partial} f=0,1 \leq s \leq q-N$. Then there is a form $g \in \mathcal{C}_{n, s-1}^{0}(D)$ such that $\bar{\partial} g=f$ on D. If $f \in \mathcal{C}_{n, s}^{k}(\bar{D}), 1<k \leq d-2 ; \epsilon>0$, then $g \in \mathcal{C}_{n, s-1}^{k-\epsilon}(\bar{D})$ and there exists a constant $C_{k, \epsilon}>0$ such that

$$
\begin{equation*}
\|g\|_{k-\epsilon, D} \leq C_{k, \epsilon}\|f\|_{k, D} \tag{1.1}
\end{equation*}
$$

We note that for $q=n-1$ (i.e., the pseudoconvex case) this theorem was proved by Michel and Perotti 20 and for arbitrary q, but smooth ∂D, $\operatorname{sharp} \mathcal{C}^{k}$ estimates were obtained by Lieb and Range 18 .

The paper is organized in the following way: In section 1 we introduce the definition of a q-concave intersection in \mathbb{C}^{n} and state our main result (Theorem 1.3). In section 2 we recall the generalized Koppelman lemma which plays a key role in the construction of the solution operators. Section 3 is devoted to the construction of the local solution operators with \mathcal{C}^{k}-estimates for $\bar{\partial}$. The main theorem is proved in section 4. The proof is based on pushing out the method of Kerzman [11.

2. Generalized Koppelman Lemma

In this section we recall a formal identity (the generalized Koppelman lemma) which is essential for our purposes. The exterior calculus we use here was developed by Harvey and Polking in [7] and Boggess [5].

Let D be an open set in $\mathbb{C}^{n} \times \mathbb{C}^{n}$. Let $G: D \rightarrow \mathbb{C}^{n}$ be a \mathcal{C}^{1} map and write $G(\zeta, z)=\left(g_{1}(\zeta, z), \ldots, g_{n}(\zeta, z)\right)$. We define

$$
\begin{aligned}
\langle G(\zeta, z), \zeta-z\rangle & =\sum_{j=1}^{n} g_{j}(\zeta, z)\left(\zeta_{j}-z_{j}\right) \\
\langle G(\zeta, z), d(\zeta-z)\rangle & =\sum_{j=1}^{n} g_{j}(\zeta, z) d\left(\zeta_{j}-z_{j}\right) \\
\left\langle\bar{\partial}_{\zeta, z} G(\zeta, z), d(\zeta-z)\right\rangle & =\sum_{j=1}^{n} \bar{\partial}_{\zeta, z} g_{j}(\zeta, z) d\left(\zeta_{j}-z_{j}\right),
\end{aligned}
$$

where $\bar{\partial}_{\zeta, z}=\bar{\partial}_{\zeta}+\bar{\partial}_{z}$ (in the sense of distributions).
The Cauchy-Fantappiè form ω^{G} is defined by

$$
\omega^{G}=\frac{\langle G(\zeta, z), d(\zeta-z)\rangle}{\langle G(\zeta, z),(\zeta-z)\rangle}
$$

on the set where $\langle G(\zeta, z),(\zeta-z)\rangle \neq 0$.
Given m such maps, $G^{j}, 1 \leq j \leq m$, the generalized Cauchy-Fantappiè kernel is given by

$$
\begin{aligned}
& \Omega\left(G^{1}, \ldots, G^{m}\right) \\
& =(2 \pi i)^{-n} \omega^{G^{1}} \wedge \cdots \wedge \omega^{G^{m}} \wedge \sum_{\alpha_{1}+\cdots+\alpha_{m}=n-m}\left(\bar{\partial}_{\zeta, z} \omega^{G^{1}}\right)^{\alpha_{1}} \wedge \cdots \wedge\left(\bar{\partial}_{\zeta, z} \omega^{G^{m}}\right)^{\alpha_{m}}
\end{aligned}
$$

on the set where all the denominators are nonzero.
Lemma 2.1 (generalized Koppelman lemma).

$$
\bar{\partial}_{\zeta, z} \Omega\left(G^{1}, \ldots, G^{m}\right)=\sum_{j=1}^{m}(-1)^{j} \Omega\left(G^{1}, \ldots, \widehat{G}^{j}, \ldots, G^{m}\right)
$$

on the set where the denominators are nonzero.
If $\beta(\zeta, z)=\left(\overline{\zeta_{1}-z_{1}}, \ldots, \overline{\zeta_{n}-z_{n}}\right)$, then $\Omega(\beta)=B(\zeta, z)$ is the usual Bochner-Martinelli-Koppelman kernel. Denote by $B_{r, s}(\zeta, z)$ the component of $B(\zeta, z)$ of type (r, s) in z and of type $(n-r, n-s-1)$ in ζ. Then one has the following formula which is known as the Bochner-Martinelli-Koppelman formula (see e.g., [13, Theorem 1.7]).

Theorem 2.2. Let $D \Subset \mathbb{C}^{n}$ be a bounded domain with \mathcal{C}^{1}-boundary, and let f be a continuous (r, s)-form on \bar{D} such that $\bar{\partial} f$, in the sense of distributions, is also continuous on $\bar{D}, 0 \leq r, s \leq n$. Then for any $z \in D$ we have

$$
\begin{aligned}
(-1)^{r+s} f(z)= & \int_{\zeta \in \partial D} f(\zeta) \wedge B_{r, s}(\zeta, z)-\int_{\zeta \in D} \bar{\partial} f(\zeta) \wedge B_{r, s}(\zeta, z) \\
& +\bar{\partial}_{z} \int_{\zeta \in D} f(\zeta) \wedge B_{r, s-1}(\zeta, z)
\end{aligned}
$$

3. Solution operators on local q-CONCAVE WEDGES

In this section, we construct local solution operators T_{s} on the complement of a q-convex intersection. The plan of the construction is similar to that of Theorem 3.1 in [4]. The main differences are due to the fact that in this case the function ρ_{m+1} has convexity properties opposite to those of the functions $\rho_{1}, \ldots, \rho_{m}$. Before we go further, we fix the following notation:

- Let $J=\left(j_{1}, \ldots, j_{\ell}\right), 1 \leq \ell<\infty$, be an ordered collection of elements in \mathbb{N}. Then we write $|J|=\ell, J(\hat{\nu})=\left(j_{1}, \ldots, j_{\nu-1}, j_{\nu+1}, \ldots, j_{\ell}\right)$ for $\nu=1, \ldots, \ell$, and $j \in J$ if $j \in\left\{j_{1}, \ldots, j_{\ell}\right\}$.
- Let $N \geq 1$ be an integer. Then we denote by $P(N)$ the set of all ordered collections $K=\left(k_{1}, \ldots, k_{\ell}\right), \ell \geq 1$, of integers with $1 \leq k_{1}, \ldots, k_{\ell} \leq N$. We call $P^{\prime}(N)$ the subset of all $K=\left(k_{1}, \ldots, k_{\ell}\right)$ with $k_{1}<\cdots<k_{\ell}$.
- For $I=\left(j_{1}, \ldots, j_{\ell}\right) \in P^{\prime}(N)$ and $j \notin\left\{j_{1}, \ldots, j_{\ell}\right\}$, we set $I_{j}=\left(k_{1}, \ldots, k_{\ell+1}\right)$ if $\left\{k_{1}, \ldots, k_{\ell+1}\right\} \subset\left\{k_{1}, \ldots, k_{\ell}, j\right\}$ and $k_{1}<\cdots<k_{\ell+1}$.

Theorem 3.1. Let D be a $\mathcal{C}^{d}(d \geq 3)$ q-convex intersection of order n in \mathbb{C}^{n}. Then for each $\xi \in \partial D$, there is a radius $R>0$ such that on the set $\mathcal{W}=(U \backslash \bar{D}) \cap\{z \in$ $\left.\mathbb{C}^{n}:|z-\xi|<R\right\}$ there are linear operators $T_{s}: \mathcal{C}_{n, s}^{0}(\mathcal{W}) \rightarrow \mathcal{C}_{n, s-1}^{0}(\mathcal{W})$ such that $\bar{\partial} T_{s} f=f$ for all $f \in \mathcal{C}_{n, s}^{0}(\overline{\mathcal{W}}), 1 \leq s \leq q-N$, with $\bar{\partial} f=0$ (in the sense of distributions) on \mathcal{W}. If $f \in \mathcal{C}_{n, s}^{k}(\overline{\mathcal{W}}), 1<k \leq d-2 ; \epsilon>0$, then there exists a constant $C_{k, \epsilon}>0$ (independent of f) satisfying the estimates

$$
\begin{equation*}
\left\|T_{s} f\right\|_{k-\epsilon, \mathcal{W}} \leq C_{k, \epsilon}\|f\|_{k, \mathcal{W}} \tag{3.1}
\end{equation*}
$$

For $N=1$ (i.e., the case of local q-concave domains) this theorem was proved by Laurent-Thiébaut and Leiterer [14].

Proof. Let $D=\left\{z \in U \mid \rho_{1}(z)<0, \ldots, \rho_{N}(z)<0\right\} \subset U$ be a q-convex intersection. We suppose for example that $E=\left\{\xi \in U \mid \rho_{1}(\xi)=\cdots=\rho_{m}(\xi)=0\right\}$. If we set $\rho_{m+1}(\zeta)=|\zeta-\xi|^{2}-R^{2}$ for $R>0$, it follows from [15, Lemma 2.3] that $\left(E,(U \backslash \bar{D}) \cap\left\{z \in \mathbb{C}^{n}:|z-\xi|<R\right\}\right)$ is a local q-concave wedge.

Denote by $F_{\rho_{i}}(\zeta,$.$) the Levi polynomial of \rho_{i}$ at $\zeta \in U$. For $\zeta \in U, z \in \mathbb{C}^{n}$,

$$
F_{\rho_{i}}(\zeta, z)=2 \sum_{j=1}^{n} \frac{\partial \rho_{i}(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)-\sum_{j, k=1}^{n} \frac{\partial^{2} \rho_{i}}{\partial \zeta_{j} \partial \zeta_{k}}\left(\zeta_{j}-z_{j}\right)\left(\zeta_{k}-z_{k}\right)
$$

By Definition 1.2, there exists an $(q+1)$-linear subspace T of \mathbb{C}^{n} such that the Levi forms $L_{-\rho_{i}}$ at ξ are all positive definite on T.

Denote by P the orthogonal projection of \mathbb{C}^{n} onto T and set $Q:=I d-P$. Then it follows from Taylor's expansion theorem that there exist a number R and two positive constants A and B such that the following estimate holds:

$$
\begin{equation*}
-\operatorname{Re} F_{\rho_{i}}(\zeta, z) \geq \rho_{i}(z)-\rho_{i}(\zeta)+B|\zeta-z|^{2}-A|Q(\zeta-z)|^{2} \tag{3.2}
\end{equation*}
$$

for every $i \in\{1, \ldots, m\}$ and all $(z, \zeta) \in \mathbb{C}^{n} \times U$ with $|\xi-\zeta|<R$ and $|\xi-z|<R$.
Let $i \in\{1, \ldots, m\}$. As ρ_{i} is of class \mathcal{C}^{2} on U, we then can find \mathcal{C}^{∞} functions $a_{i}^{k j}(U), j, k=1, \ldots, n$, such that for all $\zeta \in U$,

$$
\begin{equation*}
\left|a_{i}^{k j}(\zeta)-\frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{k} \partial \zeta_{j}}\right|<\frac{B}{2 n^{2}} \tag{3.3}
\end{equation*}
$$

Denote by $Q_{k j}$ the entries of the matrix Q; i.e.,

$$
Q=\left(Q_{k j}\right)_{k, j=1}^{n} \quad(k=\text { column index })
$$

We set, for $(z, \zeta) \in \mathbb{C}^{n} \times U$,

$$
\begin{gathered}
g_{j}^{i}(\zeta, z)=2 \frac{\partial \rho_{i}(\zeta)}{\partial \zeta_{j}}-\sum_{k=1}^{n} a_{i}^{k j}(\zeta)\left(\zeta_{k}-z_{k}\right)-A \sum_{k=1}^{n} \overline{Q_{k j}\left(\zeta_{k}-z_{k}\right)} \\
G_{i}(\zeta, z)=\left(g_{i}^{1}(\zeta, z), \ldots, g_{i}^{n}(\zeta, z)\right) \\
\Phi_{i}(\zeta, z)=\left\langle G_{i}(\zeta, z), \zeta-z\right\rangle
\end{gathered}
$$

As Q is an orthogonal projection, we then have

$$
\Phi_{i}(\zeta, z)=2 \sum_{j=1}^{n} \frac{\partial \rho_{i}(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)-\sum_{k, j=1}^{n} a_{i}^{k j}(\zeta)\left(\zeta_{k}-z_{k}\right)\left(\zeta_{j}-z_{j}\right)-A|Q(\zeta-z)|^{2}
$$

The estimates (3.2) and (3.3) imply that

$$
\operatorname{Re} \Phi_{i}(\zeta, z) \geq \rho_{i}(\zeta)-\rho_{i}(z)+\frac{B}{2}|\zeta-z|^{2}
$$

for $(z, \zeta) \in \mathbb{C}^{n} \times U$ with $\left|z_{0}-\zeta\right| \leq R$ and $\left|z_{0}-z\right| \leq R$.
We recall that a map f defined on a complex manifold \mathcal{X} is called k-holomorphic if, for each point $\xi \in \mathcal{X}$, there exist holomorphic coordinates h_{1}, \ldots, h_{k} in a neighborhood of ξ such that f is holomorphic with respect to h_{1}, \ldots, h_{k}.

Lemma 3.2. For every fixed $\zeta \in U$, the maps $G_{i}(\zeta, z)$ and the function $\Phi_{i}(\zeta, z)$ are $(q+1)$-holomorphic in the same directions in $z \in \mathbb{C}^{n}$.
Proof. Choose complex linear coordinates h_{1}, \ldots, h_{n} on \mathbb{C}^{n} with

$$
\left\{z \in \mathbb{C}^{n}: Q(z)=0\right\}=\left\{z \in \mathbb{C}^{n}: h_{q+2}(z)=\cdots=h_{n}(z)=0\right\}
$$

The map $z \rightarrow \overline{Q(\zeta-z)}$ is then independent of h_{1}, \ldots, h_{q+1}. This implies that the $\operatorname{map} G_{i}(\zeta, z)$ is complex linear with respect to h_{1}, \ldots, h_{q+1} for all i, and the function $\Phi_{i}(\zeta, z)$ is a quadratic complex polynomial with respect to h_{1}, \ldots, h_{q+1}.

Set

$$
\begin{gathered}
G_{m+1}(\zeta, z)=2\left(\frac{\partial \rho_{m+1}(\zeta)}{\partial \zeta_{1}}, \ldots, \frac{\partial \rho_{m+1}(\zeta)}{\partial \zeta_{n}}\right) \\
\Phi_{m+1}(\zeta, z)=\left\langle G_{m+1}(\zeta, z),(\zeta-z)\right\rangle
\end{gathered}
$$

As $G_{m+1}(\zeta, z)$ and $\Phi_{m+1}(\zeta, z)$ are independent of R, we can choose $R_{1}>0$ such that for all $R \leq R_{1}$ there exists $\beta>0$ satisfying

$$
\operatorname{Re} \Phi_{m+1}(\zeta, z) \geq \rho_{m+1}(\zeta)-\rho_{m+1}(z)+\beta|\zeta-z|^{2}
$$

for all $(z, \zeta) \in \mathbb{C}^{n} \times U$ with $\left|z_{0}-\zeta\right| \leq R$ and $\left|z_{0}-z\right| \leq R$. We define

$$
\mathcal{W}=\left\{z \in U \mid \rho_{j}>0 \text { for } j=1, \ldots, m\right\} \cap\left\{z \in \mathbb{C}^{n}:|z-\xi|<R\right\}
$$

For $I=\left(j_{1}, \ldots, j_{\ell}\right) \in P^{\prime}(m+1)$, we define

$$
\begin{gathered}
\widetilde{\Omega}[I]:=\Omega\left(G_{j_{1}}, \ldots, G_{j_{\ell}}\right) \\
\widetilde{\Omega}[\partial I]:=\sum_{k=1}^{\ell}(-1)^{k} \Omega\left(G_{j_{1}}, \ldots, \widehat{G}_{j_{k}}, \ldots, G_{j_{\ell}}\right) .
\end{gathered}
$$

Then, we can rewrite Lemma 2.1 in the following way.
Lemma 3.3. For every $I \in P^{\prime}(m+1)$, we have $\bar{\partial}_{\zeta, z} \widetilde{\Omega}[I]=\widetilde{\Omega}[\partial I]$ outside the singularities.

For every $0 \leq r \leq n, 0 \leq s \leq n-p(p \geq 1)$ and any I, we define $\widetilde{\Omega}_{r, s}[I]$ as the component of $\widetilde{\Omega}[I]$ which is of type (r, s) in z. One has the following lemma.

Lemma 3.4. For any $I \in P^{\prime}(m+1)$. For any $r \geq 0$ and $s \geq n-q$ we have
(i) $\widetilde{\Omega}_{r, s}(I)=0$,
(ii) $\bar{\partial}_{z} \widetilde{\Omega}_{r, n-q-1}(I)=0$,
on the set where all the denominators are non-zero.
Proof. Statement (i) follows from Lemma 2.1 and the fact that the map $z \mapsto$ $G_{m+1}(\zeta, z)$ is holomorphic. Lemmas 3.3 and 2.1 imply that

$$
\bar{\partial}_{z} \widetilde{\Omega}_{r, s-1}(I)=-\bar{\partial}_{\zeta} \widetilde{\Omega}_{r, s}(I)+\widetilde{\Omega}_{r, s}(\partial I)
$$

Statement (ii) follows from (i).
Let $\beta(\zeta, z)=\left(\overline{\zeta_{1}-z_{1}}, \ldots, \overline{\zeta_{n}-z_{n}}\right)$ be the classical section that defines the usual Bochner-Martinelli kernel in \mathbb{C}^{n} and define

$$
\widetilde{\Omega}_{\beta}[I]:=\Omega\left(\beta, G_{j_{1}}, \ldots, G_{j_{\ell}}\right)
$$

for any $I \in P^{\prime}(m+1)$. Lemma 3.4 implies that

$$
\bar{\partial}_{\zeta, z} \widetilde{\Omega}_{\beta}[I]=-\widetilde{\Omega}[I]-\widetilde{\Omega}_{\beta}[\partial I]
$$

outside the singularities, where $\widetilde{\Omega}_{\beta}[\partial I]:=\Omega(\beta)$ if $|I|=1$. Define, for $|I| \geq 1$,

$$
\begin{gathered}
K^{I}(\zeta, z)=\widetilde{\Omega}_{\beta}[I](\zeta, z), \\
B^{I}(\zeta, z)=-\widetilde{\Omega}_{\beta}[\partial I](\zeta, z)
\end{gathered}
$$

Then we obtain the following lemma.
Lemma 3.5. For any $I \in P^{\prime}(m+1)$,

$$
\bar{\partial}_{\zeta, z} K^{I}(\zeta, z)=B^{I}(\zeta, z)-\widetilde{\Omega}[I](\zeta, z)
$$

outside the singularities.
Proof. For every $I=\left(j_{1}, \ldots, j_{\ell}\right) \in P^{\prime}(m+1)$, define

$$
S_{I}=\left\{z \in \partial \mathcal{W} \mid \rho_{j_{1}}(z)=\cdots=\rho_{j_{\ell}}(z)=0\right\}
$$

and choose the orientation of S_{I} such that the orientation is skew symmetric in the components of I and the following two equations hold when \mathcal{W} is given the natural orientation:

$$
\partial \mathcal{W}=\sum_{j=1}^{m+1} S_{j}, \quad \partial S_{I}=\sum_{j \notin I} S_{I_{j}}
$$

Denote by $K_{r, s}^{I}(\zeta, z)$ the component of $K^{I}(\zeta, z)$ which is of type (r, s) in z.
Then Lemmas 3.4 and 3.5. Theorem 2.2, and Stoke's theorem imply that the following formulas hold in the sense of distribution in \mathcal{W} (see [3, Theorem 2.7]):

For any continuous (n, s)-form f on $\overline{\mathcal{W}}, 1 \leq s \leq q-m$, such that $\bar{\partial} f$ is also continuous on $\overline{\mathcal{W}}$. We have

$$
\begin{aligned}
&(-1)^{n+s} f(\zeta) \\
&= \sum_{I \in P^{\prime}(m+1)}(-1)^{(n+s)|I|+\frac{|I|(|I|-1)}{2}} \int_{z \in S_{I}} \bar{\partial} f(z) \wedge K_{0, n-|I|-s}^{I}(\zeta, z) \\
& \quad+\sum_{I \in P^{\prime}(m+1)}(-1)^{(n+s)|I|+\frac{|I|(|I|+1)}{2}+1} \bar{\partial}_{\zeta} \int_{z \in S_{I}} f(z) \wedge K_{0, n-|I|-s+1}^{I}(\zeta, z) \\
&-\int_{z \in \mathcal{W}} \bar{\partial} f(z) \wedge B_{0, n-s-1}(\zeta, z)+\bar{\partial}_{\zeta} \int_{z \in \mathcal{W}} f(z) \wedge B_{0, n-s}(\zeta, z)+L f(\zeta)
\end{aligned}
$$

where $L f$ is a linear combination of the integrals $\int_{z \in S_{I_{m+1}}} f(z) \wedge \widetilde{\Omega}[I](\zeta, z)$, where $I \in P^{\prime}(m)$.

It is easy to see that $L f$ is of class \mathcal{C}^{d-2} in a neighborhood of ξ; moreover if $\bar{\partial} f=0$, then $\bar{\partial} L f=0$. Let H be the Henkin operator for solving the $\bar{\partial}$-equation in a ball $B\left(\xi, R^{\prime}\right)$. From the smootness properties of H, it follows that $H(L f)$ is of class $\mathcal{C}^{d-2+\frac{1}{2}}$. Note that

$$
\begin{aligned}
T_{s}(f)(\zeta)= & \sum_{I \in P^{\prime}(m+1)}(-1)^{(n+s)|I|+\frac{|I| \mid(|I|+1)}{2}+1} \int_{z \in S_{I}} f(z) \wedge K_{0, n-|I|-s+1}^{I}(z, \zeta) \\
& +(-1)^{n+s} \int_{z \in \mathcal{W}} f(z) \wedge B_{0, n-s}(z, \zeta)+H(L f)(\zeta)
\end{aligned}
$$

satisfies the equation $\bar{\partial} u=f$ on $\mathcal{W} \cap B\left(\xi, R^{\prime}\right)$ with $u=T_{s}(f)(\zeta)$.
The \mathcal{C}^{k}-estimates follows, as in [2], by using arguments similar to those in [18].

4. Proof of Theorem 1.3

Theorem 3.1 yields the following continuation lemma which in turn enables us to complete the proof of Theorem 1.3 .

Lemma 4.1 (An extension lemma with bounds). Let D be a \mathcal{C}^{d}, $d \geq 3$, q-concave intersection of order N in \mathbb{C}^{n}. Then there exists another slightly larger q-concave intersection of order $N, \widetilde{D} \Subset \mathbb{C}^{n}$ such that $D \Subset \widetilde{D}$ and for any $f \in \mathcal{C}_{n, s}^{0}(D)$, $1 \leq s \leq q-N$, with $\bar{\partial} f=0$ there exist two linear operators N_{1}, N_{2}, a form $\tilde{f}=N_{1} f \in \mathcal{C}_{n, s}^{0}(\widetilde{D})$ and a form $u=N_{2} f \in \mathcal{C}_{n, s-1}^{0}(D)$ such that:
(i) $\bar{\partial} \tilde{f}=0$ in \widetilde{D}.
(ii) $\tilde{f}=f-\bar{\partial} u$ in D.
(iii) If $f \in \mathcal{C}_{n, s}^{k}(\bar{D}), 1<k \leq d-2, \epsilon>0$, then $\tilde{f} \in \mathcal{C}_{n, s}^{k-\epsilon}(\widetilde{D}), u \in \mathcal{C}_{n, s-1}^{k-\epsilon}(\bar{D})$ and we have the estimates:

$$
\begin{align*}
\|\tilde{f}\|_{k-\epsilon, \widetilde{D}} & \leq C_{k, \epsilon}\|f\|_{k, D} \tag{4.1}\\
\|u\|_{k-\epsilon, D} & \leq C_{k, \epsilon}\|f\|_{k, D} \tag{4.2}
\end{align*}
$$

Proof. As ∂D is compact, there are finitely many open neighborhoods $\left(B_{\xi_{j}}\right)_{j=1, \ldots, K}$ of ξ_{j} covering ∂D. Let $\left(\theta_{j}\right)_{j=1, \ldots, K}$ be a partition of unity such that $\theta_{j} \in \mathcal{C}_{0}^{\infty}\left(B_{\xi_{j}}^{\prime}\right)$, $B_{\xi_{j}}^{\prime} \Subset B_{\xi_{j}}, 0 \leq \theta_{j} \leq 1$, and $\sum_{j=1}^{K} \theta_{j}=1$ on a neighborhood V_{0} of ∂D. We choose $V_{1} \Subset V_{0} \Subset U$. We enlarge D to \widetilde{D} in K step as follows. For $\delta>0$, sufficiently small to be chosen fixed later on, and for $j=1, \ldots, K$ we define

$$
D_{j}=\left\{z \in D \cup V_{1}: \rho_{1}(z)>-\delta \sum_{k=1}^{j} \theta_{k}(z), \ldots, \rho_{N}(z)>-\delta \sum_{k=1}^{j} \theta_{k}(z)\right\}
$$

We set $D_{0}=D$ and $\widetilde{D}=D_{K}$. Clearly

$$
D \subseteq D_{j} \subseteq D_{j+1} \subseteq \cdots \subseteq \widetilde{D}=D_{K}
$$

Reducing δ if necessary, we see that all $D_{j}, j \in\{=1, \ldots, K\}$ (in particular \widetilde{D}) are $\mathcal{C}^{d} q$-concave intersections.

Claim: For any $f_{j} \in \mathcal{C}_{n, s}^{0}\left(D_{j}\right)$ with $\bar{\partial} f_{j}=0, j \in\{1, \ldots, K-1\}$, there exist two forms $f_{j+1} \in \mathcal{C}_{n, s}^{0}\left(D_{j+1}\right)$ and $u_{j} \in \mathcal{C}_{n, s-1}^{0}\left(D_{j}\right)$ such that (i), (ii) and (iii) of Lemma 4.1 hold when f, \tilde{f}, u, D and \widetilde{D} are replaced by $f_{j}, f_{j+1}, u_{j}, D_{j}$ and D_{j+1} respectively.

Proof. (see [11, p. 318]): Fix $\delta>0$ so small that we can apply Theorem 3.1, we obtain a solution g_{j} of $\bar{\partial} g=f_{j}$ defined in $D_{j} \cap B_{\xi_{j+1}}$ and satisfies the estimates of the local theorem. Let $\eta_{j+1} \in C_{0}^{\infty}\left(B_{\xi_{j+1}}\right), \eta_{j+1}=1$ in a neighborhood of the support of θ_{j+1}. We set

$$
f_{j+1}=\left\{\begin{array}{ll}
f_{j}-\bar{\partial} u_{j} & \text { in } D_{j}, \\
0 & \text { in } D_{j+1} \backslash D_{j},
\end{array} \quad u_{j}= \begin{cases}g_{j} \eta_{j+1} & \text { in } D_{j} \cap B_{\xi_{j+1}} \\
0 & \text { in } D_{j} \backslash B_{\xi_{j+1}}\end{cases}\right.
$$

The estimates for f_{j+1} and u_{j} follow from those of the local theorem. The claim is proved.

Using the above claim, we can now complete the proof of Lemma 4.1. Applying the claim K-times, starting with $D_{0}=D, f_{0}=f$ and ending with $D_{K}=\widetilde{D}$, $f_{K}=\tilde{f}$, yield $\tilde{f}=f-\bar{\partial} u$ in D, where we set $u=\sum_{j=0}^{K-1} u_{j}$. Collecting the estimates for f_{j+1} and u_{j} in each step, we obtain 4.1) and 4.2). Clearly \tilde{f} and u are linear in f.

Lemma 4.2. There exists a strictly q-concave domain with smooth boundary $D^{\prime} \Subset$ \mathbb{C}^{n} satisfying

$$
D \Subset D^{\prime} \Subset \widetilde{D}
$$

Proof. Let V_{2} be a neighborhood of D such that $V_{2} \Subset V_{1}$ and for $\tau>0$ we define $D_{\tau}:=\left\{z \in D \cup V_{2} \mid \rho_{1}(z)>\tau, \ldots, \rho_{N}(z)>\tau\right\}$. Recall that D is defined by the \mathcal{C}^{d}-functions $\rho_{1}, \ldots, \rho_{N}$. For each $\beta>0$, let χ_{β} be a fixed non-negative real C^{∞} function on \mathbb{R} such that, for all $x \in \mathbb{R}, \chi_{\beta}(x)=\chi_{\beta}(-x),|x| \leq \chi_{\beta}(x) \leq$ $|x|+\beta,\left|\chi_{\beta}^{\prime}\right| \leq 1, \chi_{\beta}^{\prime \prime} \geq 0$ and $\chi_{\beta}(x)=|x|$ if $|x| \geq \frac{\beta}{2}$. Moreover, we assume that $\chi_{\beta}^{\prime}(x)>0$ if $x>0$ and $\chi_{\beta}^{\prime}(x)<0$ if $x<0$. We define as in [9, Definition 4.12] $\max _{\beta}(t, s)=\frac{t+s}{2}+\chi_{\beta}\left(\frac{t-s}{2}\right), t, s \in \mathbb{R}$, and $\varphi_{1}=\rho_{1}, \varphi_{2}=\max _{\beta}\left(\rho_{1}, \rho_{2}\right), \ldots$, $\varphi_{N}=\max _{\beta}\left(\varphi_{N-1}, \rho_{N}\right)$. Then it is easy to compute that the Levi form of φ_{N} has
at least $q+1$ negative eigenvalues at each point in U. For $\tau>0$ we can choose positive numbers $\beta=\frac{\tau}{2(N+1)}, \gamma=\frac{\tau}{2}$ small enough and $V_{3} \Subset V_{2}$ such that

$$
D \Subset D^{*}=\left\{z \in D \cup V_{3} \mid \varphi_{N}(z)-\gamma>0\right\} \Subset D_{\tau}
$$

then D^{*} is a strictly q-concave domain. According to [9, Theorem 6.6], there exists a strictly q-concave domain D^{\prime} with smooth boundary such that $D \Subset D^{\prime} \Subset D^{*}$. Choose τ small enough to get $D_{\tau} \Subset \widetilde{D}$.

Let $f \in \mathcal{C}_{n, s}^{k}(\bar{D})$ be a $\bar{\partial}$-closed form. Let \widetilde{D}, \tilde{f} and u as in Lemma 4.1. Let D^{\prime} be given as in Lemma 4.2 and set $f_{1}=\left.\tilde{f}\right|_{D^{\prime}}$. It follows from [18, Theorem 2] that there exists $\eta \in \mathcal{C}_{n, s-1}^{k-\epsilon}(\bar{D})$ such that $\bar{\partial} \eta=f_{1}$ on D and $\|\eta\|_{k-\epsilon, \bar{D}} \leq C_{k, \epsilon}\left\|f_{1}\right\|_{k-\epsilon, D^{\prime}}$. Then we have $f=\bar{\partial}(u+\eta)$. The form $g=u+\eta$ is a global solution that satisfies the \mathcal{C}^{k}-estimates 1.1 of Theorem 1.3

References

[1] R. A. Airapetjan, G. M. Henkin; Integral representations of differential forms on CauchyRiemann manifolds and the theory of CR-functions, Russ. Math. Surv., 39 (1984) 41-118.
[2] M. Y. Barkatou; \mathcal{C}^{k} estimates for $\bar{\partial}$ on q-convex wedges, Math. Z., 239 (2002) 335-352.
[3] M. Y. Barkatou, C. Laurent-Thiébaut; Solutions Fondamentales et Estimations optimales pour l'opérateur de Cauchy-Riemann Tangentiel, Michigan Math. J., 54 (2006) 545-586.
[4] M. Y. Barkatou, S. Khidr; Global solution with \mathcal{C}^{k}-estimates for $\bar{\partial}$-equation on q-convex intersections, Math. Nachr., 284 (2011) 2024-2031.
[5] A. Boggess; CR Manifolds and the Tangentiel Cauchy-Riemann Complex, CRC Press, Boca Raton, Florida, 1991.
[6] H. Grauert; Kantenkohomologie, compositio Math., 44 (1981) 79-101.
[7] R. Harvey, J. Polking; Fundamental solutions in complex analysis, Parts I and II, Duke Math. J., 46 (1979) 253-300 and 301-340.
[8] G. M. Henkin; The method of integral representations in complex Analysis, in Encyclopedia of Mathematical Science, Several Complex Variables I, 7, Springer-Verlag (1990) 19-116.
[9] G. M. Henkin, J. Leiterer; Andreoutti-Grauert Theory by Integral Formulas, Progress in Math., 74, Birkhäuser-Verlag, Boston, 1988.
[10] G. M. Henkin; Solutions des équations de Cauchy-Riemann tangentielles sur des variétérs de Cauchy-Riemann q-convexes, C.R. Acad. Sci. Paris, 292 (1981) 27-30.
[11] N. Kerzman; Hölder and L^{p}-estimates for solutions of $\bar{\partial} u=f$ in strongly pseudo-convex domains, Commun. Pure Appl. Math., 24 (1971) 301-380.
[12] S. Khidr; Solving $\bar{\partial}$ with L^{p}-estimates on q-convex intersections in complex manifold, Complex Var. Elliptic Equ., 53 (2008) 253-263.
[13] C. Laurent-Thiébaut; Holomorphic Function Theory in Several Variables, Springer-Verlag, London Ltd., 2011.
[14] C. Laurent-Thiébaut, J. Leiterer; The Andreotti-Vesentini separation theorem with C^{k} estimates and extension of CR-forms, Math. Notes, 38 (1993) 416-439.
[15] C. Laurent-Thiébaut, J. Leiterer; Uniform estimates for the Cauchy-Riemann Equation on q-concave wedges, Astérisque, 217 (1993) 151-182.
[16] C. Laurent-Thiébaut, J. Leiterer; On the Cauchy-Riemann Equation in Tangential q-Concave Wedges, Math. Nachr., 176 (1995) 159-178.
[17] I. Lieb; Beschränkte Lösungen der Cauchy-Riemannschen Differentialgleichungen auf q konkaven Gebieten, Manuscr. Math., 26 (1979) 387-410.
[18] I. Lieb, R. M. Range; Lösungsoperatoren für den Cauchy-Riemann- Komplex mit C^{k} _ Abschätzungen, Math. Ann., 253 (1980) 145-165.
[19] J. Michel; Randregularität des $\bar{\partial}$-problems für den stückweise streng pseudokonvexe Gebiete in \mathbb{C}^{n}, Math. Ann., 280 (1988) 45-68.
[20] J. Michel, A. Perotti; C^{k}-regularity for the $\bar{\partial}$-equation on strictly pseudoconvex domains with piecewise smooth boundaries, Math. Z., 203 (1990) 415-428.
[21] K. Peters; Uniform estimates for $\bar{\partial}$ on the intersection of two strictly pseudoconvex C^{2} domains without transversality condition, Math. Ann., 284 (1989) 409-421.
[22] R. M. Range, Y. T. Siu; Uniform estimates for the $\bar{\partial}$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann., 206 (1973) 325-354.
[23] H. Ricard; Estimations \mathcal{C}^{k} pour l'opérator de Cauchy-Riemann sur des domaines à coins q-convexes et q-concaves, Math. Z., 244 (2003) 349-398.

Shaban Khidr
Mathematics Department, Faculty of Science, King Abdelaziz University, North Jeddah, Jeddah, Saudi Arabia.
Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
E-mail address: skhidr@kau.edu.sa
Moulay-Youssef Barkatou
Laboratoire de Mathématiques et Applications, UMR 7348 CNRS - Université de Poitiers,
Téléport 2, 11, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope ChasSeneuil Cedex, France

E-mail address: youssef.barkatou@math.univ-poitiers.fr

[^0]: 2000 Mathematics Subject Classification. 32A26, 32F10, 32W05, 32W10.
 Key words and phrases. $\bar{\partial}$-equation; q-convexity; q-concave intersections; \mathcal{C}^{k}-estimates.
 (C) 2013 Texas State University - San Marcos.

 Submitted November 20, 2012. Published February 28, 2013.

