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EXISTENCE OF SOLUTIONS TO SINGULAR FOURTH-ORDER
ELLIPTIC EQUATIONS

MOHAMMED BENALILI, KAMEL TAHRI

Abstract. Using a method developed by Ambrosetti et al [1, 2] we prove the

existence of weak non trivial solutions to fourth-order elliptic equations with

singularities and with critical Sobolev growth.

1. Introduction

Fourth-order elliptic equations have been widely studied, because of their impor-
tance in the analysis on manifolds particularly those involving the Paneitz-Branson
operators; see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16]. Different tech-
niques have been used for solving fourth-order equations, as example the variational
method which was developed by Yamabe to solve the problem of the prescribed
scalar curvature. Let (M, g) a compact smooth Riemannian manifold of dimension
n ≥ 5 with a metric g. We denote by H2

2 (M) the standard Sobolev space which is
the completed of the space C∞(M) with respect to the norm

‖ϕ‖2,2 =
k=2∑
k=0

‖∇kϕ‖2.

H2
2 (M) will be endowed with the suitable equivalent norm

‖u‖H2
2 (M) =

(∫
M

((∆gu)2 + |∇gu|2 + u2)dvg
)1/2

.

In 1979, Vaugon [17] proved the existence of a positive value λ and a non trivial
solution u ∈ C4(M) to the equation

∆2
gu− divg(a(x)∇gu) + b(x)u = λf(t, x)

where a, b are smooth functions on M and f(t, x) is odd and increasing function
in t fulfilling the inequality

|f(t, x)| < a+ b|t|
n+4
n−4 .
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Edminds, Fortunato and Jannelli [14] showed that all the solutions in Rn to the
equation

∆2u = u
n+4
n−4

are positive, symmetric, radial and decreasing functions of the form

uε(x) =
((n− 4)n(n2 − 4)ε4)

n−4
8

(r2 + ε2)
n−4

2

.

In 1995, Van Der Vorst [15] obtained the same results for the problem

∆2u− λu = u|u|
8

n−4 in Ω,
∆u = u = 0 on ∂Ω,

where Ω is a bounded domain of Rn.
In 1996, Bernis, Garcia-Azorero and Peral [9] obtained the existence at least of

two positive solutions to the problem

∆2u− λu|u|q−2 = u|u|
8

n−4 in Ω,
∆u = u = 0 on ∂Ω,

where Ω is bounded domain of Rn, 1 < q < 2 and λ > 0 in some interval. In 2001,
Caraffa [12] obtained the existence of a non trivial solution of class C4,α, α ∈ (0, 1)
for the equation

∆2
gu−∇α(a(x)∇αu) + b(x)u = λf(x)|u|N−2u

with λ > 0, first for f a constant and next for a positive function f on M .
Recently the first author [4] showed the existence of at least two distinct non

trivial solutions in the subcritical case and a non trivial solution in the critical case
for the equation

∆2
gu−∇α(a(x)∇αu) + b(x)u = f(x)|u|N−2u

where f is a changing sign smooth function and a and b are smooth functions. In
[6] the same author proved the existence of at least two non trivial solutions to

∆2
gu−∇α(a(x)∇αu) + b(x)u = f(x)|u|N−2u+ |u|q−2u+ εg(x)

where a, b, f , g are smooth functions on M with f > 0, 2 < q < N , λ > 0 and
ε > 0 small enough. Let Sg denote the scalar curvature of M . In 2011, the authors
proved the following result

Theorem 1.1 ([8]). Let (M, g) be a compact Riemannian manifold of dimension
n ≥ 6 and a, b, f smooth functions on M , λ ∈ (0, λ∗) for some specified λ∗ > 0,
1 < q < 2 such that

(1) f(x) > 0 on M .
(2) At the point x0 where f attains its maximum, we suppose that for n = 6,

Sg(x0) + 3a(x0) > 0, and for n > 6( (n2 + 4n− 20)
2(n+ 2)(n− 6)

Sg(x0) +
(n− 1)

(n+ 2)(n− 6)
a(x0)− 1

8
∆f(x0)
f(x0)

)
> 0.

Then the equation

∆2
gu+ divg(a(x)∇gu) + b(x)u = λ|u|q−2u+ f(x)|u|N−2u

admits a non trivial solution of class C4,α(M), α ∈ (0, 1).
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Recently Madani [14] studied the Yamabe problem with singularities when the
metric g admits a finite number of points with singularities and is smooth out-
side these points. More precisely, let (M, g) be a compact Riemannian manifold
of dimension n ≥ 3, we denote by T ∗M the cotangent space of M . The space
Hp

2 (M,T ∗M ⊗ T ∗M) is the set of sections s (2-covariant tensors) such that in nor-
mal coordinates the components sij of s are in Hp

2 the complement of the space
C∞0 (Rn) with respect to the norm ‖ϕ‖2,p =

∑k=2
k=0 ‖∇kϕ‖p.

Solving the singular Yamabe problem is equivalent to finding a positive solution
u ∈ Hp

2 (M) of the equation

∆gu+
n− 2

4(n− 1)
Sgu = k|u|N−2u, (1.1)

where Sg is the scalar curvature of the g and k is a real constant. The Christoffels
symbols belong to Hp

1 (M), the Riemannian curvature tensor, the Ricci tensor Ricg
and scalar curvature Sg are in Lp(M), hence equation 1.1 is the singular Yamabe
equation.

Under the assumptions that g is a metric in the Sobolev space Hp
2 (M,T ∗M ⊗

T ∗M) with p > n/2 and that there exist a point P ∈ M and δ > 0 such that g is
smooth in the ball Bp(δ), Madani [14] proved the existence of a metric g = uN−2g
conformal to g such that u ∈ Hp

2 (M), u > 0 and the scalar curvature Sg of g is
constant if (M, g) is not conformal to the round sphere.

The author in [7] considered fourth-order elliptic equations, with singularities,
of the form

∆2u−∇i(a(x)∇iu) + b(x)u = f |u|N−2u (1.2)
where the functions a and b are in Ls(M), s > n

2 and in Lp(M), p > n
4 respectively,

N = 2n
n−4 is the Sobolev critical exponent in the embedding H2

2 (M) ↪→ LN (M).
He established the following results. Let (M, g) be a compact n-dimensional Rie-
mannian manifold, n ≥ 6, a ∈ Ls(M), b ∈ Lp(M), with s > n

2 , p > n
4 , f ∈ C∞(M)

a positive function and x0 ∈M such that f(x0) = maxx∈M f(x).

Theorem 1.2. For n ≥ 10, or n = 8, 9 and 2 < p < 5, 9
4 < s < 11 or n = 7,

7
2 < s < 9 and 7

4 < p < 9 we suppose that

n2 + 4n− 20
6(n− 6)(n2 − 4)

Sg(x0)− n− 4
2n(n− 2)

∆f(x0)
f(x0)

> 0.

For n = 6 and 3
2 < p < 2, 3 < s < 4, we assume that

Sg(x0) > 0.

Then (1.2) has a non trivial weak solution u in H2
2 (M). Moreover if a ∈ Hs

1(M),
then u ∈ C0,β(M), for some β ∈ (0, 1− n

4p ).

In this article, we extend results obtained in Theorem 1.1 to the case of singular
elliptic fourth order, more precisely we are concerned with the following problem:
Let (M, g) be a Riemannian compact manifold of dimension n ≥ 5. Let a ∈ Lr(M),
b ∈ Ls(M) where r > n

2 , s > n
4 and f a positive C∞-function on M ; we look for

non trivial solution of the equation

∆2
gu+ divg(a(x)∇gu) + b(x)u = λ|u|q−2u+ f(x)|u|N−2u (1.3)

where 1 < q < 2 and N = 2n
n−4 is the critical Sobolev exponent and λ > 0 a real

number.
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In case the λ = 0 and

a =
4

n− 2
Ricg −

(n− 2)2 + 4
2(n− 1)(n− 2)

Sg.g, b =
n− 4

2
Qng ,

where

Qng =
1

2(n− 1)
∆Sg +

n3 − 4n2 + 16n− 16
8(n− 1)2(n− 2)2

S2
g −

2
(n− 2)2

|Ricg|2

suppose that g is a metric in the Sobolev space Hp
4 (M,T ∗M ⊗ T ∗M) with p > n

4 ,
then the Ricci Ricg curvature and the scalar curvature Sg are in the Sobolev spaces
Hp

2 (M,T ∗M ⊗ T ∗M) and Hp
2 (M) respectively, hence b ∈ Ls(M) with s > n

4 and
by Sobolev embedding a ∈ Lr(M) with r > n

2 . In this latter case the equation

∆2
gu+ divg(a(x)∇gu) + b(x)u = f(x)|u|N−2u (1.4)

is called singular Q-curvature equation.For more general coefficients a ∈ Lr(M)
with r > n

2 and b ∈ Ls(M) with s > n
4 , the equation (1.4) is called singular Q-

curvature type equation. To solve equation (1.3), we use a method developed in [1]
and [2] which resumes to study the variations of functional associated to equation
1.3 on the manifold Mλ defined in section 2. Serious difficulties appear compared
with the smooth case: considering the equation (4.3) in section 4, we need a Hardy-
Sobolev inequality and Releich-Kondrakov embedding on a manifolds. In the case of
the singular Yamabe equation theses latters were established in [14] and in the case
of singular Q-curvature type equations by the first author in [7]. In the sharp cases
(see section 5) the Hardy Sobolev inequality and the Releich-Kondrakov embedding
are no more valid so we need an additional assumption with some tricks combined
with the Lebesgue dominated convergence theorem.

Denote by Pg the operator defined in the weak sense on H2
2 (M) by Pg(u) =

∆2u + div(a∇u) + bu. Pg is called coercive if there exits Λ > 0 such that for any
u ∈ H2

2 (M) ∫
M

uPg(u)dvg ≥ Λ‖u‖2H2
2 (M).

Our main result reads as follows.

Theorem 1.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 6
and f a positive function. Suppose that Pg is coercive and at a point x0 where f
attains its maximum the following two conditions hold:

∆f(x0)
f(x0)

<
( n(n2 + 4n− 20)

3(n+ 2)(n− 4)(n− 6)
1

(1 + ‖a‖r + ‖b‖s)n/4

− n− 2
3(n− 1)

)
Sg(x0) when n > 6,

Sg(x0) > 0 when n = 6.

(1.5)

Then there is λ∗ > 0 such that for any λ ∈ (0, λ∗), the equation (1.3) has a non
trivial weak solution.

For fixed R ∈M , we define the function ρ on M by

ρ(Q) =

{
d(R,Q) if d(R,Q) < δ(M)
δ(M) if d(R,Q) ≥ δ(M)

(1.6)

where δ(M) denotes the injectivity radius of M .
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For real numbers σ and µ, consider the following equation, in the distribution
sense,

∆2u−∇i( a
ρσ
∇iu) +

bu

ρµ
= λ|u|q−2u+ f(x)|u|N−2u (1.7)

where the functions a and b are smooth on M .

Corollary 1.4. Let 0 < σ < n
r < 2 and 0 < µ < n

s < 4. Suppose that

∆f(x0)
f(x0)

<
1
3

( (n− 1)n(n2 + 4n− 20)
(n2 − 4)(n− 4)(n− 6)

1
(1 + ‖a‖r + ‖b‖s)n/4

− 1
)
Sg(x0)

when n > 6,

Sg(x0) > 0 when n = 6.

Then there is λ∗ > 0 such that if λ ∈ (0, λ∗), the (1.7) possesses a weak non trivial
solution uσ,µ ∈Mλ.

In the sharp case σ = 2 and µ = 4, letting K(n, 2, γ) be the best constant in the
Hardy-Sobolev inequality given by Theorem 4.1 we obtain the following result.

Theorem 1.5. Let (M, g) be a Riemannian compact manifold of dimension n ≥ 5.
Let (u

σm,µm
)m be a sequence in Mλ such that

Jλ,σ,µ(uσm,µm ) ≤ cσ,µ
∇Jλ(u

σ,µ
)− µ

σ,µ
∇Φλ(u

σ,µ
)→ 0

Suppose that

cσ,µ <
2

nK
n/4
0 (f(x0))

n−4
4

and
1 + a−max(K(n, 2, σ), A(ε, σ)) + b−max(K(n, 2, µ), A(ε, µ)) > 0

then the equation

∆2u−∇µ(
a

ρ2
∇µu) +

bu

ρ4
= f |u|N−2u+ λ|u|q−2u

in the distribution has a weak non trivial solution.

Our paper is organized as follows: in a first section we show that the manifold of
constraints is non empty, in the second one we establish a generic existence result
to equation 1.3. The third section deals with applications to particular equations
which could arise from conformal geometry. In the fourth section and under sup-
plementary assumption we obtain non trivial solution in the critical case. The last
section is devoted to tests functions which verify geometric assumptions and by the
same way complete the proofs of our claimed theorems in the introduction.

2. The manifold Mλ of constraints is non empty

In this section, we consider on H2
2 (M) the functional

Jλ(u) =
1
2

∫
M

(|∆gu|2−a(x)|∇gu|2+b(x)u2)dvg−
λ

q

∫
M

|u|qdvg−
1
N

∫
M

f(x)|u|Ndvg

associated to Equation 1.3. First, we put

Φλ(u) = 〈∇Jλ(u), u〉
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hence

Φλ(u) =
∫
M

((∆gu)2 − a(x)|∇gu|2 + b(x)u2)dvg − λ
∫
M

|u|qdvg −
∫
M

f(x)|u|Ndvg.

We let
Mλ = {u ∈ H2

2 (M) : Φλ(u) = 0 and ‖u‖ ≥ τ > 0}.

Proposition 2.1. The norm

‖u‖ = (
∫
M

|∆gu|2 − a(x)|∇gu|2 + b(x)u2dvg)1/2

is equivalent to the usual norm on H2
2 (M) if and only if Pg is coercive.

Proof. If Pg is coercive there is Λ > 0 such that for any u ∈ H2
2 (M),∫

M

Pg(u)udvg ≥ Λ‖u‖2H2
2 (M)

and since a ∈ Lr(M) and b ∈ Ls(M) where r > n
2 and s > n

4 , by Hölder’s inequality
we obtain ∫

M

uPg(u)dvg ≤ ‖∆gu‖22 + ‖a‖n
2
‖∇gu‖22∗ + ‖b‖n

4
‖u‖2N

where 2∗ = 2n/(n− 2).
The Sobolev’s inequalities lead to: for any η > 0,

‖∇gu‖22∗ ≤ max((1 + η)K(n, 1)2, Aη)
∫
M

(|∇2
gu|2 + |∇gu|2)dvg

where K(n, 1) denotes the best Sobolev’s constant in the embedding H2
1 (Rn) ↪→

L
2n
n−2 (Rn), and for any ε > 0,

‖u‖2N ≤ max((1 + ε)K0, Bε)‖u‖2H2
2 (M)

where in this latter inequality K0 is the best Sobolev’s constant in the embedding
H2

1 (M) ↪→ L
2n
n−2 (M) and Bε the corresponding (see [3]). Now by the well known

formula (see [3, page 115])∫
M

|∇2
gu|2dvg =

∫
M

(|∆gu|2 −Rij∇iu∇ju)dvg

where Rij denote the components of the Ricci curvature, there is a constant β > 0
such that ∫

M

|∇2
gu|2dvg ≤

∫
M

|∆gu|2 + β|∇gu|2dvg

so we obtain

‖∇gu‖22∗ ≤ (β + 1) max((1 + η)K(n, 1)2, Aη)
∫
M

(|∆gu|2 + |∇gu|2 + u2)dvg

and we infer that∫
M

Pg(u)udvg ≤ ‖u‖2H2
2 (M) + (β + 1)‖a‖n

2
max((1 + η)K(n, 1)2, Aη)‖u‖2H2

2 (M)

+ ‖b‖n
4

max((1 + ε)K0, Bε)‖u‖2H2
2 (M).

Hence∫
M

uPg(u)dvg
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≤ max(1, ‖b‖n
4

max((1 + ε)K0, Bε), (β + 1)‖a‖n
2

max((1 + ε)K(n, 1)2, Aε))︸ ︷︷ ︸
>0

× ‖u‖2H2
2 (M).

�

Lemma 2.2. The set Mλ is non empty provided that λ ∈ (0, λ0) where

λ0 =
(2q−2 − 2q−N )Λ

N−q
N−2

V (M)(1− q
N )(maxx∈M f(x))

2−q
N−2 (max((1 + ε)K(n, 2), Aε))

N−q
N−2

.

Proof. The proof of this lemma is the same as in [8], but we give it here for conve-
nience. Let t > 0 and u ∈ H2

2 (M)− {0}. Evaluating Φλ at tu, we obtain

Φλ(tu) = t2‖u‖2 − λtq‖u‖qq − tN
∫
M

f(x)|u|Ndvg.

Put

α(t) = ‖u‖2 − tN−2

∫
M

f(x)|u|Ndv(g),

β(t) = λtq−2‖u‖qq;
by Sobolev’s inequality, we obtain

α(t) ≥ ‖u‖2 −max
x∈M

f(x)(max((1 + ε)K0, Aε))N/2‖u‖NH2
2 (M)t

N−2.

By the coercivity of the operator Pg = ∆2
g−divg(a∇g)+b there is a constant Λ > 0

such that

α(t) ≥ ‖u‖2 − Λ−N/2 max
x∈M

f(x)(max((1 + ε)K0, Aε))
N
2 ‖u‖N tN−2.

Letting

α1(t) = ‖u‖2 − Λ−N/2 max
x∈M

f(x)(max((1 + ε)K0, Aε))N/2‖u‖N tN−2

Hölder and Sobolev inequalities lead to

β(t) ≤ λV (M)(1− q
N )(max((1 + ε)K0, Aε))q/2‖u‖qH2

2 (M)
tq−2

and the coercivity of Pg assures the existence of a constant Λ > 0 such that

β(t) ≤ λΛ−q/2V (M)(1− q
N )(max((1 + ε)K0, Aε))q/2‖u‖qtq−2.

Put
β1(t) = λΛ−q/2V (M)(1− q

N )(max((1 + ε)K0, Aε))q/2‖u‖qtq−2.

Let t0 such α1(t0) = 0; i.e.,

t0 =
Λ

N
2(N−2)

‖u‖(maxx∈M f(x))
1

N−2 (max((1 + ε)K0, Aε))
N

2(N−2)

Now since α1(t) is a decreasing and a concave function and β1(t) is a decreasing
and convex function, then

min
t ∈(0,

t0
2 ]
α1(t) = α1(

t0
2

) = ‖u‖2(1− 22−N ) > 0,

min
t ∈(0,

t0
2 ]
β1(t) = β1(

t0
2

) > 0,
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where

β1(
t0
2

) =
22−qλV (M)(1− q

N )Λ
q−N
N−2 ‖u‖2

(max((1 + ε)K0, Aε))
q−N
N−2 (maxx∈M f(x))

q−2
N−2

.

Consequently Φλ(tu) = 0 with t ∈ (0, t02 ] has a solution if

min
t∈(0,

t0
2 ]
α1(t) ≥ max

t∈(0,
t0
2 ]
β1(t);

that is to say

0 < λ <
(2q−2 − 2q−N )(maxx∈M f(x))

q−2
N−2 (max((1 + ε)K0, Aε))

q−N
N−2

Λ
N−q
N−2V (M)(1− q

N )
= λ0

Let t1 ∈ (0, t02 ] such that Φλ(t1u) = 0. If we take u ∈ H2
2 (M) such that ‖u‖ ≥ ρ

t1
and v = t1u we obtain Φλ(v) = 0 and ‖v‖ = t1‖u‖ ≥ ρ; i.e., v ∈Mλ provided that
λ ∈ (0, λ0). �

3. Existence of non trivial solutions in Mλ

The following lemmas whose proofs are similar modulo minor modifications as
in [8] give the geometric conditions to the functional Jλ.

Lemma 3.1. Let (M, g) be a Riemannian compact manifold of dimension n ≥ 5.
For all u ∈Mλ and all λ ∈ (0,min(λ0, λ1)) there is A > 0 such that Jλ(u) ≥ A > 0
where

λ1 =
(N−2)q
2(N−q)Λq/2

V (M)1− q
N (max((1 + ε)K(n, 2), Aε))q/2τ q−2

.

Lemma 3.2. Let (M, g) be a Riemannian compact manifold of dimension n ≥ 5.
The following assertions are true:

(i) 〈∇Φλ(u), u〉 < 0 for all u ∈Mλ and for all λ ∈ (0,min(λ0, λ1)).
(ii) The critical points of Jλ are points of Mλ.

Now, we show that Jλ satisfies the Palais-Smale condition on Mλ provided that
λ > 0 is sufficiently small. The result is given by the following lemma whose proof
is different from the one in the case of smooth coefficients.

Lemma 3.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.
Let (um)m be a sequence in Mλ such that

Jλ(um) ≤ c
∇Jλ(um)− µm∇Φλ(um)→ 0.

Suppose that

c <
2

nK
n/4
0 (f(x0))(n−4)/4

then there is a subsequence (um)m converging strongly in H2
2 (M).

Proof. Let (um)m ⊂Mλ and

Jλ(um) =
N − 2

2N
‖um‖2 − λ

N − q
Nq

∫
M

|um|qdvg .

As in the proof of Lemma 3.2, we have

Jλ(um) ≥ N − 2
2N

‖um‖2 − λ
N − q
Nq

Λ−q/2V (M)1− q
N (max((1 + ε)K0, Aε))q/2‖um‖q,
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Jλ(um) ≥ ‖um‖2(
N − 2

2N
− λN − q

Nq
Λ−q/2V (M)1− q

N (max((1 + ε)K0, Aε))q/2τ q−2)

> 0 .

Since 0 < λ <
(N−2)q
2(N−q) Λq/2

V (M)1−
q
N (max((1+ε)K(n,2),Aε))q/2τq−2

and Jλ(um) ≤ c, we obtain

c ≥ Jλ(um)

≥
[N − 2

2N
− λN − q

Nq
Λ−

q
2V (M)1− q

N (max((1 + ε)K0, Aε))
q
2 τ q−2

]
‖um‖2 > 0

so

‖um‖2 ≤
c

N−2
2N − λ

N−q
Nq Λ−q/2V (M)1− q

N (max((1 + ε)K0, Aε))q/2τ q−2
< +∞.

Then (um)m is a bounded in H2
2 (M). By the compactness of the embedding

H2
2 (M) ⊂ Hk

p (M) (k = 0, 1; p < N) we obtain a subsequence still denoted (um)m
such that

um → u weakly in H2
2 (M),

um → u strongly in Lp(M) where p < N,

∇um → ∇u strongly in Lp(M) where p < 2∗ =
2n
n− 2

um → u a.e. in M.

On the other hand since 2s
s−1 < N = 2n

n−4 , we obtain

|
∫
M

b(x)|um − u|2dvg| ≤ ‖b‖s‖um − u‖22s
s−1

≤ ‖b‖s((K0 + ε)‖∆(um − u)‖22 +Aε‖um − u‖22).

Now taking into account

K0 =
16

n(n2 − 4)(n− 4)ωn/4n

< 1 (3.1)

we obtain ∫
M

b(x)(um − u)2dvg ≤ ‖b‖s‖∆(um − u)‖22 + o(1).

By the same process as above, we obtain∫
M

a(x)|∇(um − u)|2dvg ≤ ‖a‖r‖∆(um − u)‖22 + o(1).

By Brezis-Lieb lemma, we write∫
M

(∆gum)2dvg =
∫
M

(∆gu)2dvg +
∫
M

(∆g(um − u))2dvg + o(1)

and ∫
M

f(x)|um|Ndvg =
∫
M

f(x)|u|Ndvg +
∫
M

f(x)|um − u|Ndvg + o(1).

Now we claim that µm → 0 as m→ +∞ Testing with um we obtain

〈∇Jλ(um)− µm∇Φλ(um), um〉 = o(1);
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then

〈∇Jλ(um)− µm∇Φλ(um), um〉 = 〈∇Jλ(um), um〉︸ ︷︷ ︸
=0

− µm〈∇Φλ(um), um〉 = o(1);

hence
µm〈∇Φλ(um), um〉 = o(1).

By Lemma 3.2, we obtain lim supm〈∇Φλ(um), um〉 < 0 so µm → 0 as m→ +∞.
Our last claim is that um → u strongly in H2

2 (M), indeed

Jλ(um)− Jλ(u) =
1
2

∫
M

(∆g(um − u))2dvg −
1
N

∫
M

f(x)|um − u|Ndvg + o(1).

Since um − u → 0 weakly in H2
2 (M), testing with ∇Jλ(um) − ∇Jλ(u), we have

〈∇Jλ(um)−∇Jλ(u), um − u〉 = o(1) and

〈∇Jλ(um)−∇Jλ(u), um − u〉

=
∫
M

(∆g(um − u))2dvg −
∫
M

f(x)|um − u|Ndvg = o(1);
(3.2)

then ∫
M

(∆g(um − u))2dvg =
∫
M

f(x)|um − u|Ndvg + o(1),

and taking account of (3.2) we obtain

Jλ(um)− Jλ(u) =
1
2

∫
M

(∆g(um − u))2dvg −
1
N

∫
M

(∆g(um − u))2dvg + o(1);

i. e.,

Jλ(um)− Jλ(u) =
2
N

∫
M

(∆g(um − u))2dvg + o(1).

Independently, by the Sobolev’s inequality, we have

‖um − u‖2N ≤ (1 + ε)K0

∫
M

(∆g(um − u))2dvg + o(1). (3.3)

Since ∫
M

f(x)|um − u|Ndvg ≤ max
x∈M

f(x)‖um − u‖NN

we infer by (3.3) that∫
M

f(x)|um − u|Ndvg ≤ (1 + ε)
n
n−4 max

x∈M
f(x)K

n
n−4
0 ‖∆g(um − u)‖N2 + o(1)

and using equality (3.2),

o(1) ≥ ‖∆g(um − u)‖22 − (1 + ε)
n
n−4 max

x∈M
f(x)K

n
n−4
0 ‖∆g(um − u)‖N2

and

‖∆g(um − u)‖22 − (1 + ε)
n
n−4 max

x∈M
f(x)K

n
n−4
0 ‖∆g(um − u)‖N2

= ‖∆g(um − u)‖22(1− (1 + ε)
n
n−4 max

x∈M
f(x)K

n
n−4
0 ‖∆g(um − u)‖N−2

2 )

so if
lim sup
m→+∞

‖∆g(um − u)‖22 <
1

K
n/4
0 (maxx∈M f(x))

n
4−1

(3.4)
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then um → u strongly in H2
2 (M). The condition (3.4) is fulfilled since by Lemma

3.1 Jλ(u) > 0 on Mλ with λ is as in Lemma 3.1 and by hypothesis,

c ≥ Jλ(um) > (Jλ(um)− Jλ(u)) =
2
n

∫
M

(∆g(um − u))2dvg

and

c <
2

nK
n/4
0 (maxx∈M f(x))

n
4−1

.

It is obvious that
Φλ(u) = 0 and ‖u‖ ≥ τ

i.e. u ∈Mλ. �

Now we show the existence of a sequence in Mλ satisfying the conditions of
Palais-Smale.

Lemma 3.4. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5,
then there is a couple (um, µm) ∈ Mλ × R such that ∇Jλ(um)− µm∇Φλ(um)→ 0
strongly in (H2

2 (M))∗ and Jλ(um) is bounded provide that λ ∈ (0, λ∗) with λ∗ =
{min(λ0, λ1), 0}.

Proof. Since Jλ is Gateau differentiable and by Lemma 3.1 bounded below on Mλ

it follows from Ekeland’s principle that there is a couple (um, µm) ∈Mλ×R such
that ∇Jλ(um) − µm∇Φλ(um) → 0 strongly in (H2

2 (M))
′

and Jλ(um) is bounded
i.e. (um, µm)m is a Palais-Smale sequence on Mλ. �

Now we are in position to establish the following generic existence result.

Theorem 3.5. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5
and f a positive function. Suppose that Pg is coercive and

c <
2

nK
n/4
0 (f(x0))

n−4
4

. (3.5)

Then there is λ∗ > 0 such that for any λ ∈ (0, λ∗), the equation (1.3) has a non
trivial weak solution.

Proof. By Lemma 3.3 and 3.4 there is u ∈ H2
2 (M) such that

Jλ(u) = min
ϕ∈Mλ

Jλ(ϕ).

By Lagrange multiplicative theorem there is a real number µ such that for any
ϕ ∈ H2

2 (M),
〈∇Jλ(u), ϕ〉 = µ〈∇Φλ(u), ϕ〉 (3.6)

and letting ϕ = u in the equation (3.6), we obtain

Φλ(u) = 〈∇Jλ(u), u〉 = µ〈∇Φλ(u), u〉.

By Lemma 3.2 we obtain that µ = 0 and by equation (3.6), we infer that for any
ϕ ∈ H2

2 (M)
〈∇Jλ(u), ϕ〉 = 0

hence u is weak non trivial solution to equation (1.3) and since by Lemma 3.2, u is
a critical points of Jλ. We conclude that u ∈Mλ. �
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4. Applications

Let P ∈M , we define a function on M by

ρ
P

(Q) =

{
d(P,Q) if d(P,Q) < δ(M)
δ(M) if d(P,Q) ≥ δ(M)

(4.1)

where δ(M) is the injectivity radius of M . For brevity we denote this function by
ρ. The weighted Lp(M,ργ) space will be the set of measurable functions u on M
such that ργ |u|p are integrable where p ≥ 1. We endow Lp(M,ργ) with the norm

‖u‖p,ρ = (
∫
M

ργ |u|pdvg)1/p.

In this section we need the Hardy-Sobolev inequality and the Releich-Kondrakov
embedding whose proofs are given in [7].

Theorem 4.1. Let (M, g) be a Riemannian compact manifold of dimension n ≥ 5
and p, q , γ are real numbers such that γ

p = n
q −

n
p − 2 and 2 ≤ p ≤ 2n

n−4 . For any
ε > 0, there is A(ε, q, γ) such that for any u ∈ H2

2 (M),

‖u‖2p,ργ ≤ (1 + ε)K(n, 2, γ)2‖∆gu‖22 +A(ε, q, γ)‖u‖22 (4.2)

where K(n, 2, γ) is the optimal constant.

In the case γ = 0, K(n, 2, 0) = K(n, 2) = K
1/2
0 is the best constant in the

Sobolev’s embedding of H2
2 (M) in LN (M) where N = 2n

n−4 .

Theorem 4.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5
and p, q, γ are real numbers satisfying 1 ≤ q ≤ p ≤ nq

n−2q , γ < 0 and l = 1, 2.
If γ

p = n ( 1
q −

1
p ) − l then the inclusion Hq

l (M) ⊂ Lp(M,ργ) is continuous. If
γ
p > n ( 1

q −
1
p )− l then inclusion Hq

l (M) ⊂ Lp(M,ργ) is compact.

We consider the equation

∆2
gu+ divg

(a(x)
ρσ
∇gu

)
+
b(x)
ρµ

u = λ|u|q−2u+ f(x)|u|N−2u (4.3)

where a and b are smooth functions and ρ denotes the distance function defined by
(4.1), λ > 0 in some interval (0, λ∗), 1 < q < 2, σ, µ will be precise later and we
associate to (4.3) on H2

2 (M) the functional

Jλ(u) =
1
2

∫
M

((∆gu)2 − a(x)
ρσ
|∇gu|2 +

b(x)
ρµ

u2)dvg

− λ

q

∫
M

|u|qdvg −
1
N

∫
M

f(x)|u|Ndvg.

If we put
Φλ(u) = 〈∇Jλ(u), u〉

we obtain

Φλ(u) =
∫
M

(∆gu)2 − a(x)
ρσ
|∇gu|2 +

b(x)
ρµ

u2dvg − λ
∫
M

|u|qdvg −
∫
M

f(x)|u|Ndvg.
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Theorem 4.3. Let 0 < σ < n
s < 2 and 0 < µ < n

p < 4. Suppose that

sup
u∈H2

2 (M)

Jλ,σ,µ(u) <
2

n K
n/4
0 (f(x0))

n−4
4

then there is λ∗ > 0 such that if λ ∈ (0, λ∗), equation (4.3) possesses a weak non
trivial solution uσ,µ ∈Mλ.

Proof. Let ã = a(x)
ρσ and b̃ = b(x)

ρµ , so if σ ∈ (0,min(2, ns )) and µ ∈ (0,min(4, np )),
obliviously ã ∈ Ls(M), b̃ ∈ Lp(M), where s > n

2 and p > n
4 . Theorem 4.3 is a

consequence of Theorem 3.5. �

5. The critical cases σ = 2 and µ = 4

In the cases σ = 2 and µ = 4 the Hardy-Sobolev inequality proved in case of
manifolds by the first author in [7] and is formulated in Theorem 4.1 is no longer
valid, so we consider the subcritical cases 0 < σ < 2 and 0 < µ < 4 and we tend σ
to 2and µ to 4. This can be done successfully by adding an appropriate assumption
and by using the Lebesgue dominated converging theorem.

By section four, for any σ ∈ (0,min(2, ns )) and µ ∈ (0,min(4, np )), there is a
solution uσ,µ ∈Mλ of equation (1.3). Now we are going to show that the sequence
(uσ,µ)σ,µ is bounded in H2

2 (M). Evaluating Jλ,σ,µ at uσ,µ

Jλ,σ,µ(uσ,µ) =
1
2
‖uσ,µ‖2 −

1
N

∫
M

f(x)|uσ,µ|Ndvg −
1
q
λ

∫
M

|uσ,µ|qdvg

and taking account of uσ,µ ∈Mλ, we infer that

Jλ,σ,µ(uσ,µ) =
N − 2

2N
‖uσ,µ‖2 − λ

N − q
Nq

∫
M

|uσ,µ|qdvg.

For a smooth function a on M , denotes by a− = min(0,minx∈M (a(x)). Let
K(n, 2, σ) the best constant and A(ε, σ) the corresponding constant in the Hardy-
Sobolev inequality given in Theorem 4.1.

Theorem 5.1. Let (M, g) be a Riemannian compact manifold of dimension n ≥ 5.
Let (um)m = (uσm,µm)m be a sequence in Mλ such that

Jλ,σ,µ(um) ≤ cσ,µ
∇Jλ(um)− µ

σ,µ
∇Φλ(um)→ 0.

Suppose that

cσ,µ <
2

n K(n, 2)n/4(maxx∈M f(x))(n−4)/4

and
1 + a−max(K(n, 2, σ), A(ε, σ)) + b−max(K(n, 2, µ), A(ε, µ)) > 0.

Then the equation

∆2u−∇µ(
a

ρ2
∇µu) +

bu

ρ4
= f |u|N−2u+ λ|u|q−2u

has a non trivial solution in the sense of distributions.
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Proof. Let (um)m ⊂Mλ,σ,µ,

Jλ,σ,µ(um) =
N − 2

2N
‖um‖2 − λ

N − q
Nq

∫
M

|um|qdvg

As in proof of Theorem 3.5, we obtain

Jλ,σ,µ(um) ≥ ‖um‖2
(N − 2

2N

− λN − q
Nq

Λ−q/2σ,µ V (M)1− q
N (max((1 + ε)K(n, 2), Aε))q/2τ q−2

)
> 0

where

0 < λ <

(N−2)q
2(N−q)Λq/2σ,µ

V (M)1− q
N (max((1 + ε)K(n, 2), Aε))q/2τ q−2

.

First we claim that
lim

(σ,µ)→(2−,4−)
inf Λσ,µ > 0.

Indeed, if ν1,σ,µ denotes the first nonzero eigenvalue of the operator

Pg = ∆2
g − div(

a

ρσ
∇g) +

b

ρµ
,

then clearly Λσ,µ ≥ ν1,σ,µ. Suppose on the contrary that lim(σ,µ)→(2−,4−) inf Λσ,µ =
0, then lim inf(σ,µ)→(2−,4−) ν1,σ,µ = 0. Independently, if uσ,µ is the corresponding
eigenfunction to ν1,σ,µ we have

ν1,σ,µ = ‖∆uσ,µ‖22 +
∫
M

a|∇uσ,µ|2

ρσ
dvg +

∫
M

bu2
σ,µ

ρµ
dvg

≥ ‖∆uσ,µ‖22 + a−
∫
|∇uσ,µ|2

ρσ
dvg + b−

∫
M

u2
σ,µ

ρµ
dvg

(5.1)

where a− = min(0,minx∈M a(x)) and b− = min(0,minx∈M b(x)). The Hardy-
Sobolev’s inequality given by Theorem 4.1 leads to∫

M

|∇uσ,µ|2

ρσ
dvg ≤ C(‖∇|∇uσ,µ|‖2 + ‖∇uσ,µ‖2),

and since
‖∇|∇uσ,µ|‖2 ≤ ‖∇2uσ,µ‖2 ≤ ‖∆uσ,µ‖2 + β‖∇uσ,µ‖2

where β > 0 is a constant and it is well known that for any ε > 0 there is a constant
c(ε) > 0 such that

‖∇uσ,µ‖2 ≤ ε‖∆uσ,µ‖2 + c‖uσ,µ‖2.
Hence ∫

M

|∇uσ,µ|2

ρσ
dvg ≤ C(1 + ε)‖∆uσ,µ‖2 +A(ε)‖uσ,µ‖2 (5.2)

Now if K(n, 2, σ) denotes the best constant in inequality (5.2) we obtain that for
any ε > 0,∫

M

|∇uσ,µ|2

ρσ
dvg ≤ (K(n, 2, σ)2 + ε)‖∆uσ,µ‖2 +A(ε, σ)‖uσ,µ‖2. (5.3)

By inequalities (4.2), (5.1) and (5.3), we have

ν1,σ,µ ≥ (1 + a−max(K(n, 2, σ), A(ε, σ))

+ b−max(K(n, 2, µ), A(ε, µ)))(‖∆uσ,µ‖2 + ‖uσ,µ‖2)



EJDE-2013/63 EXISTENCE OF SOLUTIONS 15

So if

1 + a−max(K(n, 2, σ), A(ε, σ)) + b−max(K(n, 2, µ), A(ε, µ)) > 0

then we obtain limσ,µ(uσ,µ) = 0 and ‖uσ,µ‖ = 1 a contradiction. The reflexivity
of H2

2 (M) and the compactness of the embedding H2
2 (M) ⊂ Hk

p (M) (k = 0, 1;
p < N), imply that up to a subsequence, we have

um → u weakly in H2
2 (M),

um → u strongly in Lp(M), p < N,

∇um → ∇u strongly in Lp(M), p < 2∗ =
2n
n− 2

,

um → u a. e. in M.

The Brézis-Lieb lemma allows us to write∫
M

(∆gum)2dvg =
∫
M

(∆gu)2dvg +
∫
M

(∆g(um − u))2dvg + o(1)

and ∫
M

f(x)|um|Ndvg =
∫
M

f(x)|u|Ndvg +
∫
M

f(x)|um − u|Ndvg + o(1).

Now by the boundedness of the sequence (um)m, we have that um → u weakly in
H2

2 (M), ∇um → ∇u weakly in L2(M,ρ−2) and um → u weakly in L2(M,ρ−4); i.e.,
for any ϕ ∈ L2(M),∫

M

a(x)
ρ2
∇um∇ϕdvg =

∫
M

a(x)
ρ2
∇u∇ϕdvg + o(1)

and ∫
M

b(x)
ρ4

umϕdvg =
∫
M

b(x)
ρ4

uϕdvg + o(1).

For every φ ∈ H2
2 (M) we have∫

M

(
∆2
gum + divg

(a(x)
ρσm
∇gum

)
+
b(x)
ρδm

um

)
φdvg

=
∫
M

(λ|um|q−2um + f(x)|um|N−2um)φdvg.
(5.4)

By the weak convergence in H2
2 (M), we have immediately that∫

M

φ∆2
gumdvg =

∫
M

φ∆2
gudvg + o(1)

and ∫
M

(
a(x)
ρσm
∇gum −

a(x)
ρ2
∇gu)φdvg

=
∫
M

(
a(x)
ρσm
∇gum +

a(x)
ρ2

(∇gum −∇gum)− a(x)
ρ2
∇gu)φdvg
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Then∣∣ ∫
M

(a(x)
ρσm
∇gum −

a(x)
ρ2
∇gu

)
φdvg

∣∣
≤
∣∣ ∫
M

(a(x)
ρσm
∇gum −

a(x)
ρ2
∇gum

)
φdvg

∣∣+
∣∣ ∫
M

(
a(x)
ρ2
∇gum −

a(x)
ρ2
∇gu)φdvg

∣∣
≤
∫
M

|a(x)φ∇gum||
1
ρσm

− 1
ρ2
|dvg + |

∫
M

a(x)
ρ2
∇g(um − u)φdvg|.

(5.5)
The weak convergence in L2(M,ρ−2) and the Lebesgue’s dominated convergence
theorem imply that the second right hand side of (5.5) goes to 0. For the third
term of the left hand side of (5.3), we write∫

M

(b(x)
ρδm

um −
b(x)
ρ4

u
)
φdvg =

∫
M

(b(x)
ρδm

um −
b(x)
ρ4

um +
b(x)
ρ4

um −
b(x)
ρ4

u
)
φdvg

and ∣∣ ∫
M

(
b(x)
ρδm

um −
b(x)
ρ4

u)φdvg
∣∣

≤
∫
M

|b(x)φum||
1
ρδm
− 1
ρ4
|dvg + |

∫
M

b(x)
ρ4

(um − u)φdvg|.
(5.6)

Here also the weak convergence in L2(M,ρ−4) and the Lebesgue’s dominated con-
vergence allows us to affirm that the left hand side of (5.6) converges to 0.

It remains to show that µm → 0 as m → +∞ and um → u strongly in H2
2 (M)

but this is the same as in the proof of Theorem 3.5 which implies also u ∈Mλ. �

6. Test Functions

In this section, we give the proof of the main theorem to do so, we consider a
normal geodesic coordinate system centered at x0. Denote by Sx0(ρ) the geodesic
sphere centered at x0 and of radius ρ (ρ < d which is the injectivity radius). Let
dΩ be the volume element of the n−1-dimensional Euclidean unit sphere Sn−1 and
put

G(ρ) =
1

ωn−1

∫
S(ρ)

√
|g(x)|dΩ

where ωn−1 is the volume of Sn−1 and |g(x)| the determinant of the Riemannian
metric g. The Taylor’s expansion of G(ρ) in a neighborhood of x0 is given by

G(ρ) = 1− Sg(x0)
6n

ρ2 + o(ρ2)

where Sg(x0) denotes the scalar curvature of M at x0. Let B(x0, δ) be the geodesic
ball centered at x0 and of radius δ such that 0 < 2δ < d and denote by η a smooth
function on M such that

η(x) =

{
1 on B(x0, δ)
0 on M −B(x0, 2δ).

Consider the radial function

uε(x) = (
(n− 4)n(n2 − 4)ε4

f(x0)
)
n−4

8
η(ρ)

((ρθ)2 + ε2)
n−4

2
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with
θ = (1 + ‖a‖r + ‖b‖s)1/n

where ρ = d(x0, x) is the distance from x0 to x and f(x0) = maxx∈M f(x). For
further computations we need the following integrals: for any real positive numbers
p, g such that p− q > 1 we put

Iqp =
∫ +∞

0

tq

(1 + t)p
dt .

The following relations are immediate

Iqp+1 =
p− q − 1

p
Iqp , Iq+1

p+1 =
q + 1

p− q − 1
Iqp+1.

6.1. Application to compact Riemannian manifolds of dimension n > 6.

Theorem 6.1. Let (M, g) be a compact Riemannian manifold of dimension n > 6.
Suppose that at a point x0 where f attains its maximum the following condition

∆f(x0)
f(x0)

<
1
3

( (n− 1)n(n2 + 4n− 20)
(n2 − 4)(n− 4)(n− 6)

1
(1 + ‖a‖r + ‖b‖s)n/4

− 1
)
Sg(x0)

holds. Then (1.2) has a non trivial solution with energy

Jλ(u) <
1

K
n/4
0 (maxx∈M f(x))

n
4−1

.

Proof. The proof of Theorem 6.1 reduces to show that the condition (3.5) of The-
orem 3.5 is satisfied and since by Lemma 2.2 there is a t0 > 0 such that t0uε ∈Mλ

for sufficiently small λ, so it suffices to show that

sup
t>0

Jλ(tuε) <
1

K
n
4

0 (maxx∈M f(x))
n
4−1

.

To compute the term
∫
M
f(x)|uε(x)|Ndvg, we need the following Taylor’s expansion

of f at the point x0

f(x) = f(x0) +
∂2f(x0)
2∂yi∂yj

yiyj + o(ρ2)

and also that of the Riemannian measure

dvg = 1− 1
6
Rij(x0)yiyj + o(ρ2)

where Rij(x0) denotes the Ricci tensor at x0. The expression of
∫
M
f(x)|uε(x)|Ndvg

is well known (see for example [11] ) and is given in case n > 6 by∫
M

f(x)|uε(x)|Ndvg =
θ−n

K
n/4
0 (f(x0))

n−4
4

(
1− (

∆f(x0)
2(n− 2)f(x0)

+
Sg(x0)

6(n− 2)
)ε2 +o(ε2)

)
where K0 is given by (3.1) and ωn = 2n−1I

n
2−1
n ωn−1 and ωn is the volume of Sn,

the standard unit sphere of Rn+1 endowed with its round metric.
Now the restriction of |∂uε∂ρ | to the geodesic ball B(x0, δ) is computed as follows

|∂uε
∂ρ
|B(x0,δ) = |∇uε| = θ−2(n− 4)(

(n− 4)n(n2 − 4)ε4

f(x0)
)
n−4

8
ρ

((ρθ )2 + ε2)
n−2

2
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and Since a ∈ Lr(M) with r > n/2 we have∫
B(x0,δ)

a(x)|∇uε|2dvg ≤ θ−4(n− 4)2
( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4 ‖a‖rω

1− 1
r

n−1

×
(∫ δ

0

ρ
2r
r−1 +n−1

((ρθ )2 + ε2)
(n−2)r
r−1

(∫
S(ρ)

√
|g(x)|dΩ

)
dρ
) r−1

r

Since ∫
S(ρ)

√
|g(x)|dΩ = ωn−1

(
1− Sg(x0)

6n
ρ2 + o(ρ2)

)
we obtain∫
B(x0,δ)

a(x)|∇uε|2dvg ≤ θ−4(n− 4)2(
(n− 4)n(n2 − 4)ε4

f(x0)
)
n−4

4 ‖a‖rω
1− 1

r
n−1

×
(∫ δ

0

ρ
2r
r−1 +n−1

((ρθ)2 + ε2)
(n−2)r
r−1

dρ
(

1− Sg(x0)
6n

ρ2 + o(ρ2)
)) r−1

r

and by the following change of variable

t = (
ρθ

ε
)2 i.e. ρ =

ε

θ

√
t

we obtain∫
B(x0,δ)

a(x)|∇uε|2dvg

≤ θ−n
r
r−1 (n− 4)2

( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4 ‖a‖rω

1− 1
r

n−1 ε
−(n−4)+2−nr

×
(∫ ( δθε )2

0

t
n−2

2 + r
r−1

(t+ 1)
(n−2)r
r−1

dt− Sg(x0)
6n

θ−2ε2
∫ ( δθε )2

0

t
n
2 + r

r−1

(t+ 1)
(n−2)r
r−1

dt+ o(ε2)
) r−1

r

.

Letting ε→ 0 we obtain∫
B(x0,δ)

a(x)|∇uε|2dvg

≤ 2−1+ 1
r θ−n(1− 1

r )(n− 4)2(
(n− 4)n(n2 − 4)ε4

f(x0)
)
n−4

4 ‖a‖rω
1− 1

r
n−1 ε

−(n−4)+2−nr

× (I
n−2

2 + r
r−1

(n−2)r
r−1

− θ−2Sg(x0)
6n

I
n
2 + r

r−1
(n−2)r
r−1

ε2 + o(ε2))
r−1
r .

Then∫
B(x0,δ)

a(x)|∇uε|2dvg

≤ 2−1+ 1
r θ−n

r
r−1 (n− 4)2

( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4 ‖a‖rω

1− 1
r

n−1 ε
ε−(n−4)+2−n

r

× I1+n−2
2 . r−1

r
(n−2)r
r−1

[
1− r − 1

r
θ2Sg(x0)

6n
I
n
2 + r

r−1
(n−2)r
r−1

I
−n−2

2 −
r
r−1

(n−2)r
r−1

ε2 + o(ε2)
]
.

It remains to compute the integral
∫
B(x0,2δ)−B(x0,δ)

a(x)|∇uε|2dvg.
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First we remark that∣∣ ∫ ( 2δθ
ε )2

( δθε )2
h(t)

tq

(t+ 1)p
dt
∣∣ ≤ C(

1
ε

)2(q−p+1) = Cε2(p−q−1)

and since p− q = n− 4 ≥ 3, we obtain∫ ( 2δθ
ε )2

( δθε )2
h(t)

iq

(t+ 1)p
dt = o(ε2)

and then ∫
B(x0,2δ)−B(x0,δ)

a(x)|∇uε|2dvg = o(ε2). (6.1)

Finally we obtain∫
M

a(x)|∇uε|2dvg

≤ 2−1+ 1
r θ−n

r
r−1 (n− 4)2

( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4 ‖a‖rω

1− 1
r

n−1 ε
−(n−4)+2−nr

×
(
I

1+n−2
2 . r−1

r
(n−2)r
r−1

+ o(ε2)
)
.

Letting

A = K
n/4
0

(n− 4)
n
4 +1 × (ωn−1)

r−1
r

2
r−1
r

(n(n2 − 4))
n−4

4

(
I
n−2

2 + r
r−1

(n−2)r
r−1

) r−1
r

(6.2)

we obtain∫
M

a(x)|∇uε|2dvg ≤ ε2−
n
r θ−n

r
r−1

A

K
n/4
0 (f(x0))

n−4
4

‖a‖r(1 + o(ε2)).

Now we compute∫
M

b(x)u2
εdvg =

∫
B(x0,δ)

b(x)u2
εdvg +

∫
B(x0,2δ)−B(x0,δ)

b(x)u2
εdvg

and since b ∈ Ls(M) with s > n
4 , we have∫

M

b(x)u2
εdvg ≤ ‖b‖s‖uε‖22s

s−1
.

Independently,

‖uε‖22s
s−1 ,B(x0,δ)

=
( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4

×
(∫ δ

0

ρn−1

((ρθ)2 + ε2)
(n−4)s
(s−1)

(∫
S(r)

√
|g(x)|dΩ

)
dr
) s−1

s

and ∫
S(r)

√
|g(x)|dΩ = ωn−1

(
1− Sg(x0)

6n
ρ2 + o(ρ2)

)
.

Consequently,

‖uε‖22s
s−1 ,B(x0,δ)

=
( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4



20 M. BENALILI, K. TAHRI EJDE-2013/63

ω
s−1
s

n−1 ×
(∫ δ

0

ρn−1

((ρθ)2 + ε2)
(n−4)s
(s−1)

(
1− Sg(x0)

6n
ρ2 + o(ρ2)

)
dρ
) s−1

s

.

And putting t = (ρθ/ε)2 , we obtain

‖uε‖22s
s−1 ,B(x0,δ)

=
( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4

(ωn−1)
s−1
s ε−n+4+4−ns

×
(εnθ−n

2

∫ ( δθε )2

0

t
n
2−1

(t+ 1)
(n−4)s
(s−1)

dt

− θ−n−2Sg(x0)
12n

εn+2

∫ ( δθε )2

0

t
n
2

(t+ 1)
(n−4)s
(s−1)

dt+ o(εn+2)
) s−1

s

.

Letting ε→ 0, we obtain

‖uε‖22s
s−1 ,B(x0,δ)

=
( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4

(ωn−1)
s−1
s ε−n+4+4−ns

× θ−n
s
s−1 (

εn

2
)
s−1
s

(∫ +∞

0

t
n
2

(t+ 1)
(n−4)s
(s−1)

dt

− Sg(x0)
12n

ε2θ−2

∫ +∞

0

t
n
2 +1

(t+ 1)
(n−4)s
(s−1)

dt+ o(ε2)
) s−1

s

.

Hence

‖uε‖22s
s−1 ,B(x0,δ)

=
( (n− 4)n(n2 − 4)ε4

f(x0)

)n−4
4

(ωn−1)
s−1
s ε−n+4+4−ns θ−n

s
s−1 (

εn

2
)
s−1
s

×
(∫ +∞

0

t
n
2

(t+ 1)
(n−4)s
(s−1)

dt− θ−2Sg(x0)
12n

ε2
∫ +∞

0

t
n
2 +1

(t+ 1)
(n−4)s
(s−1)

dt+ o(ε2)
) s−1

s

,

or

‖uε‖22s
s−1

=
( (n− 4)n(n2 − 4)

f(x0)

)n−4
4
(ωn−1

2

) s−1
s

ε4−
n
s θ−n

s
s−1

×
[
(I

n
2
(n−4)s
(s−1)

)
s−1
s − θ−2(s− 1)Sg(x0)

12n s
(I

n
2
(n−4)s
(s−1)

)−
1
s I

n
2 +1
(n−4)s
(s−1)

ε2 + o(ε2)
]

Finally, by the same method as in equality (6.1), we obtain∫
M

b(x)u2
εdvg

≤ ‖b‖s(
(n− 4)n(n2 − 4)

f(x0)
)
n−4

4 (
ωn−1

2
)
s−1
s ε4−

n
s θ−n

s
s−1

((
I
n
2
(n−4)s
(s−1)

) s−1
s

+ o(ε2)
)
.

Putting

B = K
n/4
0 ((n− 4)n(n2 − 4))

n−4
4 (

ωn−1

2
)
s−1
s

(
I
n
2
(n−4)s
(s−1)

) s−1
s

(6.3)

we obtain ∫
M

b(x)u2
εdvg ≤ ε4−

n
s θ−n

s
s−1

‖b‖sB
K

n
4

0 (f(x0))
n−4

4

(1 + o(ε2)).
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The computation of
∫
M

(∆uε)2dvg is well known see for example ([11]) and is given
by ∫

M

(∆uε)2dvg =
θ−n

K
n/4
0 (f(x0))

n−4
4

(
1− n2 + 4n− 20

6(n2 − 4)(n− 6)
Sg(x0)ε2 + o(ε2)

)
.

Summarizing, we obtain∫
M

(∆uε)2 − a(x)|∇uε|2 + b(x)u2
εdvg

≤ θ−n

K
n/4
0 f(x0)

n−4
4

(
1 + ε2−

n
r θ−

n
r−1A‖a‖r + ε4−

n
s θ−

n
s−1B‖b‖s

− n2 + 4n− 20
6(n2 − 4)(n− 6)

Sg(x0)ε2 + o(ε2)
)
.

Now, we have

Jλ(tuε) ≤ J0(tuε) =
t2

2
‖uε‖2 −

tN

N

∫
M

f(x)|uε(x)|Ndvg

≤ θ−n

K
n/4
0 f(x0)

n−4
4

{1
2
t2(1 + ε2−

n
r θ−

n
r−1A‖a‖r + ε4−

n
s θ−

n
s−1B‖b‖s)−

tN

N

+
[( ∆f(x0)

2(n− 2)f(x0)
+

Sg(x0)
6(n− 1)

) tN
N
− 1

2
t2

n2 + 4n− 20
6(n2 − 4)(n− 6)

Sg(x0)
]
ε2
}

+ o(ε2)

and letting ε be small enough so that

1 + ε2−
n
r θ−

n
r−1A‖a‖r + ε4−

n
s θ−

n
s−1B‖b‖s ≤ (1 + ‖a‖r + ‖b‖s)

4
n

and since the function ϕ(t) = α t
2

2 −
tN

N , with α > 0 and t > 0, attains its maximum
at t0 = α

1
N−2 and

ϕ(t0) =
2
n
αn/4.

Consequently,

Jλ(tuε) ≤
2θ−n

nK
n/4
0 f(x0)

n−4
4

{
1 + ‖a‖r + ‖b‖s +

[( ∆f(x0)
2(n− 2)f(x0)

+
Sg(x0)

6(n− 1)

) tN0
N

− 1
2
t20

n2 + 4n− 20
6(n2 − 4)(n− 6)

Sg(x0)
]
ε2
}

+ o(ε2).

Taking into account the value of θ and putting

R(t) =
( ∆f(x0)

2(n− 2)f(x0)
+

Sg(x0)
6(n− 1)

) tN
N
− 1

2
n2 + 4n− 20

6(n2 − 4)(n− 6)
Sg(x0)t2

we obtain
sup
t≥0

Jλ(tuε) <
2

nK
n/4
0 (maxx∈M f(x))

n
4−1

provided that R(t0) < 0; i.e.,

∆f(x0)
f(x0)

<
( n(n2 + 4n− 20)

3(n+ 2)(n− 4)(n− 6)
1

(1 + ‖a‖r + ‖b‖s)n/4
− n− 2

3(n− 1)

)
Sg(x0).

Which completes the proof. �
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6.1.1. Application to compact Riemannian manifolds of dimension n = 6.

Theorem 6.2. In case n = 6, we suppose that at a point x0 where f attains its
maximum Sg(x0) > 0. Then the equation (1.2) has a non trivial solution.

Proof. The same calculations as in case n > 6 gives us∫
M

f(x)|uε(x)|Ndvg =
θ−n

K
n/4
0 (f(x0))

n−4
4

(
1−
( ∆f(x0)

2(n− 2)f(x0)
+
Sg(x0)

6(n− 2)

)
ε2+o(ε2)

)
.

Also, we have∫
M

a(x)|∇uε|2dvg ≤
‖a‖rA

K
n/4
0 (f(x0))

n−4
4

ε2−
n
r θ
− r
r−1 (1 + o(ε2))

and ∫
M

b(x)u2
εdvg ≤

‖b‖sB
K
n/4
0 (f(x0))

n−4
4

ε4−
n
s θ−

s
s−1 + (1 + o(ε2)).

where A and B are given by (6.2) and (6.3) respectively for n = 6. The computa-
tions of the term

∫
M

(∆uε)2dvg are well known (see for example [11])∫
M

(∆uε)2dv(g)

= θ−n(n− 4)2
( (n− 4)n(n2 − 4)

f(x0)

)n−4
4 ωn−1

2

×
(n(n+ 2)(n− 2)

(n− 4)
I
n
2−1
n − 2

n
θ−2Sg(x0)ε2 log(

1
ε2

) +O(ε2)
)
.

∫
M

(∆uε)2dvg =
θ−n

K
n/4
0 (f(x0))

n−4
4

(
1− 2(n− 4)

n2(n2 − 4)I
n
2−1
n

Sg(x0)ε2 log(
1
ε2

) +O(ε2)
)
.

Now summarizing and letting ε so that

1 + ε2−
n
r θ−

n
r−1A‖b‖s + ε4−

n
s θ−

n
s−1B‖a‖r ≤ (1 + ‖a‖r + ‖b‖s)

4
n

we obtain

Jλ(uε) ≤
1
2
‖uε‖2 −

1
N

∫
M

f(x)|uε(x)|Ndvg

≤ θ−n

K
n/4
0 (f(x0))

n−4
4

[ t2
2

(1 + ‖a‖r + ‖b‖s)1− 4
n − tN

N

− n− 4

n2(n2 − 4)I
n
2−1
n

θ−2Sg(x0)t2ε2 log(
1
ε2

)
]

+O(ε2).

The same arguments as in the case n > 6 allow us to infer that

max
t≥0

Jλ(tuε) <
2

n K
n/4
0 (f(x0))

n−4
4

if Sg(x0) > 0. Which completes the proof. �
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