Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 68, pp. 1–27. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE AND REGULARITY OF ENTROPY SOLUTIONS FOR STRONGLY NONLINEAR p(x)-ELLIPTIC EQUATIONS

ELHOUSSINE AZROUL, HASSANE HJIAJ, ABDELFATTAH TOUZANI

ABSTRACT. This article is devoted to study the existence of solutions for the strongly nonlinear p(x)-elliptic problem

$$-\operatorname{div} a(x,u,\nabla u) + g(x,u,\nabla u) = f - \operatorname{div} \phi(u) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

with $f \in L^1(\Omega)$ and $\phi \in C^0(\mathbb{R}^N)$, also we will give some regularity results for these solutions.

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^N with $N \geq 2$. For $2 - \frac{1}{N} , Boccardo and Gallouët [6] studied the problem$

$$Au = f$$
 in Ω , $u = 0$ on $\partial \Omega$,

where $Au=-\operatorname{div} a(x,u,\nabla u)$ is a Leray-Lions operator from $W_0^{1,p}(\Omega)$ into its dual, and f is a bounded Radon measure on Ω . They proved the existence of solutions $u\in W_0^{1,q}(\Omega)$ for all $1< q< \bar q=\frac{N(p-1)}{N-1}$. Moreover, they showed the critical regularity $u\in W_0^{1,\bar q}(\Omega)$ under the assumption $f\log(1+|f|)\in L^1(\Omega)$. Boccardo [5] studied the existence of entropy solutions for the problem

$$-\operatorname{div} a(x, u, \nabla u) = f - \operatorname{div} \phi(u) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(1.1)

where $f \in L^1(\Omega)$ and $\phi \in C^0(\mathbb{R}^N)$, he proved the solutions existence and some regularity results, under the above assumptions. Aharouch and Azroul [1] studied the problem (1.1) in Oricz-sobolev spaces. They proved the existence of entropy solutions $u \in W_0^{1,q}(\Omega)$. In the case of p = N, they assume in addition that there exists an N-function H such that $H(t^N)$ is equivalent to M(t). Kbiri Alaoui, Meskine and Souissi [12] proved the critical regularity $W_0^{1,\overline{q}}(\Omega)$ of solutions for nonlinear elliptic problems with right-hand side in $L\log^\alpha L(\Omega)$ and $\alpha \geq \frac{N-1}{N}$. Also they proved some regularity results when $\alpha < \frac{N-1}{N}$.

 $^{2000\} Mathematics\ Subject\ Classification.\ 35J20,\ 35J25,\ 35J60.$

Key words and phrases. Sobolev spaces with variable exponents; entropy solutions; strongly nonlinear elliptic equations; boundary value problems.

^{©2013} Texas State University - San Marcos.

Submitted May 22, 2012. Published March 8, 2013.

In this article, we consider the problem

$$-\operatorname{div} a(x, u, \nabla u) + g(x, u, \nabla u) = f - \operatorname{div} \phi(u) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(1.2)

where the right hand side is assumed to satisfy

$$f \in L^1(\Omega)$$
 and $\phi \in C^0(\mathbb{R}^N)$. (1.3)

We will study the strongly nonlinear boundary-value problem (1.2) in the framework of variable exponent Sobolev spaces, we will prove the existence of entropy solutions and some $\bar{q}(x)$ -regularity results.

Recall that, since no growth hypothesis is assumed on ϕ , the term div $\phi(v)$ may be meaningless, even as a distribution for a function $v \in W_0^{1,r(x)}(\Omega)$, r(x) > 1 (see [5] and [7] for the case of constant exponent).

Definition 1.1. For k > 0 and $s \in \mathbb{R}$, the truncation function $T_k(.)$ is defined by

$$T_k(s) = \begin{cases} s & \text{if } |s| \le k, \\ k \frac{s}{|s|} & \text{if } |s| > k. \end{cases}$$

This article is organized as follows. In the section 2 we recall some important definitions and results of variable exponent Lebesgue and Sobolev spaces. We introduce in the section 3 some assumptions on $a(x,s,\xi)$ and $g(x,s,\xi)$ for which our problem has a solutions. The section 4 contains some important lemmas useful to prove our main results. The section 5 will be devoted to show the existence of entropy solutions for the problem (1.2), also we will give some important $L^{\bar{q}(x)}$ -regularity results for these solutions (the case p = 2-1/N and p = N are excluded).

2. Preliminaries

Let Ω be a bounded open subset of \mathbb{R}^N $(N \geq 2)$, we say that a real-valued continuous function p(.) is log-Hölder continuous in Ω if

$$|p(x) - p(y)| \le \frac{C}{|\log |x - y||} \quad \forall x, y \in \overline{\Omega} \text{ such that } |x - y| < \frac{1}{2},$$

with possible different constant C. We denote

 $C_{+}(\overline{\Omega}) = \{ \text{log-H\"older continuous function } p : \overline{\Omega} \to \mathbb{R} \text{ with } 1 < p_{-} \le p_{+} < N \},$ where

$$p_{-} = \min\{p(x) : x \in \overline{\Omega}\} \quad p_{+} = \max\{p(x) : x \in \overline{\Omega}\}.$$

We define the variable exponent Lebesgue space for $p \in C_+(\overline{\Omega})$ by

$$L^{p(x)}(\Omega) = \{u : \Omega \to \mathbb{R} \text{ measurable} : \int_{\Omega} |u(x)|^{p(x)} dx < \infty\},$$

the space $L^{p(x)}(\Omega)$ under the norm

$$||u||_{p(x)} = \inf\left\{\lambda > 0 : \int_{\Omega} \left|\frac{u(x)}{\lambda}\right|^{p(x)} dx \le 1\right\}$$

is a uniformly convex Banach space, and therefore reflexive. We denote by $L^{p'(x)}(\Omega)$ the conjugate space of $L^{p(x)}(\Omega)$ where $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$ (see [10, 14]).

Proposition 2.1 (Generalized Hölder inequality [10, 14]). (i) For any functions $u \in L^{p(x)}(\Omega)$ and $v \in L^{p'(x)}(\Omega)$, we have

$$|\int_{\Omega} uvdx| \le \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}}\right) ||u||_{p(x)} ||v||_{p'(x)}.$$

(ii) For all $p_1, p_2 \in C_+(\overline{\Omega})$ such that $p_1(x) \leq p_2(x)$ a.e. in Ω , we have $L^{p_2(x)}(\Omega) \hookrightarrow L^{p_1(x)}(\Omega)$ and the embedding is continuous.

Proposition 2.2 ([10, 14]). If we denote

$$\rho(u) = \int_{\Omega} |u|^{p(x)} dx \quad \forall u \in L^{p(x)}(\Omega),$$

then, the following assertions hold

- (i) $||u||_{p(x)} < 1$ (resp., = 1, > 1) if and only if $\rho(u) < 1$ (resp., = 1, > 1);
- (ii) $\|u\|_{p(x)} > 1$ implies $\|u\|_{p(x)}^{p^{-}} \le \rho(u) \le \|u\|_{p(x)}^{p^{+}}$, and $\|u\|_{p(x)} < 1$ implies $\|u\|_{p(x)}^{p^{+}} \le \rho(u) \le \|u\|_{p(x)}^{p^{-}}$;
- (iii) $\|u\|_{p(x)} \to 0$ if and only if $\rho(u) \to 0$, and $\|u\|_{p(x)} \to \infty$ if and only if $\rho(u) \to \infty$.

Now, we define the variable exponent Sobolev space by

$$W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) \text{ and } |\nabla u| \in L^{p(x)}(\Omega) \}.$$

with the norm

$$||u||_{1,p(x)} = ||u||_{p(x)} + ||\nabla u||_{p(x)} \quad \forall u \in W^{1,p(x)}(\Omega).$$

We denote by $W_0^{1,p(x)}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$, and we define the Sobolev exponent by $p^*(x) = \frac{Np(x)}{N-p(x)}$ for p(x) < N.

Proposition 2.3 ([10, 11]). (i) Assuming $1 < p_{-} \le p_{+} < \infty$, the spaces $W^{1,p(x)}(\Omega)$ and $W^{1,p(x)}_{0}(\Omega)$ are separable and reflexive Banach spaces.

- (ii) If $q \in C_+(\bar{\Omega})$ and $q(x) < p^*(x)$ for any $x \in \Omega$, then the embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ is continuous and compact.
- (iii) Poincaré inequality: there exists a constant C > 0, such that

$$||u||_{p(x)} \le C||\nabla u||_{p(x)} \quad \forall u \in W_0^{1,p(x)}(\Omega).$$

(vi) Sobolev-Poincaré inequality : there exists an other constant C>0, such that

$$||u||_{p*(x)} \le C||\nabla u||_{p(x)} \quad \forall u \in W_0^{1,p(x)}(\Omega).$$

Remark 2.4. By (iii) of Proposition 2.3, we deduce that $\|\nabla u\|_{p(x)}$ and $\|u\|_{1,p(x)}$ are equivalent norms in $W_0^{1,p(x)}(\Omega)$.

Definition 2.5 ([8]). We denote the dual of the Sobolev space $W_0^{1,p(x)}(\Omega)$ by $W^{-1,p'(x)}(\Omega)$, and for each $F \in W^{-1,p'(x)}(\Omega)$ there exists $f_0, f_1, \ldots, f_N \in L^{p'(x)}(\Omega)$ such that $F = f_0 + \sum_{i=1}^N \frac{\partial f_i}{\partial x_i}$. Moreover, for all $u \in W_0^{1,p(x)}(\Omega)$ we have

$$\langle F, u \rangle = \int_{\Omega} f_0 u dx - \sum_{i=1}^{N} \int_{\Omega} f_i \frac{\partial u}{\partial x_i} dx.$$

and we define a norm on the dual space by

$$||F||_{-1,p'(x)} \simeq \sum_{i=0}^{N} ||f_i||_{p'(x)}.$$

Now, we define

 $T_0^{1,p(x)}(\Omega) := \{ \text{measurable function } u \text{ such that } T_k(u) \in W_0^{1,p(x)}(\Omega) \quad \forall k > 0 \}.$

Proposition 2.6. Let $u \in T_0^{1,p(x)}(\Omega)$, there exists a unique measurable function $v: \Omega \to \mathbb{R}^N$ such that

$$v.\chi_{\{|u|\leq k\}} = \nabla T_k(u)$$
 for a.e. $x \in \Omega$ and for all $k > 0$.

We will define the gradient of u as the function v, and we will denote it by $v = \nabla u$.

Definition 2.7. A measurable function u is an entropy solution of the Dirichlet problem (1.2) if

$$T_k(u) \in W_0^{1,p(x)}(\Omega) \quad \forall k > 0,$$

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u - \varphi) dx + \int_{\Omega} g(x, u, \nabla u) T_k(u - \varphi) dx$$

$$\leq \int_{\Omega} f T_k(u - \varphi) dx + \int_{\Omega} \phi(u) \nabla T_k(u - \varphi) dx$$

for all $\varphi \in W_0^{1,p(x)}(\Omega) \cap L^{\infty}(\Omega)$.

Lemma 2.8. Let $\lambda \in \mathbb{R}$ and let u and v be two functions which are finite almost everywhere, and which belong to $\mathcal{T}_0^{1,p(x)}(\Omega)$, then

$$\nabla(u + \lambda v) = \nabla u + \lambda \nabla v$$
 a.e. in Ω ,

where ∇u , ∇v and $\nabla (u + \lambda v)$ are the gradients of u, v and $u + \lambda v$ introduced in the Definition 2.7.

Proof. Let $E_n = \{|u| \le n\} \cap \{|v| \le n\}$. We have $T_n(u) = u$ and $T_n(v) = v$ in E_n , then for every k > 0

$$T_k(T_n(u) + \lambda T_n(v)) = T_k(u + \lambda v)$$
 a.e. in E_n ,

and therefore, since both functions belong to $W_0^{1,p(x)}(\Omega)$,

$$\nabla T_k(T_n(u) + \lambda T_n(v)) = \nabla T_k(u + \lambda v) \quad \text{a.e. in } E_n.$$
 (2.1)

Since $T_n(u)$ and $T_n(v)$ belong to $W_0^{1,p(x)}(\Omega)$, we have by using a classical property of the truncates functions in $W_0^{1,p(x)}(\Omega)$, and the definition of ∇u and ∇v ,

$$\nabla T_k(T_n(u) + \lambda T_n(v)) = \chi_{\{|T_n(u) + \lambda T_n(v)| \le k\}}(\nabla T_n(u) + \lambda \nabla T_n(v))$$
$$= \chi_{\{|T_n(u) + \lambda T_n(v)| \le k\}}(\nabla u.\chi_{\{|u| \le n\}} + \lambda \nabla v.\chi_{\{|v| \le n\}})$$

a.e. in Ω . Therefore,

$$\nabla T_k(T_n(u) + \lambda T_n(v)) = \chi_{\{|u+\lambda v| \le k\}}(\nabla u + \lambda \nabla v) \quad \text{a.e. in } E_n.$$
 (2.2)

On the other hand, by definition of $\nabla(u + \lambda v)$,

$$\nabla T_k(u + \lambda v) = \chi_{\{|u + \lambda v| < k\}} \nabla (u + \lambda v) \quad \text{a.e. in } E_n.$$
 (2.3)

Putting together (2.1), (2.2) and (2.3), we obtain

$$\chi_{\{|u+\lambda v| < k\}} \nabla(u+\lambda v) = \chi_{\{|u+\lambda v| < k\}} (\nabla u + \lambda \nabla v) \quad \text{a.e. in } E_n.$$
 (2.4)

We have $\bigcup_{n\in\mathbb{N}} E_n$ (resp. $\bigcup_{k\in\mathbb{N}} \{|u+\lambda v| \leq k\}$) differs at most from Ω by a set of zero Lebesgue measure, since u and v are almost everywhere finite, then (2.4) holds almost everywhere in Ω . which conclude the proved of Lemma 2.8.

3. Essential assumption

Let Ω be a bounded open subset of \mathbb{R}^N $(N \geq 2)$ and $p \in C_+(\bar{\Omega})$, we consider a Leray-Lions operator from $W_0^{1,p(x)}(\Omega)$ into its dual $W^{-1,p'(x)}(\Omega)$, defined by the formula

$$Au = -\operatorname{div} \ a(x, u, \nabla u) \tag{3.1}$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function (measurable with respect to x in Ω for every (s, ξ) in $\mathbb{R} \times \mathbb{R}^N$, and continuous with respect to (s, ξ) in $\mathbb{R} \times \mathbb{R}^N$ for almost every x in Ω) which satisfies the following conditions

$$|a(x,s,\xi)| \le \beta(K(x) + |s|^{p(x)-1} + |\xi|^{p(x)-1}), \tag{3.2}$$

$$a(x, s, \xi)\xi \ge \alpha |\xi|^{p(x)},\tag{3.3}$$

$$[a(x,s,\xi) - a(x,s,\overline{\xi})](\xi - \overline{\xi}) > 0 \quad \text{for all } \xi \neq \overline{\xi} \text{ in } \mathbb{R}^N, \tag{3.4}$$

for a.e. $x \in \Omega$, all $(s,\xi) \in \mathbb{R} \times \mathbb{R}^N$, where K(x) is a positive function lying in $L^{p'(x)}(\Omega)$ and $\alpha, \beta > 0$.

The nonlinear term $g(x, s, \xi)$ is a Carathéodory function which satisfies

$$g(x, s, \xi)s \ge 0, (3.5)$$

$$|g(x, s, \xi)| \le b(|s|)(c(x) + |\xi|^{p(x)}),$$
 (3.6)

where $b: \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous, nondecreasing function, and $c: \Omega \to \mathbb{R}^+$ with $c \in L^1(\Omega)$. We consider the problem

$$-\operatorname{div} a(x, u, \nabla u) + g(x, u, \nabla u) = f - \operatorname{div} \phi(u) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(3.7)

with

$$f \in L^1(\Omega)$$
 and $\phi \in C^0(\mathbb{R}^N)$. (3.8)

The symbol \rightharpoonup will denote the weak convergence, and the constants C_i , i = 1, 2, ... used in each steps of proof are independent.

4. Some technical Lemmas

Lemma 4.1 ([2]). Let $g \in L^{r(x)}(\Omega)$ and $g_n \in L^{r(x)}(\Omega)$ with $||g_n||_{r(x)} \leq C$ for $1 < r(x) < \infty$. If $g_n(x) \to g(x)$ a.e. on Ω , then $g_n \rightharpoonup g$ in $L^{r(x)}(\Omega)$.

Lemma 4.2. Let $u \in W_0^{1,p(x)}(\Omega)$ then $T_k(u) \in W_0^{1,p(x)}(\Omega)$ with k > 0. Moreover, we have $T_k(u) \to u$ in $W_0^{1,p(x)}(\Omega)$ as $k \to \infty$.

Proof. Let k > 0 and $T_k : \mathbb{R} \to \mathbb{R}$,

$$T_k(s) = \begin{cases} s & \text{if } |s| \le k, \\ k.\text{sign}(s) & \text{if } |s| > k, \end{cases}$$

then for all $u \in W_0^{1,p(x)}(\Omega)$ we have $T_k(u) \in W_0^{1,p(x)}(\Omega)$, and

$$\int_{\Omega} |T_k(u) - u|^{p(x)} dx + \int_{\Omega} |\nabla T_k(u) - \nabla u|^{p(x)} dx$$

$$= \int_{\{|u| \le k\}} |T_k(u) - u|^{p(x)} dx + \int_{\{|u| > k\}} |T_k(u) - u|^{p(x)} dx$$

$$+ \int_{\{|u| \le k\}} |\nabla T_k(u) - \nabla u|^{p(x)} + \int_{\{|u| > k\}} |\nabla T_k(u) - \nabla u|^{p(x)} dx$$

$$= \int_{\{|u| > k\}} |T_k(u) - u|^{p(x)} dx + \int_{\{|u| > k\}} |\nabla u|^{p(x)} dx.$$

Since $T_k(u) \to u$ as $k \to \infty$ and by using the dominated convergence theorem, we have

$$\int_{\{|u|>k\}} |T_k(u) - u|^{p(x)} dx + \int_{\{|u|>k\}} |\nabla u|^{p(x)} dx \to 0 \quad \text{ as } k \to \infty.$$

Finally $||T_k(u) - u||_{W_0^{1,p(x)}(\Omega)} \to 0$ as $k \to \infty$.

Lemma 4.3 ([3]). Let $p(\cdot)$ be a continuous function in $C_+(\overline{\Omega})$ and u a function in $W_0^{1,p(x)}(\Omega)$. Suppose $2-\frac{1}{N} < p_- \le p_+ < N$, and that there exists a constant c_1 such that

$$\int_{\{k \le |u| \le k+1\}} |\nabla u|^{p(x)} dx \le c_1 \quad \forall k > 0.$$

Then there exists a constant $c_2 > 0$, depending on c_1 , such that

$$||u||_{1,q(x)} \le c_2,$$

for all continuous functions $q(\cdot)$ on $\overline{\Omega}$ satisfying

$$1 \le q(x) < \frac{N(p(x) - 1)}{N - 1}$$
 for all $x \in \overline{\Omega}$.

Lemma 4.4. Assume (3.2)-(3.4), and let $(u_n)_n$ be a sequence in $W_0^{1,p(x)}(\Omega)$ such that $u_n \rightharpoonup u$ in $W_0^{1,p(x)}(\Omega)$ and

$$\int_{\Omega} [a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u)] \nabla (u_n - u) dx \to 0, \tag{4.1}$$

then $u_n \to u$ in $W_0^{1,p(x)}(\Omega)$ for a subsequence.

Proof. Let $D_n = [a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u)] \nabla (u_n - u)$, thanks to (3.4) we have D_n is a positive function, and by (4.1), $D_n \to 0$ in $L^1(\Omega)$ as $n \to \infty$.

Since $u_n \to u$ in $W_0^{1,p(x)}(\Omega)$ then $u_n \to u$ a.e. in Ω , and since $D_n \to 0$ a.e. in Ω , there exists a subset B in Ω with measure zero such that for all $x \in \Omega \setminus B$,

$$|u(x)| < \infty$$
, $|\nabla u(x)| < \infty$, $K(x) < \infty$, $u_n \to u$, $D_n \to 0$.

Taking $\xi_n = \nabla u_n$ and $\xi = \nabla u$, we have

$$\begin{split} D_n(x) &= [a(x,u_n,\xi_n) - a(x,u_n,\xi)](\xi_n - \xi) \\ &= a(x,u_n,\xi_n)\xi_n + a(x,u_n,\xi)\xi - a(x,u_n,\xi_n)\xi - a(x,u_n,\xi)\xi_n \\ &\geq \alpha |\xi_n|^{p(x)} + \alpha |\xi|^{p(x)} - \beta (K(x) + |u_n|^{p(x)-1} + |\xi_n|^{p(x)-1})|\xi| \\ &- \beta (K(x) + |u_n|^{p(x)-1} + |\xi|^{p(x)-1})|\xi_n| \\ &\geq \alpha |\xi_n|^{p(x)} - C_x (1 + |\xi_n|^{p(x)-1} + |\xi_n|), \end{split}$$

where C_x depending on x, without dependence on n. (since $u_n(x) \to u(x)$ then $(u_n)_n$ is bounded), we obtain

$$D_n(x) \ge |\xi_n|^{p(x)} \left(\alpha - \frac{C_x}{|\xi_n|^{p(x)}} - \frac{C_x}{|\xi_n|} - \frac{C_x}{|\xi_n|^{p(x)-1}}\right),$$

by the standard argument $(\xi_n)_n$ is bounded almost everywhere in Ω , (Indeed, if $|\xi_n| \to \infty$ in a measurable subset $E \in \Omega$ then

$$\lim_{n\to\infty}\int_{\Omega}D_n(x)dx\geq \lim_{n\to\infty}\int_{E}|\xi_n|^{p(x)}\big(\alpha-\frac{C_x}{|\xi_n|^{p(x)}}-\frac{C_x}{|\xi_n|}-\frac{C_x}{|\xi_n|^{p(x)-1}}\big)dx=\infty,$$

which is absurd since $D_n \to 0$ in $L^1(\Omega)$.

Let ξ^* an accumulation point of $(\xi_n)_n$, we have $|\xi^*| < \infty$ and by the continuity of a(.,.,.) we obtain,

$$[a(x, u(x), \xi^*) - a(x, u(x), \xi)](\xi^* - \xi) = 0,$$

thanks to (3.4) we have $\xi^* = \xi$, the uniqueness of the accumulation point implies that $\nabla u_n \to \nabla u$ a.e. in Ω . since $(a(x, u_n, \nabla u_n))_n$ is bounded in $(L^{p'(x)}(\Omega))^N$ and $a(x, u_n, \nabla u_n) \to a(x, u, \nabla u)$ a.e. in Ω , by the Lemma 4.1, we can establish that

$$a(x, u_n, \nabla u_n) \rightharpoonup a(x, u, \nabla u)$$
 in $(L^{p'(x)}(\Omega))^N$.

Let us taking $\bar{y}_n = a(x, u_n, \nabla u_n) \nabla u_n$ and $\bar{y} = a(x, u, \nabla u) \nabla u$, then $\bar{y}_n \to \bar{y}$ in $L^1(\Omega)$, according to the condition (3.3) we have

$$\alpha |\nabla u_n|^{p(x)} \le a(x, u_n, \nabla u_n) \nabla u_n$$

Let $z_n = \nabla u_n, z = \nabla u$ and $y_n = \frac{\bar{y}_n}{\alpha}, y = \frac{\bar{y}_n}{\alpha}$, in view of the Fatou Lemma, we obtain

$$\int_{\Omega} 2.y dx \le \liminf_{n \to \infty} \int_{\Omega} (y_n + y - |z_n - z|^{p(x)}) dx,$$

then $0 \le -\limsup_{n \to \infty} \int_{\Omega} |z_n - z|^{p(x)} dx$, and since

$$0 \le \liminf_{n \to \infty} \int_{\Omega} |z_n - z|^{p(x)} dx \le \limsup_{n \to \infty} \int_{\Omega} |z_n - z|^{p(x)} dx \le 0,$$

it follows that $\int_{\Omega} |\nabla u_n - \nabla u|^{p(x)} dx \to 0$ as $n \to \infty$, and we get

$$\nabla u_n \to \nabla u$$
 in $(L^{p(x)}(\Omega))^N$

we deduce that

$$u_n \to u$$
 in $W_0^{1,p(x)}(\Omega)$,

which completes our proof.

Now, we consider $\phi_n(s) = \phi(T_n(s))$ with $\phi \in C^0(\mathbb{R}^N)$ and

$$g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{\pi} |g(x, s, \xi)|}$$

such that $g(x, s, \xi)$ satisfies (3.5) – (3.6), note that

$$g_n(x, s, \xi)s \ge 0$$
, $|g_n(x, s, \xi)| \le |g(x, s, \xi)|$, $|g_n(x, s, \xi)| \le n$ $\forall n \in \mathbb{N}^*$.

We define the operator $G_n: W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$, by

$$\langle G_n u, v \rangle = \int_{\Omega} g_n(x, u, \nabla u) v dx \quad \forall v \in W_0^{1, p(x)}(\Omega).$$

Thanks to the Hölder inequality, we have that for all $u, v \in W_0^{1,p(x)}(\Omega)$,

$$\left| \int_{\Omega} g_{n}(x, u, \nabla u) v dx \right|$$

$$\leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \|g_{n}(x, u, \nabla u)\|_{p'(x)} \|v\|_{p(x)}$$

$$\leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \left(\int_{\Omega} |g_{n}(x, u, \nabla u)|^{p'(x)} dx + 1 \right)^{\frac{1}{p'_{-}}} \|v\|_{1, p(x)}$$

$$\leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \left(\int_{\Omega} n^{p'(x)} dx + 1 \right)^{\frac{1}{p'_{-}}} \|v\|_{1, p(x)}$$

$$\leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \left(n^{p'_{+}} \cdot \operatorname{meas}(\Omega) + 1 \right)^{\frac{1}{p'_{-}}} \|v\|_{1, p(x)}$$

$$\leq C_{0} \|v\|_{1, p(x)},$$
(4.2)

and we define the operator $R_n = \operatorname{div} \phi_n : W_0^{1,p(x)}(\Omega) \to W^{-1,p'(x)}(\Omega)$, such that

$$\langle R_n(u), v \rangle = \langle \operatorname{div} \phi_n(u), v \rangle = -\int_{\Omega} \phi_n(u) \nabla v dx \quad \forall u, v \in W_0^{1, p(x)}(\Omega),$$

we have

$$\left| \int_{\Omega} \phi_{n}(u) \nabla v dx \right| \leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \|\phi_{n}(u)\|_{p'(x)} \|\nabla v\|_{p(x)}
\leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \left(\int_{\Omega} |\phi_{n}(u)|^{p'(x)} dx + 1 \right)^{\frac{1}{p'_{-}}} \|v\|_{1,p(x)}
\leq \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}} \right) \left(\sup_{|s| \leq n} (|\phi(s)| + 1)^{p'_{+}} \operatorname{meas}(\Omega) + 1 \right)^{1/p'_{-}} \|v\|_{1,p(x)}
\leq C_{1} \|v\|_{1,p(x)}.$$
(4.3)

Lemma 4.5. The operator $B_n = A + G_n + R_n$ is pseudo-monotone from $W_0^{1,p(x)}(\Omega)$ into $W^{-1,p'(x)}(\Omega)$. Moreover, B_n is coercive in the following sense

$$\frac{\langle B_n v, v \rangle}{\|v\|_{1, p(x)}} \to +\infty \quad as \quad \|v\|_{1, p(x)} \to +\infty \quad for \quad v \in W_0^{1, p(x)}(\Omega).$$

Proof. Using Hölder's inequality and the growth condition (3.2), we can show that the operator A is bounded, and by using (4.2) and (4.3) we conclude that B_n bounded. For the coercivity, we have for any $u \in W_0^{1,p(x)}(\Omega)$,

$$\langle B_n u, u \rangle = \langle Au, u \rangle + \langle G_n u, u \rangle + \langle R_n u, u \rangle$$

$$= \int_{\Omega} a(x, u, \nabla u) \nabla u dx + \int_{\Omega} g_n(x, u, \nabla u) u dx - \int_{\Omega} \phi_n(u) \nabla u dx$$

$$\geq \alpha \int_{\Omega} |\nabla u|^{p(x)} dx - \left(\frac{1}{p_-} + \frac{1}{p'_-}\right) \|\phi_n(u)\|_{p'(x)} \|\nabla u\|_{p(x)}$$

$$\geq \alpha \|\nabla u\|_{p(x)}^{\delta} - C_1 . \|u\|_{1, p(x)} \quad \text{(using (4.3))}$$

$$\geq \alpha' \|u\|_{1, p(x)}^{\delta} - C_1 . \|u\|_{1, p(x)}, \quad \text{(using the Poincaré inequality)}$$

with

$$\delta = \begin{cases} p_{-} & \text{if } \|\nabla u\|_{p(x)} > 1, \\ p_{+} & \text{if } \|\nabla u\|_{p(x)} \le 1, \end{cases}$$

then, we obtain

$$\frac{\langle B_n u, u \rangle}{\|u\|_{1, p(x)}} \to +\infty \quad \text{as } \|u\|_{1, p(x)} \to +\infty.$$

It remains to show that B_n is pseudo-monotone. Let $(u_k)_k$ a sequence in $W_0^{1,p(x)}(\Omega)$ such that

$$u_k \rightharpoonup u \quad \text{in } W_0^{1,p(x)}(\Omega),$$

$$B_n u_k \rightharpoonup \chi \quad \text{in } W^{-1,p'(x)}(\Omega),$$

$$\lim \sup_{k \to \infty} \langle B_n u_k, u_k \rangle \leq \langle \chi, u \rangle.$$
(4.4)

We will prove that

$$\chi = B_n u$$
 and $\langle B_n u_k, u_k \rangle \to \langle \chi, u \rangle$ as $k \to +\infty$.

Firstly, since $W_0^{1,p(x)}(\Omega) \hookrightarrow \hookrightarrow L^{p(x)}(\Omega)$, then $u_k \to u$ in $L^{p(x)}(\Omega)$ for a subsequence still denoted $(u_k)_k$.

We have $(u_k)_k$ is a bounded sequence in $W_0^{1,p(x)}(\Omega)$, then by the growth condition $(a(x,u_k,\nabla u_k))_k$ is bounded in $(L^{p'(x)}(\Omega))^N$, therefore, there exists a function $\varphi \in (L^{p'(x)}(\Omega))^N$ such that

$$a(x, u_k, \nabla u_k) \rightharpoonup \varphi \quad \text{in } (L^{p'(x)}(\Omega))^N \text{ as } k \to \infty.$$
 (4.5)

Similarly, since $(g_n(x, u_k, \nabla u_k))_k$ is bounded in $L^{p'(x)}(\Omega)$, then there exists a function $\psi_n \in L^{p'(x)}(\Omega)$ such that

$$g_n(x, u_k, \nabla u_k) \rightharpoonup \psi_n \quad \text{in } L^{p'(x)}(\Omega) \text{ as } k \to \infty,$$
 (4.6)

and since $\phi_n = \phi \circ T_n$ is a bounded continuous function and $u_k \to u$ in $L^{p(x)}(\Omega)$, it follows

$$\phi_n(u_k) \to \phi_n(u) \quad \text{in } (L^{p'(x)}(\Omega))^N \text{ as } k \to \infty.$$
 (4.7)

For all $v \in W_0^{1,p(x)}(\Omega)$, we have

$$\begin{split} \langle \chi, v \rangle &= \lim_{k \to \infty} \langle B_n u_k, v \rangle \\ &= \lim_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla v dx + \lim_{k \to \infty} \int_{\Omega} g_n(x, u_k, \nabla u_k) v dx \\ &- \lim_{k \to \infty} \int_{\Omega} \phi_n(u_k) \nabla v dx \\ &= \int_{\Omega} \varphi \nabla v dx + \int_{\Omega} \psi_n v dx - \int_{\Omega} \phi_n(u) \nabla v dx. \end{split} \tag{4.8}$$

Using (4.4) and (4.8), we obtain

$$\lim\sup_{l}\langle B_n(u_k),u_k\rangle$$

$$= \limsup_{k \to \infty} \left\{ \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx + \int_{\Omega} g_n(x, u_k, \nabla u_k) u_k dx - \int_{\Omega} \phi_n(u_k) \nabla u_k dx \right\}$$

$$\leq \int_{\Omega} \varphi \nabla u dx + \int_{\Omega} \psi_n u dx - \int_{\Omega} \phi_n(u) \nabla u dx,$$
(4.9)

thanks to (4.6) and (4.7), we have

$$\int_{\Omega} g_n(x, u_k, \nabla u_k) u_k dx \to \int_{\Omega} \psi_n u dx, \quad \int_{\Omega} \phi_n(u_k) \nabla u_k dx \to \int_{\Omega} \phi_n(u) \nabla u dx;$$
(4.10)

therefore,

$$\limsup_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx \le \int_{\Omega} \varphi \nabla u dx. \tag{4.11}$$

On the other hand, using (3.4), we have

$$\int_{\Omega} (a(x, u_k, \nabla u_k) - a(x, u_k, \nabla u))(\nabla u_k - \nabla u)dx \ge 0, \tag{4.12}$$

Then

$$\begin{split} & \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx \\ & \geq - \int_{\Omega} a(x, u_k, \nabla u) \nabla u dx + \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u dx + \int_{\Omega} a(x, u_k, \nabla u) \nabla u_k dx, \end{split}$$

and by (4.5), we get

$$\liminf_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx \ge \int_{\Omega} \varphi \nabla u dx,$$

this implies, thanks to (4.11), that

$$\lim_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx = \int_{\Omega} \varphi \nabla u dx. \tag{4.13}$$

By combining of (4.8), (4.10) and (4.13), we deduce that

$$\langle B_n u_k, u_k \rangle \to \langle \chi, u \rangle$$
 as $k \to +\infty$.

Now, by (4.13) we can obtain

$$\lim_{k \to +\infty} \int_{\Omega} (a(x, u_k, \nabla u_k) - a(x, u_k, \nabla u))(\nabla u_k - \nabla u) dx = 0,$$

in view of the Lemma 4.4, we obtain

$$u_k \to u$$
, $W_0^{1,p(x)}(\Omega)$, $\nabla u_k \to \nabla u$ a.e. in Ω ,

then

$$a(x, u_k, \nabla u_k) \rightharpoonup a(x, u, \nabla u), \quad \phi_n(u_k) \to \phi_n(u) \quad \text{in } (L^{p'(x)}(\Omega))^N,$$

and

$$g_n(x, u_k, \nabla u_k) \rightharpoonup g_n(x, u, \nabla u)$$
 in $L^{p'(x)}(\Omega)$,

we deduce that $\chi = B_n u$, which completes the proof.

5. Main results

In the sequel we assume that Ω is an open bounded subset of \mathbb{R}^N $(N \geq 2)$, and let $p(.) \in C_+(\overline{\Omega})$. We will prove the following existence results

Theorem 5.1. Assuming that (3.2)-(3.6) hold, $p(.) \in C_{+}(\overline{\Omega})$, $f \in L^{1}(\Omega)$ and $\phi \in C^{0}(\mathbb{R}^{N})$, then the problem

$$T_{k}(u) \in W_{0}^{1,p(x)}(\Omega) \quad \forall k > 0,$$

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u - \varphi) dx + \int_{\Omega} g(x, u, \nabla u) T_{k}(u - \varphi) dx$$

$$\leq \int_{\Omega} f T_{k}(u - \varphi) dx + \int_{\Omega} \phi(u) \nabla T_{k}(u - \varphi) dx, \quad \forall \varphi \in W_{0}^{1,p(x)}(\Omega) \cap L^{\infty}(\Omega),$$

$$(5.1)$$

has at least one solution.

The above theorem is prove in the following 5 steps.

Step 1: Approximate problems. Let $(f_n)_n$ be a sequence in $W^{-1,p'(x)}(\Omega) \cap L^1(\Omega)$ such that $f_n \to f$ in $L^1(\Omega)$ with $||f_n||_1 \le ||f||_1$ and we consider the approximate problem

$$Au_n + g_n(x, u_n, \nabla u_n) = f_n - \operatorname{div} \phi_n(u_n)$$

$$u_n \in W_0^{1, p(x)}(\Omega),$$
(5.2)

with $\phi_n(s) = \phi(T_n(s))$ and $g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{n} |g(x, s, \xi)|}$. In view of the Lemma 4.5, there exists at least one weak solution $u_n \in W_0^{1,p(x)}(\Omega)$ of the problem (5.2), (cf. [13]).

Step 2: A priori estimates. Taking $T_k(u_n)$ as a test function in (5.2), we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n) dx
= \int_{\Omega} f_n T_k(u_n) dx + \int_{\Omega} \phi_n(u_n) \nabla T_k(u_n) dx.$$
(5.3)

Thanks to (3.3) and Young's inequality, we obtain

$$\alpha \int_{\Omega} |\nabla T_{k}(u_{n})|^{p(x)} dx$$

$$\leq \int_{\Omega} a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \nabla T_{k}(u_{n}) dx + \int_{\Omega} g_{n}(x, u_{n}, \nabla u_{n}) T_{k}(u_{n}) dx$$

$$= \int_{\Omega} f_{n} T_{k}(u_{n}) dx + \int_{\Omega} \phi_{n}(T_{k}(u_{n})) \nabla T_{k}(u_{n}) dx$$

$$\leq k \int_{\Omega} |f_{n}| dx + \int_{\Omega} \frac{|\phi_{n}(T_{k}(u_{n}))|}{\left(\frac{\alpha}{2}p(x)\right)^{\frac{1}{p(x)}}} \left(\frac{\alpha}{2}p(x)\right)^{\frac{1}{p(x)}} |\nabla T_{k}(u_{n})| dx$$

$$\leq k \|f_{n}\|_{1} + \int_{\Omega} \frac{|\phi_{n}(T_{k}(u_{n}))|^{p'(x)}}{p'(x)\left(\frac{\alpha}{2}p(x)\right)^{\frac{p'(x)}{p(x)}}} dx + \int_{\Omega} \frac{\frac{\alpha}{2}p(x)|\nabla T_{k}(u_{n})|^{p(x)}}{p(x)} dx$$

$$\leq k \|f\|_{1} + C_{2} \int_{\Omega} |\phi_{n}(T_{k}(u_{n}))|^{p'(x)} dx + \frac{\alpha}{2} \int_{\Omega} |\nabla T_{k}(u_{n})|^{p(x)} dx,$$
(5.4)

and since

$$\int_{\Omega} |\phi_n(T_k(u_n))|^{p'(x)} dx \le \int_{\Omega} \sup_{|s| \le k} |\phi_n(s)|^{p'(x)} dx$$

$$\le \int_{\Omega} \sup_{|s| \le n} |\phi(s)|^{p'(x)} dx$$

$$\le \left(\sup_{|s| \le n} |\phi(s)| + 1\right)^{p'_+} \cdot \operatorname{meas}(\Omega),$$

by (5.4), we obtain

$$\frac{\alpha}{2} \|\nabla T_k(u_n)\|_{p(x)}^{\gamma} \le \frac{\alpha}{2} \int_{\Omega} |\nabla T_k(u_n)|^{p(x)} dx \le k \|f\|_1 + C_3,$$

with

$$\gamma = \begin{cases} p_{+} & \text{if } \|\nabla T_{k}(u_{n})\|_{p(x)} \leq 1, \\ p_{-} & \text{if } \|\nabla T_{k}(u_{n})\|_{p(x)} > 1, \end{cases}$$

we deduce that

$$\|\nabla T_k(u_n)\|_{p(x)} \le C_4 k^{\frac{1}{\gamma}} \quad \text{for all } k \ge 1,$$
 (5.5)

where C_4 is a constant that does not depend on k.

Now, we show that $(u_n)_n$ is a Cauchy sequence in measure. Indeed, we have

$$k \max\{|u_n| > k\} = \int_{\{|u_n| > k\}} |T_k(u_n)| dx \le \int_{\Omega} |T_k(u_n)| dx$$

$$\le \left(\frac{1}{p_-} + \frac{1}{p'_-}\right) ||1||_{p'(x)} ||T_k(u_n)||_{p(x)}$$

$$\le \left(\frac{1}{p_-} + \frac{1}{p'_-}\right) (\max(\Omega) + 1)^{\frac{1}{p'_-}} ||T_k(u_n)||_{p(x)}$$

$$\le C_5 k^{\frac{1}{\gamma}},$$

according to the Poincaré inequality and (5.5). Therefore,

$$\max\{|u_n| > k\} \le C_5 \frac{1}{k^{1-\frac{1}{\gamma}}} \to 0 \text{ as } k \to \infty.$$
 (5.6)

Since for all $\delta > 0$,

$$\max\{|u_n - u_m| > \delta\}$$

$$\leq \max\{|u_n| > k\} + \max\{|u_m| > k\} + \max\{|T_k(u_n) - T_k(u_m)| > \delta\},$$

using (5.6), we get that for all $\varepsilon > 0$, there exists $k_0 > 0$ such that

$$\max\{|u_n| > k\} \le \frac{\varepsilon}{3}, \quad \max\{|u_m| > k\} \le \frac{\varepsilon}{3} \quad \forall k \ge k_0(\varepsilon),$$
 (5.7)

On the other hand, by (5.5), the sequence $(T_k(u_n))_n$ is bounded in $W_0^{1,p(x)}(\Omega)$, then there exists a subsequence still denoted $(T_k(u_n))_n$ such that

$$T_k(u_n) \rightharpoonup \eta_k$$
 in $W_0^{1,p(x)}(\Omega)$ as $n \to \infty$.

and by the compact embedding, we obtain

$$T_k(u_n) \to \eta_k$$
 in $L^{p(x)}(\Omega)$ and a.e. in Ω .

Therefore, we can assume that $(T_k(u_n))_n$ is a Cauchy sequence in measure in Ω , then for all k > 0 and $\delta, \varepsilon > 0$ there exists $n_0 = n_0(k, \delta, \varepsilon)$ such that

$$\operatorname{meas}\{|T_k(u_n) - T_k(u_m)| > \delta\} \le \frac{\varepsilon}{3} \quad \forall m, n \ge n_0.$$
 (5.8)

Combining (5.7) and (5.8), we obtain that for all $\delta, \varepsilon > 0$, there exists $n_0 = n_0(\delta, \varepsilon)$ such that

$$\text{meas}\{|u_n - u_m| > \delta\} \le \varepsilon \quad \forall n, m \ge n_0,$$

it follows that $(u_n)_n$ is a Cauchy sequence in measure, then there exists a subsequence still denoted $(u_n)_n$ such that

$$u_n \to u$$
 a.e. in Ω .

We obtain

$$T_k(u_n) \rightharpoonup T_k(u) \quad \text{in } W_0^{1,p(x)}(\Omega)$$

$$T_k(u_n) \to T_k(u) \quad \text{in } L^{p(x)}(\Omega) \text{ and a.e. in } \Omega.$$

$$(5.9)$$

Step 3: Convergence of the gradient. In the sequel, we denote by $\varepsilon_i(n)$ i = 1, 2, ... various functions of real numbers which converge to 0 as n tends to infinity. Let $\varphi_k(s) = s \exp(\gamma s^2)$ where $\gamma = \left(\frac{b(k)}{2\alpha}\right)^2$, it is obvious that

$$\varphi'_k(s) - \frac{b(k)}{\alpha} |\varphi_k(s)| \ge \frac{1}{2} \quad \forall s \in \mathbb{R},$$

we consider h > k > 0 and M = 4k + h, we set

$$\omega_n = T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)).$$

Taking $\varphi_k(\omega_n)$ as a test function in (5.2), we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \varphi_k'(\omega_n) \nabla \omega_n dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) \varphi_k(\omega_n) dx$$

$$= \int_{\Omega} f_n \varphi_k(\omega_n) dx + \int_{\Omega} \phi_n(u_n) \varphi_k'(\omega_n) \nabla \omega_n dx,$$

it is easy to see that $\nabla \omega_n = 0$ on $\{|u_n| > M\}$, and since $g_n(x, u_n, \nabla u_n)\varphi_k(\omega_n) \ge 0$ on $\{|u_n| > k\}$, we have

$$\int_{\Omega} a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})) \varphi'_{k}(\omega_{n}) \nabla \omega_{n} dx + \int_{\{|u_{n}| \leq k\}} g_{n}(x, u_{n}, \nabla u_{n}) \varphi_{k}(\omega_{n}) dx
\leq \int_{\Omega} f_{n} \varphi_{k}(\omega_{n}) dx + \int_{\{|u_{n}| \leq M\}} \phi_{n}(T_{M}(u_{n})) \varphi'_{k}(\omega_{n}) \nabla \omega_{n} dx.$$
(5.10)

We have

$$\int_{\Omega} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla \omega_n dx$$

$$= \int_{\{|u_n| \le k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla T_{2k}(u_n - T_k(u)) dx$$

$$+ \int_{\{|u_n| > k\}} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla T_{2k}(u_n - T_h(u_n)$$

$$+ T_k(u_n) - T_k(u)) dx. \tag{5.11}$$

On the one hand, since $|u_n - T_k(u)| \le 2k$ on $\{|u_n| \le k\}$, we have

$$\int_{\{|u_n| \le k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla T_{2k}(u_n - T_k(u)) dx$$

$$= \int_{\{|u_n| \le k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla (T_k(u_n) - T_k(u)) dx$$

$$= \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla (T_k(u_n) - T_k(u)) dx$$

$$- \int_{\{|u_n| \ge k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla (T_k(u_n) - T_k(u)) dx.$$
(5.12)

Since $1 \leq \varphi'_k(\omega_n) \leq \varphi'_k(2k)$, it follows that

$$-\int_{\{|u_n|>k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi'_k(\omega_n) \nabla (T_k(u_n) - T_k(u)) dx$$

$$= \int_{\{|u_n|>k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi'_k(\omega_n) \nabla T_k(u) dx$$

$$\leq \varphi'_k(2k) \int_{\{|u_n|>k\}} |a(x, T_k(u_n), \nabla T_k(u_n))| |\nabla T_k(u)| dx,$$

and since $(|a(x, T_k(u_n), \nabla T_k(u_n))|)_n$ is bounded in $L^{p'(x)}(\Omega)$, then there exists $\vartheta \in L^{p'(x)}(\Omega)$ such that

$$|a(x, T_k(u_n), \nabla T_k(u_n))| \rightharpoonup \vartheta$$
 in $L^{p'(x)}(\Omega)$,

then

$$\int_{\{|u_n|>k\}} |a(x,T_k(u_n),\nabla T_k(u_n))||\nabla T_k(u)|dx \to \int_{\{|u|>k\}} \vartheta|\nabla T_k(u)|dx = 0,$$

and we obtain

$$\int_{\{|u_n|>k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla (T_k(u_n) - T_k(u)) dx = \varepsilon_0(n), \quad (5.13)$$

with $\varepsilon_0(n)$ tend to 0 as $n \to \infty$.

On the other hand, for the second term on the right hand side of (5.11), taking $z_n = u_n - T_h(u_n) + T_k(u_n) - T_k(u)$,

$$\int_{\{|u_n|>k\}} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla T_{2k}(u_n - T_h(u_n) + T_k(u_n) - T_k(u)) dx$$

$$= \int_{\{|u_n|>k\} \cap \{|z_n|\leq 2k\}} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla (u_n - T_h(u_n) + T_k(u_n)$$

$$- T_k(u)) dx$$

$$= \int_{\{|u_n|>k\} \cap \{|z_n|\leq 2k\}} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla (u_n - T_k(u)) \cdot \chi_{\{|u_n|>h\}} dx$$

$$- \int_{\{|u_n|>k\} \cap \{|z_n|\leq 2k\}} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla T_k(u) \cdot \chi_{\{|u_n|\leq h\}} dx$$

$$\geq - \int_{\{|u_n|>k\}} |a(x, T_M(u_n), \nabla T_M(u_n)) || \nabla T_k(u) |\varphi_k'(\omega_n) dx.$$
(5.14)

By combining (5.11)-(5.13) and (5.14), we obtain

$$\begin{split} & \int_{\Omega} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla \omega_n dx \\ & \geq \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \varphi_k'(\omega_n) \nabla (T_k(u_n) - T_k(u)) dx \\ & - \int_{\{|u_n| > k\}} |a(x, T_M(u_n), \nabla T_M(u_n))| |\nabla T_k(u)| \varphi_k'(\omega_n) dx - \varepsilon_0(n), \end{split}$$

which is equivalent to

$$\int_{\Omega} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u)))(\nabla T_{k}(u_{n}) - \nabla T_{k}(u))\varphi'_{k}(\omega_{n})dx$$

$$\leq \int_{\{|u_{n}| > k\}} |a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n}))||\nabla T_{k}(u)|\varphi'_{k}(\omega_{n})dx$$

$$+ \int_{\Omega} a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n}))\varphi'_{k}(\omega_{n})\nabla \omega_{n}dx$$

$$- \int_{\Omega} a(x, T_{k}(u_{n}), \nabla T_{k}(u))(\nabla T_{k}(u_{n}) - \nabla T_{k}(u))\varphi'_{k}(\omega_{n})dx + \varepsilon_{0}(n).$$

We obtain

$$\int_{\Omega} (a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u))) \varphi'_{k}(\omega_{n}) (\nabla T_{k}(u_{n}) - \nabla T_{k}(u)) dx$$

$$\leq \varphi'_{k}(2k) \int_{\{|u_{n}| > k\}} |a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n}))| |\nabla T_{k}(u)| dx$$

$$+ \int_{\Omega} a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})) \varphi'_{k}(\omega_{n}) \nabla \omega_{n} dx$$

$$+ \varphi'_{k}(2k) \int_{\Omega} |a(x, T_{k}(u_{n}), \nabla T_{k}(u))| |\nabla T_{k}(u_{n}) - \nabla T_{k}(u)| dx + \varepsilon_{0}(n).$$
(5.15)

Now, we study each terms on the right hand side of the above inequality. For the first term, we have $(|a(x, T_M(u_n), \nabla T_M(u_n))|)_n$ is bounded in $L^{p'(x)}(\Omega)$, and since

$$|\nabla T_k(u)|^{p(x)} \chi_{\{|u_n|>k\}} \le |\nabla T_k(u)|^{p(x)},$$

and

$$|\nabla T_k(u)|^{p(x)}\chi_{\{|u_n|>k\}}\to 0$$
, a.e. in Ω as $n\to\infty$,

by the Lebesgue dominated convergence theorem, we deduce that

$$|\nabla T_k(u)|\chi_{\{|u_n|>k\}}\to 0$$
, in $L^{p(x)}(\Omega)$ as $n\to\infty$,

which implies that the first term in the right hand side of (5.15) tends to 0 as n tends to ∞ , and we can write

$$\varphi_k'(2k) \int_{\{|u_n| > k\}} |a(x, T_M(u_n), \nabla T_M(u_n))| |\nabla T_k(u)| dx = \varepsilon_1(n).$$
 (5.16)

For the third term on the right-hand side of (5.15), we have

$$|a(x,T_k(u_n),\nabla T_k(u))| \to |a(x,T_k(u),\nabla T_k(u))|$$
 in $L^{p'(x)}(\Omega)$ as $n\to\infty$,

and since $\nabla T_k(u_n)$ tends weakly to $\nabla T_k(u)$ in $(L^{p(x)}(\Omega))^N$, we obtain

$$\varphi_k'(2k) \int_{\Omega} |a(x, T_k(u_n), \nabla T_k(u))| |\nabla T_k(u_n) - \nabla T_k(u)| dx \to 0 \quad \text{as } n \to \infty,$$

then

$$\varphi_k'(2k) \int_{\Omega} |a(x, T_k(u_n), \nabla T_k(u))| |\nabla T_k(u_n) - \nabla T_k(u)| dx = \varepsilon_2(n).$$
 (5.17)

By (5.15) we conclude that

$$\int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))) \varphi_k'(\omega_n) (\nabla T_k(u_n) - \nabla T_k(u)) dx$$

$$\leq \int_{\Omega} a(x, T_M(u_n), \nabla T_M(u_n)) \varphi_k'(\omega_n) \nabla \omega_n dx + \varepsilon_3(n).$$
(7.18)

Now, we turn to the second term on the left-hand side of (5.10); by (3.6) we have

$$\begin{split} & \left| \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) \varphi_k(\omega_n) dx \right| \\ & \leq \int_{\{|u_n| \leq k\}} b(|u_n|) (c(x) + |\nabla T_k(u_n)|^{p(x)}) |\varphi_k(\omega_n)| dx \\ & \leq b(k) \int_{\{|u_n| \leq k\}} c(x) |\varphi_k(\omega_n)| dx \\ & + \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) |\varphi_k(\omega_n)| dx \\ & \leq b(k) \int_{\{|u_n| \leq k\}} c(x) |\varphi_k(\omega_n)| dx + \frac{b(k)}{\alpha} \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) \\ & - a(x, T_k(u_n), \nabla T_k(u))) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_k(\omega_n)| dx \\ & + \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_k(\omega_n)| dx \\ & + \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u) |\varphi_k(\omega_n)| dx. \end{split}$$

Then

$$\frac{b(k)}{\alpha} \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_k(\omega_n)| dx$$

$$\geq \left| \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) \varphi_k(\omega_n) dx \right| - b(k) \int_{\{|u_n| \leq k\}} c(x) |\varphi_k(\omega_n)| dx$$

$$- \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_k(\omega_n)| dx$$

$$- \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u) |\varphi_k(\omega_n)| dx.$$
(5.19)

We have

$$\int_{\{|u_n| \le k\}} c(x) |\varphi_k(\omega_n)| dx \to \int_{\{|u| \le k\}} c(x) |\varphi_k(T_{2k}(u - T_h(u)))| dx = 0 \quad \text{as } n \to \infty.$$

$$(5.20)$$

Concerning the third term on the right hand side of (5.19), we have

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_k(\omega_n)| dx$$

$$\leq \varphi_k(2k) \int_{\Omega} |a(x, T_k(u_n), \nabla T_k(u))| |\nabla T_k(u_n) - \nabla T_k(u)| dx,$$

and by (5.17), we deduce that

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_k(\omega_n)| dx \to 0 \quad \text{as } n \to \infty. \quad (5.21)$$

For the last term of right hand side of (5.19), we have $(a(x, T_k(u_n), \nabla T_k(u_n)))_n$ is bounded in $(L^{p'(x)}(\Omega))^N$, then there exists $\varphi \in (L^{p'(x)}(\Omega))^N$ such that

$$a(x, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup \varphi$$

in $(L^{p'(x)}(\Omega))^N$, and since

$$\nabla T_k(u)|\varphi_k(\omega_n)| \to \nabla T_k(u)|\varphi_k(T_{2k}(u-T_h(u)))|$$
 in $(L^{p(x)}(\Omega))^N$,

it follows that

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u) |\varphi_k(\omega_n)| dx$$

$$\rightarrow \int_{\Omega} \varphi \nabla T_k(u) |\varphi_k(T_{2k}(u - T_h(u)))| dx = 0.$$
(5.22)

Combining (5.19), (5.21) and (5.22), we obtain

$$\frac{b(k)}{\alpha} \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) \\
- a(x, T_k(u_n), \nabla T_k(u)))(\nabla T_k(u_n) - \nabla T_k(u))|\varphi_k(\omega_n)| dx \\
\ge \left| \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n)\varphi_k(\omega_n) dx \right| + \varepsilon_4(n).$$
(5.23)

Thanks to (5.18) and (5.23), we obtain

$$\int_{\Omega} \left(a(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) - a(x, T_{k}(u_{n}), \nabla T_{k}(u)) \right) \\
\times \left(\nabla T_{k}(u_{n}) - \nabla T_{k}(u) \right) \left(\varphi'_{k}(\omega_{n}) - \frac{b(k)}{\alpha} . |\varphi_{k}(\omega_{n})| \right) dx \\
\leq \int_{\Omega} a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})) \varphi'_{k}(\omega_{n}) \nabla \omega_{n} dx \\
- \left| \int_{\{|u_{n}| \leq k\}} g_{n}(x, u_{n}, \nabla u_{n}) \varphi_{k}(\omega_{n}) dx \right| + \varepsilon_{5}(n) \\
\leq \int_{\Omega} f_{n} \varphi_{k}(\omega_{n}) dx + \int_{\{|u_{n}| \leq M\}} \phi_{n}(T_{M}(u_{n})) \varphi'_{k}(\omega_{n}) \nabla \omega_{n} dx + \varepsilon_{5}(n). \tag{5.24}$$

We have $\omega_n \rightharpoonup T_{2k}(u - T_h(u))$ weak-* in $L^{\infty}(\Omega)$ then

$$\int_{\Omega} f_n \varphi_k(\omega_n) dx \to \int_{\Omega} f \varphi_k(T_{2k}(u - T_h(u))) dx \quad \text{as } n \to \infty, \tag{5.25}$$

and for n large enough (for example $n \geq M$), we can write

$$\int_{\Omega} \phi_n(T_M(u_n))\varphi_k'(\omega_n)\nabla\omega_n dx = \int_{\{|u_n| \le M\}} \phi(T_M(u_n))\varphi_k'(\omega_n)\nabla\omega_n dx,$$

it follows that

$$\int_{\Omega} \phi_n(T_M(u_n))\varphi_k'(\omega_n)\nabla\omega_n dx$$

$$\to \int_{\Omega} \phi(T_M(u))\varphi_k'(T_{2k}(u - T_h(u)))\nabla T_{2k}(u - T_h(u))dx \quad \text{as } n \to \infty.$$
(5.26)

Combining (5.24) and (5.26), we obtain

$$\frac{1}{2} \int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))) (\nabla T_k(u_n) - \nabla T_k(u)) dx$$

$$\leq \int_{\Omega} f \varphi_k (T_{2k}(u - T_h(u))) dx$$

$$+ \int_{\Omega} \phi(T_M(u)) \varphi'_k (T_{2k}(u - T_h(u))) \nabla T_{2k}(u - T_h(u)) dx + \varepsilon_6(n).$$
(5.27)

Taking $\Psi(t) = \int_0^t \phi(\tau) \varphi_k'(\tau - T_h(\tau)) d\tau$, then $\Psi(0) = 0_{\mathbb{R}^N}$ and $\Psi \in C^1(\mathbb{R}^N)$. By the Divergence Theorem (see also [7]), we obtain

$$\int_{\Omega} \phi(T_{M}(u))\varphi'_{k}(T_{2k}(u - T_{h}(u)))\nabla T_{2k}(u - T_{h}(u))dx$$

$$= \int_{\{h < |u| \le 2k + h\}} \phi(u)\varphi'_{k}(u - T_{h}(u))\nabla udx$$

$$= \int_{\{|u| \le 2k + h\}} \phi(T_{2k + h}(u))\varphi'_{k}(T_{2k + h}(u) - T_{h}(u))\nabla T_{2k + h}(u)dx$$

$$- \int_{\{|u| \le h\}} \phi(T_{h}(u))\varphi'_{k}(T_{h}(u) - T_{h}(u))\nabla T_{h}(u)dx$$

$$= \int_{\Omega} \operatorname{div} \Psi(T_{2k + h}(u))dx - \int_{\Omega} \operatorname{div} \Psi(T_{h}(u))dx$$

$$= \int_{\partial\Omega} \Psi(T_{2k + h}(u)).\overrightarrow{n}dx - \int_{\partial\Omega} \Psi(T_{h}(u)).\overrightarrow{n}dx$$

$$= \sum_{i=1}^{N} \left(\int_{\partial\Omega} \Psi_{i}(T_{2k + h}(u)).n_{i}dx - \int_{\partial\Omega} \Psi_{i}(T_{h}(u)).n_{i}dx\right) = 0,$$

since u = 0 on $\partial\Omega$, with $\Psi = (\Psi_1, \dots, \Psi_N)$ and $\overrightarrow{n} = (n_1, n_2, \dots, n_N)$ the normal vector on $\partial\Omega$. Then, by letting h tend to infinity in (5.27), we obtain

$$\int_{\Omega} (a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)))(\nabla T_k(u_n) - \nabla T_k(u))dx \to 0$$
(5.28)

as $n \to \infty$. Using Lemma 4.4, we deduce that

$$T_k(u_n) \to T_k(u) \quad \text{in } W_0^{1,p(x)}(\Omega);$$
 (5.29)

then

$$\nabla u_n \to \nabla u$$
 a.e. in Ω .

Step 4: Equi-integrability of $g_n(x, u_n, \nabla u_n)$. To prove that

$$g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u)$$
 strongly in $L^1(\Omega)$,

using Vitalis theorem, it is sufficient to prove that $g_n(x, u_n, \nabla u_n)$ is uniformly equintegrable. Indeed, taking $T_1(u_n - T_h(u_n))$ as a test function in (5.2), we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_1(u_n - T_h(u_n)) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) T_1(u_n - T_h(u_n)) dx$$

$$= \int_{\Omega} f_n T_1(u_n - T_h(u_n)) dx + \int_{\Omega} \phi_n(u_n) \nabla T_1(u_n - T_h(u_n)) dx,$$
(5.30)

which is equivalent to

$$\int_{\{h < |u_n| \le h+1\}} a(x, u_n, \nabla u_n) \nabla u_n dx + \int_{\{h \le |u_n|\}} g_n(x, u_n, \nabla u_n) T_1(u_n - T_h(u_n)) dx
= \int_{\{h \le |u_n|\}} f_n T_1(u_n - T_h(u_n)) dx + \int_{\{h < |u_n| \le h+1\}} \phi_n(u_n) \nabla u_n dx.$$
(5.31)

Taking $\Phi_n(t) = \int_0^t \phi_n(\tau) d\tau$, we have $\Phi_n(0) = 0_{\mathbb{R}^N}$ and $\Phi_n \in C^1(\mathbb{R}^N)$. In view of the Divergence theorem,

$$\int_{\{h < |u_n| \le h+1\}} \phi_n(u_n) \nabla u_n dx$$

$$= \int_{\{|u_n| \le h+1\}} \phi_n(u_n) \nabla u_n dx - \int_{\{|u_n| \le h\}} \phi_n(u_n) \nabla u_n dx$$

$$= \int_{\Omega} \phi_n(T_{h+1}(u_n)) \nabla T_{h+1}(u_n) dx - \int_{\Omega} \phi_n(T_h(u_n)) \nabla T_h(u_n) dx$$

$$= \int_{\Omega} \operatorname{div} \Phi_n(T_{h+1}(u_n)) dx - \int_{\Omega} \operatorname{div} \Phi_n(T_h(u_n)) dx$$

$$= \int_{\partial \Omega} \Phi_n(T_{h+1}(u_n)) \cdot \overrightarrow{n} d\sigma - \int_{\partial \Omega} \Phi_n(T_h(u_n)) \cdot \overrightarrow{n} d\sigma = 0.$$

Since $u_n = 0$ on $\partial\Omega$, with $\Phi_n = (\Phi_{n,1}, \dots, \Phi_{n,N})$, and since

$$\int_{\{h<|u_n|\leq h+1\}} a(x,u_n,\nabla u_n)\nabla u_n dx \geq 0,$$

it follows that

$$\begin{split} \int_{\{h+1 \leq |u_n|\}} |g_n(x,u_n,\nabla u_n)| dx &= \int_{\{h+1 \leq |u_n|\}} g_n(x,u_n,\nabla u_n) T_1(u_n - T_h(u_n)) dx \\ &\leq \int_{\{h \leq |u_n|\}} g_n(x,u_n,\nabla u_n) T_1(u_n - T_h(u_n)) dx \\ &\leq \int_{\{h \leq |u_n|\}} f_n T_1(u_n - T_h(u_n)) dx \\ &\leq \int_{\{h \leq |u_n|\}} |f_n| dx, \end{split}$$

thus, for all $\eta > 0$, there exists $h(\eta) > 0$ such that

$$\int_{\{h(\eta) \le |u_n|\}} |g_n(x, u_n, \nabla u_n)| dx \le \frac{\eta}{2}.$$
 (5.32)

On the other hand, for any measurable subset $E \subset \Omega$, we have

$$\int_{E} |g_{n}(x, u_{n}, \nabla u_{n})| dx \leq \int_{E \cap \{|u_{n}| < h(\eta)\}} b(h(\eta))(c(x) + |\nabla u_{n}|^{p(x)}) dx
+ \int_{\{|u_{n}| \geq h(\eta)\}} |g_{n}(x, u_{n}, \nabla u_{n})| dx,$$
(5.33)

thanks to (5.29), there exists $\beta(\eta) > 0$ such that

$$\int_{E \cap \{|u_n| < h(\eta)\}} b(h(\eta))(c(x) + |\nabla u_n|^{p(x)}) dx \le \frac{\eta}{2} \quad \text{for meas}(E) \le \beta(\eta).$$
 (5.34)

Finally, by combining (5.32), (5.33) and (5.34), we obtain

$$\int_{E} |g_n(x, u_n, \nabla u_n)| dx \le \eta, \quad \text{with meas}(E) \le \beta(\eta). \tag{5.35}$$

Then $(g_n(x, u_n, \nabla u_n))_n$ is equi-integrable, and by the Vitali's Theorem we deduce that

$$g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \text{ in } L^1(\Omega).$$
 (5.36)

Step 5: Passage to the limit. Let $\varphi \in W_0^{1,p(x)}(\Omega) \cap L^{\infty}(\Omega)$ and $M = k + \|\varphi\|_{\infty}$ with k > 0, we will show that

$$\liminf_{n\to\infty} \int_{\Omega} a(x,u_n,\nabla u_n) \nabla T_k(u_n-\varphi) dx \ge \int_{\Omega} a(x,u,\nabla u) \nabla T_k(u-\varphi) dx.$$

If $|u_n| > M$ then $|u_n - \varphi| \ge |u_n| - \|\varphi\|_{\infty} > k$; therefore $\{|u_n - \varphi| \le k\} \subseteq \{|u_n| \le M\}$, which implies that

$$a(x, u_n, \nabla u_n) \nabla T_k(u_n - \varphi)$$

$$= a(x, u_n, \nabla u_n) \nabla (u_n - \varphi) \chi_{\{|u_n - \varphi| \le k\}}$$

$$= a(x, T_M(u_n), \nabla T_M(u_n)) (\nabla T_M(u_n) - \nabla \varphi) \chi_{\{|u_n - \varphi| \le k\}}.$$
(5.37)

Then

$$\int_{\Omega} a(x, u_{n}, \nabla u_{n}) \nabla T_{k}(u_{n} - \varphi) dx$$

$$= \int_{\Omega} a(x, T_{M}(u_{n}) \nabla T_{M}(u_{n})) (\nabla T_{M}(u_{n}) - \nabla \varphi) \chi_{\{|u_{n} - \varphi| \leq k\}} dx$$

$$= \int_{\Omega} (a(x, T_{M}(u_{n}), \nabla T_{M}(u_{n})) - a(x, T_{M}(u_{n}), \nabla \varphi))$$

$$\times (\nabla T_{M}(u_{n}) - \nabla \varphi) \chi_{\{|u_{n} - \varphi| \leq k\}} dx$$

$$+ \int_{\Omega} a(x, T_{M}(u_{n}), \nabla \varphi) (\nabla T_{M}(u_{n}) - \nabla \varphi) \chi_{\{|u_{n} - \varphi| \leq k\}} dx,$$
(5.38)

we obtain

$$\liminf_{n \to +\infty} \int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n - \varphi) dx$$

$$\geq \int_{\Omega} (a(x, T_M(u), \nabla T_M(u)) - a(x, T_M(u), \nabla \varphi)) (\nabla T_M(u) - \nabla \varphi) \chi_{\{|u - \varphi| \leq k\}} dx$$

$$+ \lim_{n \to +\infty} \int_{\Omega} a(x, T_M(u_n), \nabla \varphi) (\nabla T_M(u_n) - \nabla \varphi) \chi_{\{|u_n - \varphi| \leq k\}} dx.$$
(5.39)

Note that the second term in the right hand side of (5.39) is equal to

$$\int_{\Omega} a(x, T_M(u), \nabla \varphi)(\nabla T_M(u) - \nabla \varphi) \chi_{\{|u - \varphi| \le k\}} dx.$$

Finally, we have

$$\begin{aligned} & \liminf_{n \to +\infty} \int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n - \varphi) dx \\ & \geq \int_{\Omega} a(x, T_M(u), \nabla T_M(u)) (\nabla T_M(u) - \nabla \varphi) \chi_{\{|u - \varphi| \leq k\}} dx, \\ & = \int_{\Omega} a(x, u, \nabla u) (\nabla u - \nabla \varphi) \chi_{\{|u - \varphi| \leq k\}} dx \\ & = \int_{\Omega} a(x, u, \nabla u) \nabla T_k(u - \varphi) dx. \end{aligned}$$

Now, taking $T_k(u_n - \varphi)$ as a test function in (5.2) and passing to the limit, we conclude the desired statement. This completes the 5 steps for the proof of Theorem

Theorem 5.2. Assume that (3.2)-(3.6) and (3.8) hold, $p(.) \in C_{+}(\bar{\Omega})$ such that $2 - \frac{1}{N} < p_{-} \le p_{+} < N. \text{ Then problem (5.1) has at least one solution } u \in W_{0}^{1,q(x)}(\Omega)$ for all continuous functions $q(.) \in C_{+}(\bar{\Omega})$ such that $1 < q(x) < \bar{q}(x) = \frac{N(p(x)-1)}{N-1}$.

Proof. Let $(f_n)_n$ be a sequence in $W^{-1,p'(x)}(\Omega) \cap L^1(\Omega)$ such that $f_n \to f$ in $L^1(\Omega)$ and $||f_n||_1 \leq ||f||_1$, we consider the approximate problem

$$Au_n + g_n(x, u_n, \nabla u_n) = f_n - \operatorname{div} \phi_n(u_n)$$

$$u_n \in W_0^{1, p(x)}(\Omega),$$
(5.40)

where $\phi_n(s) = \phi(T_n(s))$ and $g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{n}|g(x, s, \xi)|}$. Thanks to the first step in the proof of Theorem 5.1, there exists at least one weak solution $u_n \in W_0^{1,p(x)}(\Omega)$ for this approximate problem. Let $\psi_k(t)$ be a real valued function

$$\psi_k(t) = \begin{cases}
0 & \text{if } 0 \le t \le k, \\
t - k & \text{if } k < t \le k + 1, \\
1 & \text{if } k + 1 < t, \\
-\psi_k(-t) & \text{otherwise},
\end{cases}$$
(5.41)

and we define the sets

$$B_0 = \{x \in \Omega : |u_n| \le 1\}, \quad B_k = \{x \in \Omega : k < |u_n| \le k + 1\} \text{ for } k \in \mathbb{N}^*.$$

Taking $\psi_k(u_n)$ as a test function in the approximate problem (5.40), we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla \psi_k(u_n) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) \psi_k(u_n) dx$$

$$= \int_{\Omega} f_n \psi_k(u_n) dx + \int_{\Omega} \phi_n(u_n) \nabla \psi_k(u_n) dx.$$

Then

$$\int_{B_k} a(x, u_n, \nabla u_n) \nabla u_n dx + \int_{\{|u_n| > k\}} g_n(x, u_n, \nabla u_n) \psi_k(u_n) dx$$

$$= \int_{\{|u_n|>k\}} f_n \psi_k(u_n) dx + \int_{B_k} \phi_n(u_n) \nabla u_n dx.$$

By the Divergence theorem.

$$\int_{B_k} \phi_n(u_n) \nabla u_n dx = \int_{\{|u_n| \le k+1\}} \phi_n(u_n) \nabla u_n dx - \int_{\{|u_n| \le k\}} \phi_n(u_n) \nabla u_n dx$$

$$= \int_{\Omega} \phi_n(T_{k+1}(u_n)) \nabla T_{k+1}(u_n) dx - \int_{\Omega} \phi_n(T_k(u_n)) \nabla T_k(u_n) dx$$

$$= \int_{\Omega} \operatorname{div} \Phi_n(T_{k+1}(u_n)) dx - \int_{\Omega} \operatorname{div} \Phi_n(T_k(u_n)) dx = 0.$$
(5.42)

Since $\psi_k(u_n)$ has the same sign as u_n , $g_n(x, u_n, \nabla u_n)\psi_k(u_n) \geq 0$ and we obtain

$$\int_{B_k} a(x,u_n,\nabla u_n) \nabla u_n dx \leq \int_{\{|u_n|>k\}} f_n \psi_k(u_n) dx \leq \int_{\Omega} |f_n| dx,$$

using (3.3), we deduce that

$$\alpha \int_{B_k} |\nabla u_n|^{p(x)} dx \le ||f||_1 \quad \text{for all } k \ge 0.$$
 (5.43)

In view of the Lemma 4.3, there exists a constant C that does not depend on nsuch that

$$\left\|u_n\right\|_{1,q(x)} \le C,$$

for any continuous exponent $q(\cdot) \in C_+(\overline{\Omega})$ with $1 < q(x) < \overline{q}(x) = \frac{N(p(x)-1)}{N-1}$. By using the same steps in the proof of Theorem 5.1, we can show that there exists a subsequence still denoted $(u_n)_n$ which converge to u, then

$$||u||_{1,q(x)} \le C,$$

where u is solution of 5.1.

Theorem 5.3. Assume that (3.2)–(3.6) and (3.8) hold, $p(.) \in C_{+}(\overline{\Omega})$ such that $2 - \frac{1}{N} < p_{-} \le p_{+} < N$. If $f \log(1 + |f|) \in L^{1}(\Omega)$ then (5.1) has at least one solution $u \in W_{0}^{1,\bar{q}(x)}(\Omega)$ with $\bar{q}(x) = \frac{N(p(x)-1)}{N-1}$.

Proof. Let $(f_n)_n$ be a sequence in $W^{-1,p'(x)}(\Omega) \cap L^1(\Omega)$ such that $f_n \to f$ in $L^1(\Omega)$, with $||f_n||_1 \le ||f||_1$ and $||f_n|\log(1+|f_n|)||_1 \le ||f|\log(1+|f|)||_1$ (for example $f_n = T_n(f)$). We consider the approximate problem

$$Au_n + g_n(x, u_n, \nabla u_n) = f_n - \operatorname{div} \phi_n(u_n)$$

$$u_n \in W_0^{1, p(x)}(\Omega),$$
(5.44)

where $\phi_n(s) = \phi(T_n(s))$ and $g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{n} |g(x, s, \xi)|}$, there exists at least one weak solution $u_n \in W_0^{1,p(x)}(\Omega)$ for this approximate problem. Let $\psi_k(t)$ be defined by (5.41), and

$$S_k = \left\{ x \in \Omega, \quad k < |u_n| \right\} = \bigcup_{r=k}^{\infty} B_r \qquad \forall k \in \mathbb{N}.$$

By using $\psi_k(u_n)$ as a test function in the approximate problem (5.44), we obtain

$$\alpha \int_{B_k} |\nabla u_n|^{p(x)} dx \le \int_{S_k} |f_n| dx \quad \text{for all } k \in \mathbb{N}.$$
 (5.45)

Let $\bar{q}(x) = \frac{N(p(x)-1)}{N-1}$, we have

$$\int_{\Omega} \frac{|\nabla u_n|^{p(x)}}{(1+|u_n|)} dx = \sum_{k=0}^{\infty} \int_{B_k} \frac{|\nabla u_n|^{p(x)}}{(1+|u_n|)} dx
\leq \sum_{k=0}^{\infty} \frac{1}{k+1} \int_{B_k} |\nabla u_n|^{p(x)} dx
\leq \frac{1}{\alpha} \sum_{k=0}^{\infty} \frac{1}{k+1} \int_{S_k} |f_n| dx
\leq \frac{1}{\alpha} \sum_{k=0}^{\infty} \frac{1}{k+1} \sum_{s=k}^{\infty} \int_{B_s} |f_n| dx
= \frac{1}{\alpha} \sum_{k=0}^{\infty} \sum_{s=k}^{\infty} \int_{B_s} |f_n| \frac{1}{k+1} dx
= \frac{1}{\alpha} \sum_{s=0}^{\infty} \sum_{k=0}^{\infty} \int_{B_s} |f_n| \frac{1}{k+1} dx .$$

Since $\sum_{k=0}^{\infty} \sum_{s=k}^{\infty} v_{s,k} = \sum_{s=0}^{\infty} \sum_{k=0}^{s} v_{s,k}$, the above expression equals

$$\frac{1}{\alpha} \sum_{s=0}^{\infty} \int_{B_s} |f_n| (\sum_{k=0}^s \frac{1}{k+1}) dx \le \frac{1}{\alpha} \sum_{s=0}^{\infty} \int_{B_s} |f_n| [1 + \log(1+s)] dx
\le \frac{1}{\alpha} \sum_{s=0}^{\infty} \int_{B_s} |f_n| [1 + \log(1+|u_n|)] dx
\le \frac{1}{\alpha} \int_{\Omega} |f_n| [1 + \log(1+|u_n|)] dx,$$

and since $ab \le a \log(1+a) + e^b$ for all $a, b \ge 0$, we obtain

$$\begin{split} &\frac{1}{\alpha} \int_{\Omega} |f_n| [1 + \log(1 + |u_n|)] dx \\ &= \frac{1}{\alpha} \int_{\Omega} |f_n| dx + \frac{1}{\alpha} \int_{\Omega} |f_n| \log(1 + |u_n|) dx \\ &\leq \frac{1}{\alpha} \int_{\Omega} |f_n| dx + \frac{1}{\alpha} \int_{\Omega} |f_n| \log(1 + |f_n|) dx + \frac{1}{\alpha} \int_{\Omega} (1 + |u_n|) dx \\ &\leq \frac{1}{\alpha} \|f\|_1 + \frac{1}{\alpha} \|f \log(1 + |f|)\|_1 + \frac{1}{\alpha} \int_{\Omega} (1 + |u_n|) dx \,. \end{split}$$

In view of the Theorem 5.2 we have $u_n \in W_0^{1,q(x)}(\Omega)$; then $\int_{\Omega} |u_n| dx$ is bounded. It follows that

$$\int_{\Omega} \frac{|\nabla u_n|^{p(x)}}{(1+|u_n|)} dx \le C_1,\tag{5.46}$$

with C_1 is a constant that does not depend on n.

Now, observe that $\overline{\Omega}$ is compact, therefore, we can cover it with a finite number of balls $(B_i)_{i=1,\ldots,m}$, with $B_i = B(x_i, \delta)$. we denote

$$p_{i-} = \min\{p(x) : x \in \overline{B_i \cap \Omega}\}$$
 and $p_{i+} = \max\{p(x) : x \in \overline{B_i \cap \Omega}\},$

since $p(\cdot)$ is a real-valued continuous function on $\overline{\Omega}$, then, by taking $\delta > 0$ small enough such that

$$\frac{(N - p_{i-})(p_{i-} - 1)^2}{N + p_{i-}^2 - 2p_{i-}} + p_{i-} > p_{i+} \quad \text{in } B_i \cap \Omega \text{ for } i = 1, \dots, m,$$
 (5.47)

and there exists a constant a > 0 such that

$$meas(B_i \cap \Omega) > a$$
 for $i = 1, ..., m$.

By the Generalized Hölder inequality, we have

$$\int_{B_{i}\cap\Omega} |\nabla u_{n}|^{\bar{q}(x)} dx
= \int_{B_{i}\cap\Omega} \frac{|\nabla u_{n}|^{\bar{q}(x)}}{(1+|u_{n}|)^{\frac{\bar{q}(x)}{p(x)}}} (1+|u_{n}|)^{\frac{\bar{q}(x)}{p(x)}} dx
= \int_{B_{i}\cap\Omega} \left(\frac{|\nabla u_{n}|^{p(x)}}{(1+|u_{n}|)}\right)^{\frac{\bar{q}(x)}{p(x)}} (1+|u_{n}|)^{\frac{\bar{q}(x)}{p(x)}} dx
\leq \left(\frac{N(p_{i+}-1)}{(N-1)p_{i-}} + \frac{N-p_{i-}}{(N-1)p_{i-}}\right) \left\| \left(\frac{|\nabla u_{n}|^{p(x)}}{(1+|u_{n}|)}\right)^{\frac{\bar{q}(x)}{p(x)}} \right\|_{L^{\frac{p(x)}{\bar{q}(x)}}(B_{i}\cap\Omega)}
\times \left\| (1+|u_{n}|)^{\frac{\bar{q}(x)}{p(x)}} \right\|_{L^{\frac{p(x)}{p(x)}-\bar{q}(x)}(B_{i}\cap\Omega)}$$
(5.48)

On the one hand, using (5.46) we have

$$\left\| \left(\frac{|\nabla u_n|^{p(x)}}{(1+|u_n|)} \right)^{\frac{q(x)}{p(x)}} \right\|_{L^{\frac{p(x)}{q(x)}}(B_i \cap \Omega)} \leq \left(\int_{B_i \cap \Omega} \frac{|\nabla u_n|^{p(x)}}{(1+|u_n|)} dx + 1 \right)^{\frac{(N-1)p_{i+}}{N(p_i-1)}} \\
\leq \left(\int_{\Omega} \frac{|\nabla u_n|^{p(x)}}{(1+|u_n|)} dx + 1 \right)^{\frac{(N-1)p_{i+}}{N(p_i-1)}} \\
\leq (C_1+1)^{\frac{(N-1)p_{i+}}{N(p_i-1)}} \tag{5.49}$$

On the other hand, thanks to the Sobolev-Poincaré inequality, we have

$$||u_n||_{L^{\overline{q}^*(x)}(B_i \cap \Omega)} \le ||u_n - \overline{u}_{n,i}||_{L^{\overline{q}^*(x)}(B_i \cap \Omega)} + ||\overline{u}_{n,i}||_{L^{\overline{q}^*(x)}(B_i \cap \Omega)}$$

$$\le c||\nabla u_n||_{L^{\overline{q}(x)}(B_i \cap \Omega)} + ||\overline{u}_{n,i}||_{L^{\overline{q}^*(x)}(B_i \cap \Omega)}$$

with $\overline{u}_{n,i} = \frac{1}{|B_i \cap \Omega|} \int_{B_i \cap \Omega} u_n dx$, and since

$$\bar{q}^*(x) = \frac{\bar{q}(x)}{p(x) - \bar{q}(x)} = \frac{N(p(x) - 1)}{N - p(x)},$$

we obtain

$$\begin{split} & \int_{B_{i}\cap\Omega} (1+|u_{n}|)^{\frac{\bar{q}(x)}{p(x)-\bar{q}(x)}} dx \\ & \leq C_{2} \int_{B_{i}\cap\Omega} (1+|u_{n}|^{\frac{\bar{q}(x)}{p(x)-\bar{q}(x)}}) dx \\ & = C_{2} \Big(\max(B_{i}\cap\Omega) + \int_{B_{i}\cap\Omega} |u_{n}|^{\bar{q}^{*}(x)} dx \Big) \\ & \leq C_{2} \Big(\max(B_{i}\cap\Omega) + \|u_{n}\|_{L^{\bar{q}^{*}(x)}(B_{i}\cap\Omega)}^{\sigma_{1}} \Big) \\ & \leq C_{3} \Big(\max(B_{i}\cap\Omega) + \|\nabla u_{n}\|_{L^{\bar{q}(x)}(B_{i}\cap\Omega)}^{\sigma_{1}} + \|\overline{u}_{n,i}\|_{L^{\bar{q}^{*}(x)}(B_{i}\cap\Omega)}^{\sigma_{1}} \Big), \end{split}$$

with

$$\sigma_1 = \begin{cases} \frac{N(p_{i+}-1)}{N-p_{i+}} & \text{if } \|u_n\|_{L^{\bar{q}^*(x)}(B_i\cap\Omega)} > 1, \\ \frac{N(p_{i-}-1)}{N-p_{i-}} & \text{if } \|u_n\|_{L^{\bar{q}^*(x)}(B_i\cap\Omega)} \leq 1, \end{cases}$$

since $|\overline{u}_{n,i}| \leq \frac{1}{a} \int_{\Omega} |u_n| dx$, it follows that $\|\overline{u}_{n,i}\|_{L^{\overline{q}^*(x)}(B_i \cap \Omega)}$ is bounded and

$$\begin{aligned} & \left\| (1 + |u_{n}|)^{\frac{\bar{q}(x)}{p(x)}} \right\|_{L^{\frac{p(x)}{p(x) - \bar{q}(x)}}(B_{i} \cap \Omega)} \\ & \leq \left(\int_{B_{i} \cap \Omega} (1 + |u_{n}|)^{\frac{\bar{q}(x)}{p(x) - \bar{q}(x)}} dx \right)^{\sigma_{2}} \\ & \leq \left(C_{3} \left(\max(B_{i} \cap \Omega) + \|\nabla u_{n}\|_{L^{\bar{q}(x)}(B_{i} \cap \Omega)}^{\sigma_{1}} + \|\overline{u}_{n,i}\|_{L^{\bar{q}^{*}(x)}(B_{i} \cap \Omega)}^{\sigma_{1}} \right) \right)^{\sigma_{2}} \\ & \leq C_{4} (1 + \|\nabla u_{n}\|_{L^{\bar{q}(x)}(B_{i} \cap \Omega)}^{\sigma_{1}\sigma_{2}}), \end{aligned}$$

$$(5.50)$$

and

$$\sigma_{2} = \begin{cases} \frac{N - p_{i-}}{(N-1)p_{i-}} & \text{if } \left\| (1 + |u_{n}|)^{\frac{\overline{q}(x)}{p(x)}} \right\|_{L^{\frac{p(x)}{p(x)} - \overline{q}(x)}(B_{i} \cap \Omega)} > 1, \\ \frac{N - p_{i+}}{(N-1)p_{i+}} & \text{if } \left\| (1 + |u_{n}|)^{\frac{\overline{q}(x)}{p(x)}} \right\|_{L^{\frac{p(x)}{p(x)} - \overline{q}(x)}(B_{i} \cap \Omega)} \le 1. \end{cases}$$

By combining (5.48), (5.49) and (5.50), we obtain

$$\int_{B_i \cap \Omega} |\nabla u_n|^{\bar{q}(x)} dx \le C_5 + C_5 \|\nabla u_n\|_{L^{\bar{q}(x)}(B_i \cap \Omega)}^{\sigma_1 \sigma_2}.$$

Then

$$\|\nabla u_{n}\|_{L^{\bar{q}(x)}(B_{i}\cap\Omega)}^{\pi} - C_{5}\|\nabla u_{n}\|_{L^{\bar{q}(x)}(B_{i}\cap\Omega)}^{\sigma_{1}\sigma_{2}}$$

$$\leq \int_{B_{i}\cap\Omega} |\nabla u_{n}|^{\bar{q}(x)} dx - C_{5}\|\nabla u_{n}\|_{L^{\bar{q}(x)}(B_{i}\cap\Omega)}^{\sigma_{1}\sigma_{2}} \leq C_{5},$$
(5.51)

with

$$\pi = \begin{cases} \bar{q}_{i-} & \text{if } \|\nabla u_n\|_{L^{\bar{q}(x)}(B_i \cap \Omega)} > 1, \\ \bar{q}_{i+} & \text{if } \|\nabla u_n\|_{L^{\bar{q}(x)}(B_i \cap \Omega)} \leq 1, \end{cases}$$

and since $\sigma_1 \sigma_2 < \bar{q}_{i-} \leq \pi$ in $B_i \cap \Omega$, it follows that $\|\nabla u_n\|_{L^{\bar{q}(x)}(B_i \cap \Omega)}$ is bounded. Indeed, we have

$$\begin{split} &\frac{(N-p_{i-})(p_{i-}-1)^2}{N+p_{i-}^2-2p_{i-}}+p_{i-}>p_{i+}\\ &\iff \frac{Np_{i-}^2-Np_{i-}+N-p_{i-}}{N+p_{i-}^2-2p_{i-}}>p_{i+}\\ &\iff (p_{i-}-1)(N-p_{i+})p_{i-}-(N-p_{i-})(p_{i+}-1)>0\\ &\iff \bar{q}_{i-}=\frac{N(p_{i-}-1)}{N-1}>\frac{(N-p_{i-})}{(N-1)p_{i-}}\frac{N(p_{i+}-1)}{N-p_{i+}}\geq\sigma_1\sigma_2. \end{split}$$

We conclude that there exists some constants $r_i > 0$ such that $\int_{B_i \cap \Omega} |\nabla u_n|^{\bar{q}(x)} dx \le r_i$ for all $i = 1, \ldots, m$, it follows that

$$\int_{\Omega} |\nabla u_n|^{\bar{q}(x)} dx = \sum_{i=1}^m \int_{B_i \cap \Omega} |\nabla u_n|^{\bar{q}(x)} dx \le C_6, \tag{5.52}$$

and by the Poincaré inequality, we obtain

$$||u_n||_{1,\bar{q}(x)} \le C_7,$$

with C_7 is a constant that does not depend on n, we deduce that

$$||u||_{1,\bar{q}(x)} \le C_7,$$

where u is solution of (5.1).

Theorem 5.4. Let $p(.) \in C_+(\bar{\Omega})$. Assume (3.2)-(3.6) hold with $f \in W^{-1,p'(x)}(\Omega)$ and $\phi \in C^0(\mathbb{R}^N)$. Then (5.1) has at least one solution $u \in W_0^{1,p(x)}(\Omega)$.

Proof. Let $u_n \in W_0^{1,p(x)}(\Omega)$ a weak solution of the approximate problem

$$Au_n + g_n(x, u_n, \nabla u_n) = f - \operatorname{div} \phi_n(u_n)$$

$$u_n \in W_0^{1, p(x)}(\Omega),$$
(5.53)

where $\phi_n(s) = \phi(T_n(s))$ and $g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{n} |g(x, s, \xi)|}$. By taking u_n as a test function in (5.53), we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx = \int_{\Omega} f u_n dx + \int_{\Omega} \phi_n(u_n) \nabla u_n dx.$$

By the Divergence theorem, $\int_{\Omega} \phi_n(u_n) \nabla u_n dx = 0$, and since $g_n(x, u_n, \nabla u_n) u_n \ge 0$, we obtain

$$\begin{split} \alpha \int_{\Omega} |\nabla u_n|^{p(x)} dx &\leq \int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n dx \\ &\leq (\frac{1}{p_-} + \frac{1}{p'_-}) \|f\|_{-1, p'(x)} \|u_n\|_{1, p(x)}, \end{split}$$

it follows that

$$\|\nabla u_n\|_{p(x)}^{\gamma} \le C_1 \|f\|_{-1, p'(x)} \|u_n\|_{1, p(x)} \quad \text{with } \gamma = \begin{cases} p_- & \text{if } \|\nabla u_n\|_{p(x)} > 1, \\ p_+ & \text{if } \|\nabla u_n\|_{p(x)} \le 1, \end{cases}$$

by using the Poincaré inequality, we obtain

$$||u_n||_{1,p(x)}^{\gamma} \le C_2 ||u_n||_{1,p(x)}$$

Then $||u_n||_{1,p(x)} \leq C_3$, with C_3 independent of n, and

$$||u||_{1,p(x)} \leq C_3,$$

where u is solution of the problem (5.1).

References

- [1] L. Aharouch, E. Azroul; Existance and regurarity of entropy solutions for some nonlinear elliptic equations, (Capri, 2004), Electronic Journal of Differential Equations, Conference 11, 2004, pp 1-10.
- [2] M. B. Benboubker, E. Azroul, A. Barbara; On some quasilinear elliptic problems with non-standard growths, Electronic J. of Differential Equations, Vol. 2011 (2011), No. 62, pp. 1-16.
- [3] M. Bendahmane, P. Wittbold; Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data, Nonlinear Anal. 70 (2009) 567-583.
- [4] Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vázquez; An L¹-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1995), 241-273.
- [5] L. Boccardo; Some nonlinear Dirichlet problem in L¹ involving lower order terms in divergence form, Progress in elliptic and parabolic partial differential equations (Capri, 1994), Pitman Res. Notes Math. Ser., 350, p. 43-57, Longman, Harlow, 1996.
- [6] L. Boccardo, T. Gallouët; Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), no. 3-4, 641-655.

- [7] L. Boccardo, D. Giachetti, J. I. Dias, F. Murat; Existence and Regularity of Renormalized Solutions for Some Elliptic Problems Involving Derivations of Nonlinear terms, journal of differential equations., 106, (1993), 215-237.
- [8] L. Diening, P. Harjulehto, P. Hästö, M. Råžička; Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture Notes in Mathematics, Springer, Heidelberg, Germany, 2011.
- [9] X. Fan, Y. Zhao, D. Zhao; Compact embedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}(\Omega)$, J.Math. Anal. Appl. 255(2001), 333-348.
- [10] X. L. Fan, D. Zhao; On the generalised Orlicz-Sobolev Space $W^{k,p(x)}(\Omega)$, J. Gansu Educ. College 12(1) (1998), 1-6.
- [11] P. Harjulehto, P. Hästö; Sobolev Inequalities for Variable Exponents Attaining the Values 1 and n, Publ. Mat. 52 (2008), no. 2, 347-363.
- [12] M. Kbiri Alaoui, D. Meskine, A. Souissi; On the limiting regularity result of some nonlinear elliptic equations, Z. Anal. Anwend. 26 (2007), no. 4, 459-466.
- [13] J. L. Lions; Quelques methodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers-Villars, Paris 1969.
- [14] D. Zhao, W. J. Qiang, X. L. Fan; On generalized Orlicz spaces $L^{p(x)}(\Omega)$, J. Gansu Sci. 9(2), 1997, 1-7.

Elhoussine Azroul

UNIVERSITY OF FEZ, FACULTY OF SCIENCES DHAR EL MAHRAZ, LABORATORY LAMA, DEPARTMENT OF MATHEMATICS, B.P. 1796 ATLAS FEZ, MOROCCO

 $E ext{-}mail\ address: azroul_elhoussine@yahoo.fr}$

Hassane Hjiaj

University of Fez, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P. 1796 Atlas Fez, Morocco

 $E ext{-}mail\ address: hjiajhassane@yahoo.fr}$

Abdelfattah Touzani

UNIVERSITY OF FEZ, FACULTY OF SCIENCES DHAR EL MAHRAZ, LABORATORY LAMA, DEPARTMENT OF MATHEMATICS, B.P. 1796 ATLAS FEZ, MOROCCO

E-mail address: atouzani07@gmail.com