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EXISTENCE AND REGULARITY OF ENTROPY SOLUTIONS
FOR STRONGLY NONLINEAR p(z)-ELLIPTIC EQUATIONS

ELHOUSSINE AZROUL, HASSANE HJIAJ, ABDELFATTAH TOUZANI

ABSTRACT. This article is devoted to study the existence of solutions for the
strongly nonlinear p(zx)-elliptic problem

—diva(z,u, Vu) + g(z,u, Vu) = f —divp(u) in Q,
=0 on 99,

with f € L'(Q) and ¢ € CO(RYN), also we will give some regularity results for
these solutions.

1. INTRODUCTION

Let Q be a bounded open subset of RY with N > 2. For 2 — % < p < N,
Boccardo and Gallouét [6] studied the problem

Au=f in Q,
u=0 on 09,

where Au = — div a(z,u, Vu) is a Leray-Lions operator from Wol’p(Q) into its dual,
and f is a bounded Radon measure on 2. They proved the existence of solutions
u € Wol’q(Q) foralll < ¢ < g = %. Moreover, they showed the critical
regularity u € Wy'?(€2) under the assumption flog(1+ |f|) € L*(2). Boccardo [5]
studied the existence of entropy solutions for the problem

—diva(zr,u, Vu) = f —dive(u) in Q, L1
u=0 on 09, (1.1)

where f € L'(Q2) and ¢ € C°(RY), he proved the solutions existence and some reg-
ularity results, under the above assumptions. Aharouch and Azroul [I] studied the
problem in Oricz-sobolev spaces. They proved the existence of entropy solu-
tions u € W, %(€2). In the case of p = N, they assume in addition that there exists
an N-function H such that H(tY) is equivalent to M (t). Kbiri Alaoui, Meskine and
Souissi [12] proved the critical regularity WO1 “9(Q) of solutions for nonlinear elliptic
problems with right-hand side in Llog® L(Q2) and a > % Also they proved some
regularity results when a < %
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In this article, we consider the problem
—diva(z,u, Vu) + g(z,u, Vu) = f — diveo(u) in Q,

1.2
u=0 on 0, (1.2)

where the right hand side is assumed to satisfy
feL*Q) and ¢ec CORN). (1.3)

We will study the strongly nonlinear boundary-value problem in the framework
of variable exponent Sobolev spaces, we will prove the existence of entropy solutions
and some ¢(x)-regularity results.

Recall that, since no growth hypothesis is assumed on ¢, the term div ¢(v) may

be meaningless, even as a distribution for a function v € Wol’T(ac)(Q)7 r(z) > 1 (see
[5] and [7] for the case of constant exponent).

Definition 1.1. For k£ > 0 and s € R, the truncation function Tj(.) is defined by

To(s) s if |s| <k,
S) =
F ks if |s| > k.

Is]

This article is organized as follows. In the section 2 we recall some important
definitions and results of variable exponent Lebesgue and Sobolev spaces. We
introduce in the section 3 some assumptions on a(z, s,€) and g(z,s,&) for which
our problem has a solutions. The section 4 contains some important lemmas useful
to prove our main results. The section 5 will be devoted to show the existence
of entropy solutions for the problem , also we will give some important LI(®)-
regularity results for these solutions (the case p = 2—1/N and p = N are excluded).

2. PRELIMINARIES

Let © be a bounded open subset of RN (N > 2), we say that a real-valued
continuous function p(.) is log-Holder continuous in 2 if

C

_ 1
< ——— Vz,y € Qsuch that |z —y| < =,
|log [ — yl| 2

Ip(z) — p(y)]

with possible different constant C'. We denote
C,(Q) = {log-Hélder continuous function p: Q — R with 1 <p_ < p, < N},

where
p— =min{p(z) : x € Q} p; =max{p(z):x € Q}.
We define the variable exponent Lebesgue space for p € C (Q) by

= {u: Q2 — R measurable : [ |u(z r < 0o},
Lr®(Q Q—R bl P®)q
Q
the space LP(*)(Q) under the norm
| p(z) = i >0: @P(I)d:pgl
p(z) = nf{A >0 \
Q

is a uniformly convex Banach space, and therefore reflexive. We denote by Lv' (@ Q)

the conjugate space of LP(*)(Q) where ﬁ + ﬁ =1 (see [10} 14]).
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Proposition 2.1 (Generalized Holder inequality [10, 14]). (i) For any functions
ue LP@)(Q) and v € LP' @) (Q), we have

1 1
uvdxg(—Jr—)u 21V (-
I/Q | ot lellpe) V]l ()

(i3) For all p1,ps € C4(Q) such that p1(z) < pa(x) a.e. in Q, we have LP>*)(Q) —
LP1(=)(Q) and the embedding is continuous.

Proposition 2.2 ([10, [14]). If we denote
w) 2/ [uP@dz  Yu e P (Q),
Q

then, the following assertions hold
(1) [Jullp@) <1 (resp, =1, > 1) if and only if p(u) < 1 (resp, =1, > 1);
(i) [Jullp@) > 1 implies ||u||p(x) < p(u) < ||u|p(m and [Jullp) < 1 implies

lullpiy < p(u) < llully

p(z) p(z)’

(iii) [Jullp@) — O if and only if p(u) — 0, and |ullpm) — oo if and only if
p(u) — oo.

Now, we define the variable exponent Sobolev space by
WP (Q) = {u € LP®)(Q) and |Vu| € LP®)(Q)},

with the norm

L) = [tllp) + 1 VUllpe) Yo e WHPE(Q).

[[ul

We denote by Wol"p(z)(Q) the closure of C§°(Q) in WP (Q), and we define the
Sobolev exponent by p*(x) = Np(w) for p(z) < N.

p(z)
Proposition 2.3 ([10, [11]). (i) Assuming 1 < p_ < py < oo, the spaces
Whr)(Q) and VV1 p(m)( Q) are separable and reflexive Banach spaces.
(i) If ¢ € CL(Q) and q(z) < p*(z) for any x € Q, then the embedding
Wol’p(x)(Q) < LI®)(Q) is continuous and compact.
(iii) Poincaré inequality: there exists a constant C' > 0, such that

[ullpey < ClIVullpe)  Yue Wy ().

(vi) Sobolev-Poincaré inequality : there exists an other constant C' > 0, such
that

ltllpeta) < ClIVullyy Y € Wo™().
Remark 2.4. By (iii) of Proposition we deduce that [|[Vu||pm) and [Jully )

are equivalent norms in Wo™(Q).

Definition 2.5 ([8]). We denote the dual of the Sobolev space Wol’p(x)(ﬂ) by
W*I’p/(w)(Q) and for each F € W17’ (@) (Q) there exists fo, fi,...,fn € Lp/(I)(Q)

such that F' = fy + Zfil gg{’_. Moreover, for all u € Wol’p(x) (©2) we have

(F,u) /foudx—Z/flaxl
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and we define a norm on the dual space by

|FH 1,p/(xz) — Z”fznp (x)*

Now, we define

Tol’p(x)(Q) := {measurable function u such that T} (u) € Wol’p(x)(Q) Vk > 0}.

Proposition 2.6. Let u € Tol’p(m)(ﬂ), there exists a unique measurable function
v:Q— RN such that

V. X{ju<k} = VIk(u) for a.e. x € Q and for all k > 0.
We will define the gradient of u as the function v, and we will denote it by v = Vu.

Definition 2.7. A measurable function w is an entropy solution of the Dirichlet
problem (1.2)) if
Ti(u) € WP (Q) k>0,

/ a(z,u, Vu)VT(u — ¢)dz + / g(x,u, Vu) Ty (u — ¢)dz
) )

< /Qka(u —p)dz + /Q (W) VTi(u — p)dz

for all ¢ € WP (Q) N L=(Q).
Lemma 2.8. Let A € R and let u and v be two functions which are finite almost
everywhere, and which belong to Tl P(@) (Q), then
V(u+ ) =Vu+AVe  a.e. in Q,
where Vu, Vv and V(u + ) are the gradients of u, v and u + Av introduced in
the Definition [2.7
Proof. Let E, = {Jul| < n} N {lv| <n}. We have T),(u) = u and T),(v) = v in E,,
then for every k > 0
Te(Th(u) + AT, (v)) = Ti(u + Av)  ae. in E,,

and therefore, since both functions belong to VV1 P (I)(Q),

VTi(Th(u) + AT, (v)) = VT (u+ Av)  ae. in E,. (2.1)
Since T, (u) and T,,(v) belong to Wl’p(z)(Q), we have by using a classical property
of the truncates functions in W, ’p(x)(ﬂ), and the definition of Vu and Vu,

VTi(Th(u) + AT (v) = X{T0 () 42T (0)| <k} (VT (1) + AV, (v))

= X{I T () 4T (0) | <k} (VX Ju <} + AVOX (o] <n})
a.e. in €. Therefore,

VTk(Tn(U) + /\Tn(v)) = X{|u+,\v|§k}(Vu + )\V’U) a.e. in F,. (22)
On the other hand, by definition of V(u + Av),
VTi(u+ M) = X{jusrv|<k} V(u+ Av)  ae. in E,. (2.3)

Putting together (2.1}, (2.2)) and (2.3)), we obtain

X{lutao| <k} V(U + A0) = X{jugav)<k} (Vu +AVo) ae. in E,. (2.4)
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We have UpenE,, (resp. Ugen{|u + Av| < k}) differs at most from € by a set of
zero Lebesgue measure, since u and v are almost everywhere finite, then (2.4) holds
almost everywhere in ). which conclude the proved of Lemma [2.§

3. ESSENTIAL ASSUMPTION

Let © be a bounded open subset of RY (N > 2) and p € C(Q), we consider
a Leray-Lions operator from Wol’p(m)(Q) into its dual W~12'(#)(Q), defined by the
formula
Au = —div a(z,u, Vu) (3.1)
where a : @ x R x RY — R¥ is a Carathéodory function (measurable with respect
to x in Q for every (s,€) in R x RY, and continuous with respect to (s,¢) in R x RY
for almost every z in Q) which satisfies the following conditions

la(z,5,€)| < BK () + |s|P@ =1 4 [¢p@)=1), (3.2)
a(z, s, £)€ > al¢P™), (3.3)
a(z,5,€) —a(z,5,0)]( —€) >0 forall £ #€ inRY, (3.4)

for a.e. = € Q, all (s,£) € R x RY| where K(z) is a positive function lying in
Lp/('"’:)(Q) and «, 8 > 0.
The nonlinear term g(z, s,£) is a Carathéodory function which satisfies

g(z,s,&)s >0, (3.5)
l9(x, 5,€)] < b(ls])(c(x) + [€P), (3.6)

where b : Rt — RT is a continuous, nondecreasing function, and ¢ :  — Rt with
c € L'(92). We consider the problem

—diva(z,u, Vu) + g(z,u, Vu) = f —divé(u) in Q,

3.7
u=0 on 01, (3.7)

with
feL' () and ¢e CORY). (3.8)
The symbol — will denote the weak convergence, and the constants C;, ¢ = 1,2, ...
used in each steps of proof are independent. O

4. SOME TECHNICAL LEMMAS

Lemma 4.1 (2]). Let g € L"®(Q) and g, € L"™(Q) with |gn|ls@) < C for
1 <r(z) < oo. If go(x) — g(x) a.e. on Q, then g, — g in L"®)(Q).

Lemma 4.2. Letu € Wol’p(x)(ﬂ) then Ty (u) € Wol’p(w) (Q) with k > 0. Moreover,
we have Ty (u) — u in Wol’p(r)(ﬁ) as k — oo.

Proof. Let k >0and T : R — R,

To(s) s if |s| <k,
S) =
i k.sign(s) if |s| > k,

then for all u € Wol’p(w)(Q) we have Ty (u) € Wol’p(gc)(Q)7 and

/ Ty (u) — ulP™ da + / VT (u) — Vu|P®dz
Q Q
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= / Ty (1) — ulP@ da —|—/ Ty (1) — ulP@ da
{lul<k} {lul>k}

- / V() — VulPt™) + / V() = VulP P dz
{lul<k} {lu|>k}

:/ | Ty () —u|p(”’)d:£+/ |VulP@ de.
{lul>k} {lul>k}

Since Ty (u) — u as k — oo and by using the dominated convergence theorem, we
have

/ Ty () — ulP@ dz +/ |VulP@dz — 0 as k — co.
{lul>k} {lul>k}
Finally || Ty (u) — uHW01.p<1>(Q) — 0as k — oo. O

Lemma 4.3 ([3]). Let p(-) be a continuous function in C1 () and u a function

n Wol’p(x)(Q). Suppose 2 — % < p— <py < N, and that there exists a constant c;
such that

/ VulP®dz < e, VE>0.

{k<|u|<k+1}

Then there exists a constant co > 0, depending on ¢y, such that
||u||1,q(:v) < ¢,

for all continuous functions q(-) on Q satisfying

1§q(:®<% for all x € Q.

Lemma 4.4. Assume (3.2)-(3.4), and let (uy,), be a sequence in Wol’p(x)(Q) such
that u, — u in Wol’p(I) (Q) and

/Q[a(x,un7 V) — a(z, ty, V)|V (u, — u)dx — 0, (4.1)

then u, —u in Wol’p(x)(Q) for a subsequence.

Proof. Let D,, = [a(z, un, Vuy) — a(z, un, Vu)|V(u, — u), thanks to we have
D, is a positive function, and by (£.1), D, — 0 in L'(Q) as n — oco.

Since u,, — u in Wol’p(x)(Q) then u,, — w a.e. in Q, and since D,, — 0 a.e. in
1, there exists a subset B in Q with measure zero such that for all z € Q\B,

[u(z)] < o0, |Vu(z)| <oo, K(z)<oo, up,— u, D,—0.
Taking &, = Vu,, and £ = Vu, we have
Di(x) = [a(, un, &) — al@, un, €)](€n — &)
= (@, un, &n)én + a(@, un, §)§ — a(x, un, £n)€ — alz, un, §)&n
> P + algP) — BK (@) + Jun "7 + (67T
— BE (2) + [un PO~ 4 [P,
> algn|"™) = Co(1+ |67 + [,
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where C, depending on z, without dependence on n. (since u,(x) — u(z) then
(un)n is bounded), we obtain

C C C
Do(z) > 6@ (0 — -2 Cx _ Cx
@) 216l o = o ~ el o1

by the standard argument (&,), is bounded almost everywhere in Q, (Indeed, if
|€n| — o0 in a measurable subset E € ) then

C C C
lim andleim/fp(m)a—ix”——x—igidx:oo,
n—co Jo (z) n—0o E' w7 Ealr@ 16| |§n\pu)—1)

which is absurd since D,, — 0 in L'(£2)).
Let £* an accumulation point of (&,),, we have |£*| < oo and by the continuity
of a(.,.,.) we obtain,

[a(z,u(x),£") — a(z,u(z),](E" - &) =0,
thanks to (3.4) we have £* = &, the uniqueness of the accumulation point implies

that Vu, — Vu a.e. in Q. since (a(z, un, Vin))n is bounded in (LP' @) (Q))N and
a(z, Up, Vi) — a(z,u, Vu) a.e. in Q, by the Lemma we can establish that

(@, U, Vi) = a(z,u, Vu) in (L7 @ Q)N

Let us taking ¢, = a(z,un, Vuy)Vu, and § = a(x,u, Vu)Vu, then g, — ¢ in
LY(Q), according to the condition (3.3)) we have

| Vu, [P < a2, un, V) Vi,

Let z, = Vuy,, 2z = Vuand y,, = %", y = £, in view of the Fatou Lemma, we obtain

/ 2.ydx < liminf/ (Yn 4y — |20 — 2|P@))daz,
Q n—oo Q
then 0 < —limsup,, ., [, |2n — 2[P(*dz, and since

0< liminf/ |z, — z\p(x)dx < limsup/ |2, — z|p(””)dx <0,
Q Q

it follows that [, |Vu, — Vul[P(®)dz — 0 as n — oo, and we get
Vi, — Vu in  (LP@ Q)N
we deduce that
Uy —u in Wy (Q),

which completes our proof. (|

Now, we consider ¢,,(s) = ¢(T},(s)) with ¢ € CO(RY) and

g(z,s,¢)
1+ 3 lg(z,5,€)|
such that g(z, s, ) satisfies (3.5) — (3.6, note that

gn(@,5,8)s 20, |gn(,5,8)| < lg(2,5,9)], |gn(z,s,§)|<n VneN".

We define the operator G, : Wy *™)(Q) — W=1#'@)(Q), by

gn(z,8,8) =

(Gru,v) = /an(%u,Vu)vd:r Yv € Wol’p(x)(Q).
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Thanks to the Holder inequality, we have that for all u,v € VVO1 P (z)(Q),

| / gn(@,u, Vu)vdz|
Q

1 1
< (]T + pT) 1gn (2, w, V) |l (@) 10| pa)

11 ' "
< (—+ (/ |gn (2, u, V) [P (‘”)dm“)k lolhpe
G0, b (4.2)
< 1 1 p'(z) Ca
< (pi_iji’,)( Qn d$+1) vll1,p(2)

1
»_

1 1 '
< (7 + T) (n”+.meas(ﬂ) + 1) [v]11,p(2)

- p- P
< CO”'UHLp(z)v
and we define the operator R, = div ¢, : Wy "™ (Q) — W=1#'@)(Q), such that
(Rp(u),v) = (div ¢, (u),v) = f/ngn(u)Vvd:r Yu,v € Wol’p(x)(ﬂ),

we have

1 1
| / b () V02| (— + ) 6 (@) (o) | V0 e
Q y 2 p_

11 / s
(Lt p'(z) P
< (- _|_p/_)(/9|¢n(u)| dz+1)" [0l pe)
11 : v
< (— + =) (sup (|6(s)] + 1) meas(2) + 1) [[v]]1 p(a)
p— Pl s<n
< Culvllipea)-
(4.3)

Lemma 4.5. The operator B,, = A4+G,,+ R,, is pseudo-monotone from Wol’p(x)(ﬂ)
into W‘l’p/(f’:)(Q). Moreover, B, is coercive in the following sense
<BnU7 U>
||'UH1,p(z)

Proof. Using Holder’s inequality and the growth condition (3.2)), we can show that
the operator A is bounded, and by using (4.2) and (4.3) we conclude that B,

bounded. For the coercivity, we have for any u € Wy"” (= (),

— 400 as ||v||1,p(,:) — 400 for wve Wol’p(w)(Q).

(Bpu,u) = (Au,u) + (Gru,u) + (Ryu, u)

= / a(x,u, Vu)Vudz —|—/ gn(x, u, Vu)udr — / On(u)Vudx
Q Q Q
N 11
> a [ [VaPde = (- + ) [6a(0)ly | el
Q p-  p-
> a|[Vulp) = Crllullpe)  (using@E3))

> 0/||u||‘1§7p(w) — C1.||ull1 pe), (using the Poincaré inequality)
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with
_ p— if ||Vu||p(z) > 17
p+ i [Vullpe) <1,

then, we obtain

Hulll,p(m)

It remains to show that B,, is pseudo-monotone. Let (uy)x a sequence in WO1 P(@) Q)
such that

— 400 as ||u||1,p(x) — 4-00.

U —u in Wol’p(x)(Q),

Boug — x  in WHP' @), (4.4)
lim sup(Bpuk, ur) < (X, u).
k—oo

We will prove that
X =Byu and (Bjug,ur) — (x,u) ask — +oo.

Firstly, since Wo "™ (Q) << LP@)(Q), then uy, — u in LP(®) () for a subsequence
still denoted (ug)g.

We have (ug,)y, is a bounded sequence in Wol’p (@) (€2), then by the growth condition
(a(z, u, Vug))i is bounded in (LP' () (Q))N | therefore, there exists a function ¢ €
(LP" @) (Q))N such that

az, up, Vug) — ¢ in (L” @(Q)N as k — . (4.5)
Similarly, since (g, (x, ug, Vug)) is bounded in LP/(””)(Q), then there exists a func-
tion 1, € LP *)(Q) such that

gn(z,up, Vug) — 1, in Lp,(m)(Q) as k — oo, (4.6)
and since ¢, = ¢ o T, is a bounded continuous function and u; — w in LP(*) (Q), it
follows )

Pnl(ug) — dp(u) in (LP@(Q)N as k — oco. (4.7
For all v € WOLP(JU)(Q), we have

<X7U> = khm <Bnukav>

lim a(x,ug, Vug)Vodz + lim | g, (z, ug, Vug)vdx
k—oo Jq k—oo Jq

— lim [ ¢n(ug)Vode
k—oo 9]

/chvdx—&—/ wnvda:—/ dn(u)Vode.
Q Q Q
Using (4.4) and (4.8), we obtain

lim sup(B,, (ug), uk)
k

— 00

zlimsup{/a(m,uk,Vuk)Vukdx—&—/gn(x,uk,Vuk)ukdx—/ (bn(uk)Vukdx}
Q Q Q

k—oo

§/QQOVudx—i—/anudm—/Q¢>n(u)Vudx,
(4.9)
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thanks to (4.6)) and (4.7)), we have
/gn(x,uk,Vu;g)ukdmﬂ/z/Jnudx, /¢n(uk)Vukdx—>/¢n(u)Vudx;
Q Q Q Q

(4.10)
therefore,
lim sup/ a(z, ug, Vug)Vugdr < / eVudz. (4.11)
k—o0 Q Q
On the other hand, using (3.4}, we have
/(a(x, U, Vug) — a(x, ug, Vu))(Vuy — Vu)dz . > 0, (4.12)
Q

Then
/ a(x, ug, Vug)Vugdzr
Q

> 7/ a(:c,uk,Vu)Vudx+/ a(m,uk,Vuk)Vudx+/ a(x,ur, Vu)Vugdz,
Q Q Q

and by (4.5)), we get

likminf a(x,uk,Vuk)Vukde/goVuda:,

this implies, thanks to (4.11)), that

klim a(;v,uk,Vuk)Vukdx:/QDVudx. (4.13)
—00 Q Q

By combining of (4.8)), (4.10)) and (4.13]), we deduce that
<BnUk;,Uk> - <X,U> as k — +o00.

Now, by (4.13)) we can obtain

klir+n (a(z, uk, Vug) — a(z, ug, Vu))(Vug — Vu)dz =0,
— T 00 0

in view of the Lemma[4:4] we obtain
Ul — U, Wol’p(l)(Q), Vur — Vu a.e. in Q,
then
a(x,ug, Vug) = a(z,u, Vu), ¢n(ug) — ¢n(u) in (Lpl(””)(Q))N7

and
n (2, ug, Vug) = go(z,u, Vu) in L) (Q),

we deduce that x = B,u, which completes the proof. (I
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5. MAIN RESULTS

In the sequel we assume that € is an open bounded subset of RY (N > 2), and
let p(.) € C4 (). We will prove the following existence results

Theorem 5.1. Assuming that (3.2)-(3.6) hold, p(.) € C+(Q), f € LY(Q) and
¢ € CO(RYN), then the problem

Ti(u) € WaP(Q) k>0,

/Qa(x, u, Vu)VTj(u — @)dz + /Qg(x, u, Vu) Ty (u — ¢)dz (5.1)

< [ fiu= oo+ [ o)VIu - )iz, Vo € WEHO(@) L (9)
Q Q

has at least one solution.

The above theorem is prove in the following 5 steps.

Step 1: Approximate problems. Let (f,), be a sequence in W*I’p/(m)(ﬂ) N
LY () such that f, — fin L1(Q2) with ||f,|l1 < ||f]l1 and we consider the approxi-
mate problem

Ay, + gn (2, tn, Vug) = fr, — div ¢y, (uy,)
Uy € WP (Q),

with ¢n(s) = ¢(T(s)) and g, (x,s,£) = % In view of the Lemma
there exists at least one weak solution u,, € WO1 P (x)(ﬂ) of the problem (5.2)), (cf.

[13]).

(5.2)

Step 2: A priori estimates. Taking T} (u,) as a test function in (5.2), we obtain

/a(m,un,Vun)VTk(un)dx—i—/gn(:mun,Vun)Tk(un)dx
@ @ (5.3)
:/fnTk(un)d:E+/ O (Ur ) VT (uy)dx

Q Q

Thanks to (3.3) and Young’s inequality, we obtain

a/ VT (u) |P®) dae
Q

</ a(w, Ty (un), Vi (un)) VT (1) dx—f—/an T, Uy Vg ) T () da

/ fru Tk (un) dx—|—/ O (T (un)) VT (w ) d
[6n(Ti(n))]

o ($p(x))7

P @) 2p(x un)[P()
<kl [ ())))'C”/p( B R
)

<ka||1+Cz/ | (T (un)) [P @ + = /IVTk DIP@ da,

<t [ f1de+ (S ()77 |V Ti ()
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and since

/ (60 (Ti ()P ) dr< / sup [ (s)|P'*)dx
Q Q

[s|<k

< / sup [6(s)” @ da
Q

[s|<n

< (‘sup |o(s)| + 1)pl+.meas(§2),
s|<n

by (5.4), we obtain

« (0%
IV T < § [ VTP ds < bl + Ca

with

_py V) [ < 1,
po I [V Tk(un) o) > 1,

we deduce that
VT () |y < Cak™  for all k > 1, (5.5)

where Cy is a constant that does not depend on k.
Now, we show that (u, ), is a Cauchy sequence in measure. Indeed, we have

k meas{ || >k}:/ |Tk(un)|dx§/g|Tk(un)|dat

{lun|>k}
1 1
< (]i + E)|\1||p/($)||Tk(Un)||p(w)
11 o
< (— + =) (meas(Q) + 1)~ | Tx (un) | p(a)
p- P
< 05]{7%7

according to the Poincaré inequality and (5.5)). Therefore,

meas{|u,| > k} < Cs —0 ask — oo. (5.6)

ki
Since for all § > 0,

meas{|u, — upm| > 0}
< meas{|up| > k} + meas{|un,| > k} + meas{|Ti(un) — Tk(um)| > 6},

using , we get that for all € > 0, there exists kg > 0 such that
meas{|u,| > k} < %, meas{|um,| > k} < % Vk > ko(e), (5.7)
On the other hand, by (5.5)), the sequence (Tj(uy))n is bounded in Wol’p(z)(Q),
then there exists a subsequence still denoted (T (uy,)), such that
Tr(up) = . in Wol’p(w)(Q) as n — 00.
and by the compact embedding, we obtain

Te(un) — e in LP)(Q) and a.e. in Q.
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Therefore, we can assume that (Tg(u,)), is a Cauchy sequence in measure in €,
then for all £ > 0 and §,¢ > 0 there exists ng = ng(k, 4, &) such that

meas{|Tj (un) — Ty (um)| > 6} < % Ym,n > no. (5.8)

Combining (5.7)) and (5.8]), we obtain that for all 4, > 0, there exists ng = ng(4, )
such that

meas{|un, — Um| >0} <e Vn,m > nog,

it follows that (uy), is a Cauchy sequence in measure, then there exists a subse-
quence still denoted (u, ), such that

Uy, — U a.e. in Q.

We obtain
Ti(un) = Te(u)  in WeP(Q)

(5.9)
Tr(un) — Ti(u) in LP™(Q) and a.e. in Q.

Step 3: Convergence of the gradient. In the sequel, we denote by ¢;(n) i =
1,2,... various functions of real numbers which converge to 0 as n tends to infinity.

172(—?)2, it is obvious that

Let ¢ (s) = sexp(ys®) where v = (

b(k 1
@2(3)—%@1@(8” > 3 Vs € R,

we consider h > k > 0 and M = 4k + h, we set
Wp = Tgk(un — Th(un) + Tk(un) — Tk(u))
Taking o (wn) as a test function in (5.2)), we obtain

/a(x,un,Vun)gp;C(wn)andx—|—/gn(m,un,Vun)tpk(wn)dm
Q Q

- / Fuon(wn)da + / G (140 P} () Ve,
Q Q

it is easy to see that Vw,, = 0 on {|u,| > M}, and since gy, (z, upn, V) (wp) > 0
on {|un| > k}, we have

/a(vaM(un)aVTM(“”))(P;c(wn)vwndm+/ gn(m7unvvun)@k(wn)dm
Q {lunlgk}

S/fns%(wn)dx-F/ On(Tar (un)) @ (Wi ) Vwyd.
Q {‘un‘SM}

(5.10)
We have

/Q a(z, Thy (un), VT (un)) @k (wn) Vw, do

- / (2, T (1), VT (1)) 2 (w0 )V o (1t — T (1))
{lunl<k) (5.11)

+/ a(z, Tas (un), Vs ()0 (wn)VTog (wn — Th(uy)
{lun|>k}

+ Ty (up) — Ti(u))dx.
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On the one hand, since |u,, — Ty (u)| < 2k on {|u,| < k}, we have

/{I - a(z, Ti(un), VT (un)) @l (wn) VTog (un, — T (u))dz

:/ a(@, Ty (un), VT (un) )@y (wn) V(Ti (un) — Ti(u))dz
{|un|§k} (512)
=/Qa(x,Tk(un),VTk(un))%(wn)V(Tk(un)—Tk(U))dw

- /{| | }a(x,Tk(un), VT (un)) o) (wn)V(Tk (un) — Tk (u))dz.
Up | >k
Since 1 < ¢ (wn) < ¢} (2k), it follows that

B /{| >k} a(z, Ty (un), VIk(tn)) 0k (wn) V (T (un) — Tie(u))dz

/ (2, T (1), VT ()0 (w) VT (1)t
{lun|>k}

< ¢ (2k) o }Ia(%Tk(un),VTk(un))HVTk(U)Id%
Uy | >k

and since (|a(z, T (tn), VIk(tn))|)n is bounded in L () (), then there exists 9 €
LP'(#)(Q) such that

la(z, T(un), VTk(u,))| =9 in  LF'®(Q)

)

then

/ la(z, Ti(un), VI (un) || VTk (u)|de — VT (u)|dx =0,
{lun|>k} {lu[>k}

and we obtain
/{ . a(z, Ty (un), VI (un)) o (wn) V(T (un) — Tie(u))dz = eo(n),  (5.13)

with €o(n) tend to 0 as n — oo.

On the other hand, for the second term on the right hand side of (5.11)), taking
Zn = Up — Th(un) + Tk(un) — Tk(u),

/{I >k} a(@, Tr (un), Vs (un)) @) (wn) VTok (tn — Th(un) + Ti(un) — Ti(u))da

/ a(z, Tag(un), Vs (1)) o) (wn)V (un — Th(un) + T (un)
{lun|>k}N{|z5|<2k}

— T (u))dx

/ a2, Tt (i), Va1 (1)) S @)V 1 — T (1)) Xy 1 02
{lun|>E}N{|zn|<2k}

_/ a(, Tog (tn), Va1 () @ (@) VT (1) X 1<y 42
{Jun|>k}N{|2,| <2k}

> [ faCe Tar (), VT () [V (0 )
{‘Un‘>k} (5 14)
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By combining ((5.11)-(5.13) and (5.14)), we obtain
/a(:r,TM(un),VTM(un))¢§c(wn)andx
Q

2/a(waTk(un),VTk(un))%(wn)V(Tk(un)—Tk(U))dw
Q

[ et Tan ), VT () [V T ) — o),
{lun|>k}
which is equivalent to

/Q (a2, Th (1), VT () — a2, T (tn), VT (0))) (VT (1) — V(1))@ (w)
< / (0, Tas (1), V01 () [V T () |6} (0 )

{lun|>k}

+/Qa(m,TM(un)7VTM(un))go;c(wn)andx

— /Q a(z, T (un), VI (u) (VT (tr) — VT (0)) @) (wn)dz + €o(n).
We obtain
/Q(a(% Ti(un), VT (un)) = a(@, Ti(un), VI ()@ (wn) (VT (un) = VT (u))dz

< ¢l (2K) /{ 1 ), T [0

+ / a(z, Tas (un), Vs (un)) @) (wn) Vw,dz
Q

+ @%(2]{})/0 la(x, Ti(un), VIE(u)||VTi(un) — VIg(u)|dz + eo(n).

(5.15)
Now, we study each terms on the right hand side of the above inequality. For the
first term, we have (|a(2, Ths(un), VT (tn))])n is bounded in LP'(*)(Q), and since

VT (@) PO X (5 hy < [V Tk (w)[P,
and
|VTk(u)\p(“)X{|un|>k} — 0, a.e. inQasn— oo,
by the Lebesgue dominated convergence theorem, we deduce that

VT3 (W)X (jun sk — 0, in LP)(Q) as n — oo,

which implies that the first term in the right hand side of (5.15) tends to 0 as n
tends to 0o, and we can write

o1 (2k) /{| - la(z, Tas (un), VI (un))||VTk (u)|dx = e1(n). (5.16)

For the third term on the right-hand side of (5.15)), we have
la(@, T (un), VTik(w))| — la(z, Th(u), VIk(u)| in L) (Q) as n — oo,
and since VT},(uy,) tends weakly to VT (u) in (LP®)(Q))N, we obtain

4 (2F) / lal, T (), VT ()| VT (1tn) — VT (w)]dz — 0 s n — o,
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then

w%(%)/ la(z, Ti(un), VI (w)||VTk(un) — VT (v)|dz = e2(n). (5.17)
Q
By we conclude that

/Q(G(%Tk(un)a VT (un)) — a(@, T (un), VT (1))@ (Wn) (VTk (un) — VT (u))da
< / a(z, Tas (un), Vs (un)) @k (wn) Vwndz + e3(n).
Q

(5.18)
Now, we turn to the second term on the left-hand side of (5.10)); by (3.6) we
have

’ / gn(gc,un,Vun)wk(wn)dﬂc|
{lun|<k}

<

/ b(lun])(e() + [V Tk (un) ")) ok (wn) |da
{lun|<k}

< b(k) /{ oy @l

+ b(ai) /Q CL(gj, Tk(un)> ka(un))VTk(u")‘QDk(wﬂﬂdx

{lun|<k} a Jo
—a(z, Te(un), VI (w)) (VTk(ur) — VTi(w))|pr(wn)|dz
b((Tk) /Q a(@, T (un), V(W) (VT (un) — VTi(w))or(wn)ldz
+ b(ak)/Qa(x7Tk(un)’VTk(un))VTk(u”SDk(wn)|d£c.
Then
b(ak)/ﬂ(a(x,Tk(un),VTk(un)) —a(x, T (un), VT (u)) (VT (uy)

= VT (w)) |k (wn)|dz

> ’/{ungk} g (@, i, Vi) o (wn ) dze| — b(k) /{ungk} c(x)|pr (wp)|dx (5.19)
_ b(ak)/Qa(m,Tk(un),VTk(u))(VTk(un) VT () o ()|
b(k)

. /Qa(w,Tk(un),VTk(un))VTk(u)|g0k(wn)\dx.
We have

/ c(x)|pr(wn)|de — c(@)|pr(Tor(uw — Tr(w)))|de =0 as n — oo.
{lun|<k} {lu|<k}

(5.20)
Concerning the third term on the right hand side of (5.19)), we have

/Qa(fﬂaTk(un)» VT () (VT (un) = VTi (1))@ (wn)|dz
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< pr(2k) /Q la(z, T (un), VI (u)||VTk(un) — VIg(u)|dz,
and by , we deduce that
/Qa(x,Tk(un), VT (w) (VT (un) — VIg(w)) gk (wn)|de — 0 asn — oo, (5.21)

For the last term of right hand side of (5.19)), we have (a(z, T (uy), VIk(un)))n is
bounded in (L *)(Q))N, then there exists ¢ € (L? *)(2))N such that

a(x, Tk (up), VI (ug)) = ¢
in (LP' @) (€))N, and since
VT () |ipr (wn)| — VT () |or (Tok (v — Th(w)))| - in (LPE(Q))N,
it follows that

/ a2, T (ttn), VT (1)) VT ()01 ()
@ (5.22)

= [ PYTL@ln(Tarfu = Th ) dz =0
Combining (5.19)), (5.21) and (5.22), we obtain
M/(a(w,Tk(un),VTk(un))
@ Jao
— a(@, Ti(un), VIi(u))(VTk(un) — VI (u))|on(wn)|dz (5.23)

> ‘/ gn(x,un,Vun)gak(wn)dx‘ + e4(n).
{lun|<k}

Thanks to (5.18]) and (5.23)), we obtain

/Q (a(m,Tk(un), VTi(uy)) — alx, Ti(uy), VTk(u)))

< (V) — VT(w) (k) — 2 i )] )
SAa(szM(un)vVTM(Un))W;c(wn)vwndx (5.24)

_ | / gn(as,un,Vun)gok(wn)d:c} +e5(n)
{lun|<k}
< [ Fupnlwndot [ on(Tua(ua)gh(n) Ve + s(n).
Q {lun|<M}
We have w,, — Tog(u — Ty (u)) weak-+ in L () then

/ frnok(wy)dx — / for(Tog(u — Th(uw)))dz as n — oo, (5.25)
Q Q

and for n large enough (for example n > M), we can write

/ G (Tt (1) )y (w0n) Vermdlr = / (Tt (1)) Pl () Vionde,
Q

{lun|<M}
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it follows that

[ on(@astun)ghn) Vs
Q (5.26)
— /ng(TM(u))ga;C(Tgk(u — Th(w))VTog(u — Th(u))dz asn — oo.
Combining and , we obtain

%/Q(a(x,Tk(un), VTi(un)) — alx, Ty (upn), VI (W) (VT (uy) — VT (uw))d
< [ Fon(Tu(u=Ti(w))do

4 / (s ()@l (Tox (1 — T (1)) V Tk (u — T (1)) + 26(n).

(5.27)
Taking ¥(t) = [J ¢(7)¢}, (T — Tp(r))dr, then W(0) = Oy and ¥ € CY(RN). By the
Divergence Theorem (see also [7]), we obtain

/Q (T ()@l (T (t — T (u)))V Lokt — T (11)
- / &)l (1 — Ty () Vuda
{h<|u|<2k+h}
- / O(Tors (1)) Ph (Tap (1) — Th (1)) VT ()
{Jul<2k+h}
= AT i) VT (e
= / div U (Top4pn(u))de — / div U (T}, (u))dx
Q Q

:/ \I}(T2k+h(u)).%)d$_/ U (Ty,(uw)). 7 dx
o0

0
N
-y ( / U, (Topn()).nide — / \Ili(Th(u)).nidx) =0,
— ‘oo o0
since u = 0 on 9, with ¥ = (¥y,...,¥y) and 7 = (n1,ns,...,ny) the normal

vector on 9€2. Then, by letting h tend to infinity in (5.27)), we obtain

/Q(a(ac,Tk(un), VTi(un)) — alz, T (un), VI (w)) (VI (un) — VI (u))dz — 0

(5.28)
as n — oo. Using Lemma [.4] we deduce that
Ti(un) — Te(u)  in WP (Q); (5.29)

b

then

Vu, — Vu a.e. in €.

Step 4: Equi-integrability of g, (z, u,, Vu,). To prove that
(2, 1, Vi) = g(w,u, Vu) strongly in L'(2),
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using Vitalis theorem, it is sufficient to prove that g, (x, u,, Vu,) is uniformly equi-
integrable. Indeed, taking T (u, — T (uy,)) as a test function in ([5.2), we obtain

/ a(x, Un, Vg ) VT (uy, — Th(uy))de + / I (X, Up, V)T (uy, — T (un))de
Q Q

:/fnTl(un—Th(un))da:—&—/ 601 ) VT (1 — T (1)) d,
Q Q

(5.30)
which is equivalent to
/ 0, V) Vindo 4 [ gt V)T, = T
{h<|un|<h+1} {h<|unl}
= / foT1 (un — Th(un))de —i—/ G () Vu,de.
{h<|unl} {h<|tn|<h+1}
(5.31)
Taking ®,, fo én(T)dT, We have ®,(0) = Ogy and @, € C1(RY). In view of

the Dlvergence theorem,

/ On (Uy)Vupde
{h<|un|<h+1}
{|Un|<h+1} {‘un|§h}
= / On(Tha1(un))VThi1(uy,)de —/ On(Th(un)) VT (uy)dx
Q
/ div @, (Th+1(un)) / div ®,, (T}, (uy,))dx
Q Q
:/ (I) (Th+1 un W / (I)n Th un Wd(f =0.
Ele) Ele)
Since u,, = 0 on 0L, with ®,, = (®,1,..., Py n), and since
/ a(x, Uy, Vg, )Vu,de > 0,
{h<|un|<h+1}
it follows that
/ om0, V) o= | 902ty V)T (, — T ()
{h+1<|unl} {h+1<lunl}
< / (2t V)T (11, — Ty (11,))
{h<‘un‘}
< / FaT1 (1t = T (1)
{h<lunl}
<[ i
{h<lunl}

thus, for all > 0, there exists h(n) > 0 such that

Gn (T, Up, Vg, )|dr < ﬂ. 5.32
|gn(
{h(m)<Junl} 2
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On the other hand, for any measurable subset £ C (), we have

/ |gn (2, U, Vuy)|de < / b(h(n))(c(x) + |Vu, [P@)dz

5 En{lun|<h(n)} (5.33)

+/ |9 (2, 1n, Vun ) de,
{lun|>h(n)}

thanks to (5.29)), there exists 3(n) > 0 such that

/ b(h(n))(c(x) + |Vu, [P@)dz < g for meas(F) < B(n). (5.34)
En{|un|<h(m}

Finally, by combining (5.32)), (5.33) and (5.34), we obtain

/ |gn (2, Un, Vuy)|de <n, with meas(E) < 5(n). (5.35)
E

Then (g, (x, upn, Vuy,)), is equi-integrable, and by the Vitali’s Theorem we deduce
that
Gn (2, U, V) — g(@,u, Vu)  in LH(Q). (5.36)

Step 5: Passage to the limit. Let ¢ € Wol’p(‘r) (Q)NL>®(Q) and M = k+ ||l with
k > 0, we will show that

liminf | a(z,un, Vu,)VTi(up — p)dz > / a(z,u, Vu)VT(u — ¢)dz.
Q

n—oo Q

If |u, | > M then |u,—@| > |un|—|l¢|loo > k; therefore {|u,—¢| < k} C {Ju,| < M},
which implies that

a(x, Up, Vg ) VT (uy — @)
= a(, Un, Vun)V (un — @)X{\unfwgk} (5.37)
= a(z, Tar (un), VI (un)) (VT (wn) — V‘P)X{\un—wlﬁk}'

Then
/ a(m, Up,, Vun)VTk(un - (p)dl‘
Q
~ [ e Tar 1) VT ) (VT30 0n) = V) i
2
- / (a(e, Tas (un), Vo () — alz, Tas (), V) (5.38)
Q
X (VT (un) = Vo)X {ju, —p|<krdT
+ /Q a2, Tar (1), V) (V1 (t0n) — V)X ol <1y I,
we obtain

lim inf / a(x, Un, V) VT (uy — p)dw
Q

n—-+4oo

2 /Q(a(ffvTM(U),VTM(U)) = a(@, Tar (1), Vo)) (VTar (v) = Vo)X {ju—g|<kyde

+ lim a(z, Tar(un), Vo) (VT (Un) — VO)X{|up—p|<k}dr.

n—-+4oo Q

(5.39)
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Note that the second term in the right hand side of (5.39)) is equal to

/Q 0, Tas (1), Vo) (VTar (1) — Vo)X (upi <y
Finally, we have

liminf [ a(z,up, Vu,) VT (u, — p)de

n—-+o0o Q

> / 0, Tar (), Vg (1)) (VT (1) — V)X {u—sl <y
Q

= / a(m,u,Vu)(Vu _V@>X{|U*W‘Sk}dx
Q

= / a(x,u, Vu)VTi(u — p)dz.
Q

Now, taking Ty (u, — ¢) as a test function in (5.2) and passing to the limit, we
conclude the desired statement. This completes the 5 steps for the proof of Theorem

611

Theorem 5.2. Assume that (3.2)-(3.6) and hold, p(.) € C4+(Q) such that
2—% <p_ <py < N. Then problem has at least one solution u € W(}’Q(x)(ﬂ)
for all continuous functions q(.) € C+(Q) such that 1 < q(z) < g(x) = %.
Proof. Let (f,)n be a sequence in W12 (#)(Q) N L' () such that f,, — f in L'(Q)
and || fnll1 < || f]l1. we consider the approximate problem

Auy, + gn(‘T»una Vun) = fn —div ¢n(un)

5.40
Uy € WP (Q), (5.40)

where ¢(s) = ¢(T(s)) and gu(x,5,€) = AL
Thanks to the first step in the proof of Theorem there exists at least one
weak solution u,, € VVO1 P (z)(Q) for this approximate problem. Let 1y (¢) be a real

valued function

0 if0<t<k,
t—k ifh<t<k+1,
t) = = 5.41
Ur(t) =4 ifk+1<t, (5.41)

—i(—t) otherwise ,
and we define the sets
By={x€Q:|u,| <1}, Bp={ze€Q:k<|u,| <k+1} fork e N
Taking ¢y (uy,) as a test function in the approximate problem , we obtain

/a(x,un,Vun)Vz/Jk(un)dx—&—/gn(x,un,Vun)wk(un)dx
Q Q

- / Futr(n) e + / () Vi (1)
Q Q
Then
/ a’(xvunavun)vundx + / gn(xaunavun)wk(un)dx
By

{lun|>k}
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= / frﬂ/’k(un)dl’ + (bn(un)vundx
{lun|>k}

By

By the Divergence theorem,

O (Up)Vupde = /

&n(n)Vupde — / ¢ (n)Vuyde
{lun|<k+1}

By, {lun|<k}

- / O (i1 (1)) VT (1) — / b (T (14)) VT (11 )z
Q Q

:/diV<I>n(Tk+1(un))dx—/div@n(Tk(un))dxzo.
Q Q
(5.42)

Since g (u,,) has the same sign as wy,, gn (2, Un, Vi )i (uy) > 0 and we obtain
/ a(, U, Vun)Vupde < / fntor(un)de < / | fnld,
By, {lun|>k} Q
using (3.3)), we deduce that
a/ |V, [P@da < ||f|ly for all k> 0. (5.43)
By

In view of the Lemma [{.3] there exists a constant C' that does not depend on n
such that

Hu"Hl,q(w) = C’

for any continuous exponent ¢(-) € C(Q) with 1 < g(z) < g(z) = %. By

using the same steps in the proof of Theorem we can show that there exists a
subsequence still denoted (u, ), which converge to u, then

||uH1,q(a:) = O’
where u is solution of [£.11 O
Theorem 5.3. Assume that (3.2)-(3.6) and (3.8) hold, p(.) € C+(Q) such that

2— % <p- <py <N. If flog(1+ |f]) € LY(Q) then (5.1)) has at least one

solution u € WOLQ(I)(Q) with q(r) = %'

Proof. Let (fn)n be a sequence in W12 (Q) 0 LY(Q) such that f, — f in
L3(Q), with [ fuls < 111y and LS log(1 + | fuDllx < Flog(1 + £l (for example

fn=Tn(f)). We consider the approximate problem

Auy, + gn(xv Un,, Vun) = fn —div ¢n(un)
. (5.44)
u, € W, (Q),

where ¢,,(s) = ¢(T,(s)) and g (2, s,§) = %, there exists at least one weak

solution u,, € WO1 P (x)(Q) for this approximate problem.

Let 1 (t) be defined by (5.41]), and
S = {a: €Q, k< |un|} —UX, B, VkeNl.
By using ¥ (uy,) as a test function in the approximate problem (5.44)), we obtain

a/ |V, [P dae g/ |fnldz for all k € N. (5.45)
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Let g(z) = %, we have

p(x) e p(z)
o (1+ [ual) = Jp, (1+ |unl)

< — |V, [P®dzx
21 ),

1ex 1 /
<=> [ l|fuldx
IS [ indas
70‘1@:0]{:—&_15:1@ B,

1 o — 1
= " ——d
a;);/]gs'f'kﬂ z

1 = 1
QZZ/BS Ml e

s=0 k=0

Since Do D oae i Usk = D oeco Doneo Us,k» the above expression equals

1 & L =

a;}/BS |fn|(k2:%) m)dx < OZSZ;/BS | fol[L + log(1 + s)]da
= 1%/ | ful[1 4 10g(1 + |un|)]dx
@ s=0 Bs

1
<= [ 1allL+log(1 + o
@ Jo
and since ab < alog(1 + a) + €® for all a,b > 0, we obtain
1
o [ 17l g1+
a Jo
1 1
= - | foldz + — | frllog(1 + |un|)dz
@ Jo a Ja
1 1 1
<< [ Waldw 2 [ 1faltog(t 4 Uulda 4 3 [ (14 funl)do
@ Ja a Ja a Jo
1 1 1
< —Ifllv+ = lflog(X + [fDI + = [ (14 [un|)dz.
@ a a Jq

In view of the Theorem we have u,, € Wol’q(r)(Q); then [, |un|dz is bounded.

It follows that
|V, [P()
———dx < (4, (5.46)
/ﬂ (1+ Jun]) '

with C is a constant that does not depend on n.

Now, observe that Q is compact, therefore, we can cover it with a finite number
of balls (B;)i=1,...,m, with B; = B(z;,d). we denote

pi— =min{p(x) :x € B;NQ} and p;1 =max{p(x):z € B;NQ},
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since p(-) is a real-valued continuous function on €2, then, by taking 6 > 0 small
enough such that

(N —pi)(pi- —1)°
N +p22_ — 2p17

and there exists a constant a > 0 such that

+pi->piy InB;NQfori=1,...,m, (5.47)

meas(B;NQ) >a fori=1,...,m.
By the Generalized Holder inequality, we have

/ [V, |7 da
B:nQ
(z

Yu,|1@)
- / [ o (L4 |un|)»® da
B9 (14 fug]) 505

_/ (lvun|p(r
Bina (L + |ug|

N(piy — 1) N —p;_ )H ( |Vun|P($) (=)
(N - 1)pl— (N - 1)])1_

X |1+ Junl) 35

[\

121

a(z)

) (1 -+ fun) 5 do (5:43)

b

Nl BN

<

L&A (B,
On the one hand, using (5.46)) we have

p(T)  a(e) p(z) V= 1ypiy
IVl ey (P gy
(1 + lunl) L7 (B:n0)” \Jpina (14 [un)
< / [V [P ar+1) w2 (5.49)
= Vo (U Junl)

(N-1)py

< (Cr+1)~e=-D
On the other hand, thanks to the Sobolev-Poincaré inequality, we have
unllLe* @ (Bine) < lun — Tnill Lo (Bine) T [Tnyill Lo @) (B;n0)
< || Vun | Lae) (Bine) T [[Tn,ill o) (B0
with @, ; = Tlﬁﬂl meQ undz, and since

@) Ne@ -1
TO =0 —a@ - N -—p@)

we obtain

a(x)
/ (1 -+ |un|)P(w)*§(w) dx
B;NQ
(=)
< 02/ (1 + |up| 7@ a6 )da
B;NQ

= C(meas(B; N Q) + / \un|‘7(w)dx)
B;NQ

< Cy(meas(B; N Q) + ||Un||zlq*(m>(
< C3(meas(B; N Q) + || Vuy,|

21‘7(1)(Bi|’79) + ||ﬂn,i ||Zl(7*(’”)(B,-ﬂQ)) ’
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if [Junll o) (Bingy > 1
i - b)

(

)

(

EJDE-2013/68
with
N(pit—1)
_ N—pit
01 =9 N(p;_—1 .
]ipri_) if ||un||Lf7*(T>(B no) =1
since |un il < fQ |u,|dz, it follows that ||ﬂnﬂ||Lq () (B;NQ) is bounded and
11+ a5 |
LP <r) q(r) (B n)
<(f 0+ )i
( /B N )72 (5.50)
( (meas B n Q) + ||Vun||Lq<z)(B a(9)) ( >(Bmﬂ))) ’
< Cy(1+ ||vun||ztzc<ff> B; mQ))
and
Nep,. _ a(x)
N-pi- 5 14+ Up|) P oz > ].,
oy — (N=-1)pi— H( | |) HLp(r)(ﬂ%(l‘) (B:NQ)
N—pit e
(N—1)piy ” | |) L (z)(*f;(z) (B:NQ)
By combining (5.48), (5.49) and (5.50)), we obtain
/ |Vu |Q(x)d$ < Cs+ C’HvunHZ}z;‘; B;NQ) *
B;NQ
= Cs[|Vunll 753 (.00
o (5.51)
= GslIVunll 758 .m0y < Css

||vun||7£c7<x>(B nQ)

1)2
+pi— > pit

Then
< / |Vun|q(w
BiNQ
with
o {CL‘ if [Vun| et (g;n0) > 1
Gi+ i [[Vun| pae (3,n0) < 1
and since o109 < ¢;— < w in B; N, it follows that HVunHLq(T)(B nq) is bounded

Indeed, we have
(N —pi-)(pi-
> Dit

>0

N +p? —2p;_
Np;_ — Npi— + N —p;—
N +p12_ — 2pi—
= (pi- = DN = pir)pi- = (N = pi-)(pi+ — 1)
N(pi— —1 N —pi—) Npit+ —1
— = (» ) o N=pid) N =) o
N -1 (N=1)pi- N —pi+
We conclude that there exists some constants ; > 0 such that fB AQ |V, |1®) da <
r; foralli=1 m, it follows that
/ |V, |7®) dz = Z/ |V, |7® dz < Cg (5.52)
i=1 B;NQ
< 077

and by the Poincaré inequality, we obtain
H”nHl,q(z)
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with C7 is a constant that does not depend on n, we deduce that
Hqu,(j(m) < O,

where u is solution of (5.1]). O

Theorem 5.4. Let p(.) € C(Q). Assume ([3.2)-@B.6) hold with f € W17 @)(Q)

and ¢ € CO(RN). Then (5.1) has at least one solution u € Wol’p(x)(ﬂ).

Proof. Let u, € VVO1 P (I)(Q) a weak solution of the approximate problem
Auy, + gn(x, Un, vun) = f—div ¢n(un)

5.53
U € WP (Q), (5.53)

where ¢,(s) = ¢(T,.(s)) and gn(x,s,&) = %. By taking u, as a test
function in (5.53)), we obtain

/a(x,un,Vun)Vundx—i—/gn(x,umVun)undx:/fundx+/¢n(un)Vundx.
Q Q Q Q

By the Divergence theorem, [, ¢n(ty)Vunde = 0, and since gy (2, tn, Vg )un > 0,
we obtain

a/ |Vun\p(”’)dajg/a(x7un,Vun)Vundx
Q Q

1 1
< (]t + ]T)HfH_Lp'(x)||un||1,z>(96)’

it follows that
. p— i [V |p@) > 1,
Vunl|?, . < C (o |t with v = p
|| ||P(I) - 1||f|| 1,p (x)” ||1710(37) Y e if Hvun”p(x) S 1’
by using the Poincaré inequality, we obtain

HUnH’ly,p(m) < Collunl1.p(a)-

Then |un||1,p@) < Cs, with C3 independent of n, and

||U‘ 1,p(x) < CSa

where u is solution of the problem (5.1)). [l
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