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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO
STRONGLY INDEFINITE HAMILTONIAN SYSTEM INVOLVING

CRITICAL HARDY-SOBOLEV EXPONENTS

FRANCISCO ODAIR DE PAIVA, RODRIGO S. RODRIGUES

Abstract. In this article, we study the existence and multiplicity of nontrivial

solutions for a class of Hamiltoniam systems with weights and nonlinearity

involving the Hardy-Sobolev exponents. Results are proved using variational
methods for strongly indefinite functionals.

1. Introduction

Elliptic problems involving general operators, such as the degenerate quasilinear
elliptic equation −div(|x|−2a∇u) = |x|ζf(u), were motivated by the Caffarelli,
Kohn, and Nirenberg’s inequality [5](∫

RN
|x|−2∗ae1 |u|2

∗
adx
)2/2∗a

≤ Ca,e1
(∫

RN
|x|−2a|∇u|2dx

)
, ∀u ∈ C∞0 (RN ), (1.1)

where N ≥ 3, −∞ < a < (N − 2)/2, a ≤ e1 ≤ a + 1, 2∗a := 2N/(N − 2da),
da = 1 + a − e1, and Ca,e1 > 0. Note that several papers have appeared on this
subject. Mainly, the works about the existence of solution for quasilinear equations
and systems of the gradient type with nonlinearity involving critical growth. See,
for instance, [1, 7, 16, 17, 22] and references therein. In particular, for a = e1 = 0,
Smets, Willem, and Su [19] studied the existence of non-radial ground states for
the Hénon equation

−∆u = |x|ζul−1 in B,

u = 0 on ∂B,

where B denotes the unit ball in RN with ζ ≥ 0 and l ∈ (2, 2∗). More general
Hénon-Type problems has been studied by Carrião, de Figueiredo, and Miyagaki
[6], for example. Also, we would like to refer to [18] for Hénon equation, and to [11]
for Hardy-Hénon system.
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In this article, we study the following class of quasilinear elliptic systems with
weights and nonlinearity involving critical Hardy-Sobolev exponent

−div(|x|−2a∇u) = µ1
|u|τ−2u

|x|β0
+
Hu(x, u, v)
|x|β2

+ α
|u|α−2|v|γu
|x|2∗ae1

in Ω,

−div(|x|−2b∇v) = −µ2
|v|ξ−2v

|x|β1
− Hv(x, u, v)

|x|β2
− γ |u|

α|v|γ−2v

|x|2∗be2
in Ω,

u = v = 0 on ∂Ω,

(1.2)

where
(H1) Ω is a bounded smooth domain in RN (N ≥ 3) with 0 ∈ Ω and H :

Ω× R× R→ R is of the class C1.
(H2) The exponents satisfy

0 ≤ a, b <
N − 2

2
, ξ ∈ (1,

2N
N − 2

), τ ∈ (2,
2N
N − 2

), α, γ > 1,

2∗a = 2N
N−2da

and 2∗b = 2N
N−2db

are the Hardy-Sobolev exponents,

da = 1 + a− e1, 0 ≤ a ≤ e1 < a+ 1,
db = 1 + b− e2, 0 ≤ b ≤ e2 < b+ 1,

with 2∗ae1 = 2∗be2 and
α

2∗a
+

γ

2∗b
= 1.

Note that problem (1.2) belongs to the class of Hamiltonian elliptic systems

−L1(x, u) =
∂F

∂u
(x, u, v) in Ω,

−L2(x, v) = −∂F
∂v

(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where L1 and L2 are self-adjoint elliptic operators of second order. It is well known
that the Euler-Lagrange functional associated is strongly indefinite. For this type
of system with L1 = L2 = ∆, the Laplacian operator, and subcritical growth,
we would like to refer Benci and Rabinowitz [2], Costa and Magalhães [9], and
de Figueiredo and Ding [10]. For critical and supercritical growth, we cite the de
Figueiredo and Ding [10] and Hulshof, Mitidieri, and van der Vorst [12]. We also
cite the papers [8] and [23]. Our results will be obtained as an application of some
critical point results to strongly indefinite functionals proved in [10] and certain
Galerkin approximations.

For the rest of this article we will assume that H : Ω×R×R→ R is of the class
C1 and satisfies:

(H4) There exist K0,K1 > 0, pi, qi, ri ∈ (1, 2N/(N − 2)), for i = 1, 2, p0, q0 ∈
(1, 2N/(N − 2)), such that

|H(x, s, t)| ≤ K0(|s|p0 + |t|q0),

|Hs(x, s, t)l| ≤ K1(|s|p1 + |t|q1 + |l|r1),

|Ht(x, s, t)l| ≤ K1(|s|p2 + |t|q2 + |l|r2),

for all s, t, l ∈ R, x ∈ Ω;
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(H5) β0, β1, β2 satisfy

β0 < (a+ 1)τ +N(1− τ

2
),

β1 ≤ (b+ 1)ξ +N(1− ξ

2
),

β2 < min
{

(a+ 1)pi +N(1− pi
2

), (a+ 1)r1 +N(1− r1

2
),

(b+ 1)qi +N(1− qi
2

), (b+ 1)r2 +N(1− r2

2
) : i = 1, 2

}
;

(H6) for all s, t ∈ R, almost everywhere x ∈ Ω,

H(x, s, t) ≥ −
(µ2

ξ
|x|β2−β1 |t|ξ + |x|β2−2∗ae1 |s|α|t|γ

)
;

(H7) there exist θ1 ∈ (2, τ ] and θ2 ∈ (1, 2) such that, for all s, t ∈ R, almost
everywhere x ∈ Ω,

1
θ1
Hu(x, s, t)s+

1
θ2
Hv(x, s, t)t ≥ H(x, s, t),

α

θ1
+
γ

θ2
≥ 1.

Under the assumptions (H1), (H2)–(H5), µ1 ≤ 0, µ2 ≥ 0, and γHu(x, s, t)s =
αHv(x, s, t)t for all s, t ∈ R, almost everywhere x ∈ Ω, we note that system (1.2)
does not possess any nontrivial weak solution. Indeed, supposing by contradiction
that (u, v) is a nontrivial weak solution, we obtain∫

Ω

|∇u|2

|x|2a
dx− µ1

∫
Ω

|u|τ

|x|β0
dx = α

[ 1
α

∫
Ω

Hu(x, u, v)u
|x|β2

dx+
∫

Ω

|u|α|v|γ

|x|2∗ae1
dx
]

and ∫
Ω

|∇v|2

|x|2b
dx+ µ2

∫
Ω

|v|ξ

|x|β1
dx = −γ

[ 1
γ

∫
Ω

Hv(x, u, v)v
|x|β2

dx+
∫

Ω

|u|α|v|γ

|x|2∗ae1
dx
]
.

So, we conclude that∫
Ω

|∇u|2

|x|2a
dx− µ1

∫
Ω

|u|τ

|x|β0
dx = −α

γ

(∫
Ω

|∇v|2

|x|2b
dx+ µ2

∫
Ω

|v|ξ

|x|β1
dx
)
,

hence, u = v = 0 almost everywhere in Ω, which is a contradiction.
Before enunciating our results, we recall that Xuan [21], under the assumption

(H1), proved that if 0 ≤ a < (N − 2)/2, and β2 < 2(a + 1), then there exists the
first eigenvalue λ1β2

> 0 of problem

−div(|x|−2a∇u) = λ|x|−β2u in Ω,
u = 0 on ∂Ω,

(1.3)

which is associated to an eigenfunction ϕ1β2
∈ C1,α1(Ω \ {0}) with ϕ1β2

> 0 in
Ω \ {0} for some α1 > 0.

Theorem 1.1. Assume (H1), (H2)–(H7), and θ2 ∈ (1, 2) ∩ (1, ξ]. Then system
(1.2) possesses a nontrivial weak solution for each µ1 > 0 and µ2 ≥ 0, provided that
one of the following conditions is satisfied

(i) p0 ∈ (2, 2N
N−2 );

(ii) p0 = 2 and K0 ∈ (0,
λ1β2

2 ).
Moreover, if p0 ∈ (1, 2) there exists µ̄0 > 0 such that system (1.2) possesses a
nontrivial weak solution for each µ1 ∈ (0, µ̄0) and µ2 ≥ 0.
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Theorem 1.2. Assume (H1), (H2)–(H7), ξ < 2, β1 < (b+ 1)ξ+N [1− (ξ/2)], and
θ2 ∈ [ξ, 2). Then system (1.2) possesses a nontrivial weak solution for each µ1 > 0
and µ2 < 0, provided that one of the following conditions is satisfied

(i) p0 ∈ (2, 2N
N−2 );

(ii) p0 = 2 and K0 ∈ (0,
λ1β2

2 ).
Moreover, if p0 ∈ (1, 2) there exists µ̄0 > 0 such that system (1.2) possesses a
nontrivial weak solution for each µ1 ∈ (0, µ̄0) and µ2 < 0.

Theorem 1.3. In addition to (H1), (H2)–(H7), θ2 ∈ (1, 2) ∩ (1, ξ], and H even
in the variables s, t, suppose either H(x, s, 0) ≤ 0 for all s ∈ R, x ∈ Ω or p0 = τ .
Then system (1.2) possesses a sequence {(un, vn)} of nontrivial weak solutions with
energies I(un, vn) → ∞ as n → ∞ for each µ1 > 0 and µ2 ≥ 0. Moreover, this
result still held if ξ < 2, β1 < (b + 1)ξ + N [1 − (ξ/2)], θ2 ∈ [ξ, 2), µ1 > 0, and
µ2 < 0. See the definition of I in (2.2).

Now we present some complementary results, for which we use following condi-
tion:

(H9) Assume that

H(x, s, t) ≥ −(|x|β2−2∗ae1 |s|α|t|γ),

instead of the condition (H6). Notice that if µ2 < 0 then (H6) is more restrictive
than (H9). To obtain similar results we will impose that −µ2 is small or that ξ < 2.

Theorem 1.4. Assume (H1), (H2)–(H5), (H7), (H9), ξ < 2, β1 < (b+ 1)ξ+N [1−
(ξ/2)], and θ2 ∈ [ξ, 2). Then, there exists µ̃0 > 0 such that system (1.2) possesses
a nontrivial weak solution for each µ1 > 0 and µ2 ∈ (−µ̃0, 0), provided that one of
the following conditions is satisfied

(i) p0 ∈ (2, 2N
N−2 );

(ii) p0 = 2 and K0 ∈ (0,
λ1β2

2 ).
Moreover, if p0 ∈ (1, 2) there exist µ̃0, µ̄0 > 0 such that system (1.2) possesses a
nontrivial weak solution for each µ1 ∈ (0, µ̄0) and µ2 ∈ (−µ̃0, 0).

Theorem 1.5. In addition to (H1), (H2)–(H5), (H7), (H9), ξ < 2, β1 < (b +
1)ξ + N [1 − (ξ/2)], θ2 ∈ [ξ, 2), and H even in the variables s, t, suppose either
H(x, s, 0) ≤ 0 for all s ∈ R, x ∈ Ω or p0 = τ . Then, system (1.2) possesses
a sequence {(un, vn)} of nontrivial weak solution with energies I(un, vn) → ∞ as
n→∞ for each µ1 > 0 and µ2 < 0. See the definition of I in (2.2).

Remark 1.6. The Theorems 1.1–1.5 still hold for system (1.2) with subcritical
growth; that is, when ξ ∈ (1, 2N/(N − 2)), β1 < (b + 1)ξ + N [1 − (ξ/2)], and we
consider β instead 2∗ae1 = 2∗be2, where β < min{(a + 1)p3 + N [1 − (p3/2)], (b +
1)p4 +N [1− (p4/2)]} for some p3, p4 ∈ (1, 2N

N−2 ) with

α

p3
+

γ

p4
= 1.

2. Preliminaries

Consider Ω a bounded smooth domain in RN (N ≥ 3) with 0 ∈ Ω. If α ∈ R and
l ∈ (0,+∞), let Ll(Ω, |x|α) be the subspace of Ll(Ω) of the Lebesgue measurable
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functions u : Ω→ R satisfying

‖u‖Ll(Ω,|x|α) :=
(∫

Ω

|x|α|u|ldx
)1/l

<∞.

If −∞ < a < (N − 2)/2, we define W 1,2
0 (Ω, |x|−2a) as being the completion of

C∞0 (Ω) with respect to the norm ‖ · ‖a defined by

‖u‖a = ‖u‖W 1,2
0 (Ω,|x|−2a) :=

(∫
Ω

|x|−2a|∇u|2dx
)1/2

,

which is induced by inner product

〈u,w〉W 1,2
0 (Ω,|x|−2a) :=

∫
Ω
|x|−2a∇u∇w dx.

First of all, by using inequality (1.1) and the boundedness of Ω, in [22] was
proved that there exists C > 0 such that(∫

Ω

|x|−δ|u|rdx
)2/r

≤ C
(∫

Ω

|x|−2a|∇u|2dx
)
, ∀u ∈W 1,2

0 (Ω, |x|−2a), (2.1)

where 1 ≤ r ≤ 2N/(N − 2) and δ ≤ (a+1)r+N [1− (r/2)], which is the Caffarelli,
Kohn, Nirenberg’s inequality. In other words, the embedding W 1,2

0 (Ω, |x|−2a) ↪→
Lr(Ω, |x|−δ) is continuous if 1 ≤ r ≤ 2N/(N − 2) and δ ≤ (a+ 1)r +N [1− (r/2)].
Moreover, this embedding is compact if 1 ≤ r < 2N/(N − 2) and δ < (a + 1)r +
N [1− (r/2)], see [22, Theorem 2.1].

Due to Theorem 4.3, see Appendix, we can consider

{ ϕa,n√
λa,n
} ⊂ C1(Ω \ {0}) ∩ C0(Ω)

and
{ ϕb,n√

λb,n
} ⊂ C1(Ω \ {0}) ∩ C0(Ω)

the Hilbertian bases of spaces W 1,2
0 (Ω, |x|−2a) and W 1,2

0 (Ω, |x|−2b), respectively.
We define

E := W 1,2
0 (Ω, |x|−2a)×W 1,2

0 (Ω, |x|−2b),

endowed with the norm ‖(u, v)‖ := ‖u‖a + ‖v‖b. We will denote ϕan = (ϕa,n, 0),
and ϕbn = (0, ϕb,n). Evidently, {ϕan} (resp. {ϕbn}) is a basis for space E+ :=
W 1,2

0 (Ω, |x|−2a)× {0} (resp. E− := {0} ×W 1,2
0 (Ω, |x|−2b)) and E = E− ⊕E+. We

define the spaces

Xm := span{ϕa1 , . . . , ϕam} ⊕ E−, Xn := E+ ⊕ span{ϕb1, . . . , ϕbn},

and we denote by (Xm)⊥ (resp. (Xn)⊥) the complement of Xm (resp. Xn) in E.
Our approach is variational, so we will study the critical points of the Euler-

Lagrange functional I : E → R given by

I(u, v) =
1
2

(‖u‖2a − ‖v‖2b)−
µ1

τ

∫
Ω

|x|−β0 |u|τ dx− µ2

ξ

∫
Ω

|x|−β1 |v|ξ dx

−
∫

Ω

|x|−β2H(x, u, v) dx−
∫

Ω

|x|−2∗ae1 |u|α|v|γ dx,
(2.2)

which belongs to the class C1.
Now, we will proof that I ′ is weakly sequentially continuous.
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Theorem 2.1. Let {(uj , vj)} ⊂ E be a sequence and (u, v) ∈ E such that (uj , vj) ⇀
(u, v) weakly in E as j →∞. Assume (H1), (H2)–(H5). Then, I ′(uj , vj) ⇀ I ′(u, v)
weakly in E∗ as j →∞.

Proof. By definition of weak convergence in E, we have for (w, z) ∈ E that

lim
j→∞

∫
Ω

|x|−2a∇uj∇w dx =
∫

Ω

|x|−2a∇u∇w dx, (2.3)

lim
j→∞

∫
Ω

|x|−2b∇vj∇z dx =
∫

Ω

|x|−2b∇v∇z dx. (2.4)

By compact embedding, we have

uj → u strongly in Lτ (Ω, |x|−β0) and Lp1(Ω, |x|−β2) as j →∞,

vj → v strongly in Lq1(Ω, |x|−β2) as j →∞.

In particular, there exist functions h ∈ Lτ (Ω, |x|−β0), f ∈ Lp1(Ω, |x|−β2), and
g ∈ Lq1(Ω, |x|−β2) such that |uj |(x) ≤ min{f(x), h(x)} and |vj |(x) ≤ g(x) almost
everywhere x ∈ Ω. Passing to a subsequence, if necessary, we obtain uj(x)→ u(x)
and vj(x)→ v(x), as j →∞, for almost everywhere x ∈ Ω. Therefore, we obtain

[Hu(x, uj , vj)w](x)→ [Hu(x, u, v)w](x) as j →∞ almost everywhere x ∈ Ω,

(|uj |τ−2ujw)(x)→ (|u|τ−2uw)(x) as j →∞ almost everywhere x ∈ Ω,

|Hu(x, uj , vj)w| ≤ K1(|uj |p1 + |vj |q1 + |w|r1)

≤ K1(fp1 + gq1 + |w|r1) ∈ L1(Ω, |x|−β2),

‖uj |τ−2ujw| ≤ hτ−1|w|

≤ τ − 1
τ

hτ +
1
τ
|w|τ ∈ L1(Ω, |x|−β0).

Consequently, the Lebesgue Theorem implies that

lim
j→∞

∫
Ω

|x|−β2Hu(x, uj , vj)w dx =
∫

Ω

|x|−β2Hu(x, u, v)w dx,

lim
j→∞

∫
Ω

|x|−β0 |uj |τ−2ujw dx =
∫

Ω

|x|−β0 |u|τ−2uw dx.

Analogously, we obtain

lim
j→∞

∫
Ω

|x|−β2Hv(x, uj , vj)z dx =
∫

Ω

|x|−β2Hv(x, u, v)z dx. (2.5)

Due to weak convergence, {(uj , vj)} is bounded in E. Also, since that (α/2∗a) +
(γ/2∗b) = 1, we obtain

α− 1
2∗a − 1

+
2∗a γ

2∗b(2∗a − 1)
=

γ − 1
2∗b − 1

+
2∗b α

2∗a(2∗b − 1)
= 1,

2∗a − 1
α− 1

,
2∗b − 1
γ − 1

> 1 .

Then, by Hölder’s inequality,∣∣∫
Ω

|x|−2∗ae1(|uj |α−2|vj |γuj)
2∗a

2∗a−1 dx
∣∣

≤
(
‖uj‖L2∗a (Ω,|x|−2∗ae1 )

) 2∗a(α−1)
2∗a−1

(
‖vj‖L2∗

b (Ω,|x|−2∗
b
e2 )

) 2∗a γ
2∗a−1

.
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Then {|uj |α−2|vj |γuj} is a bounded sequence in L
2∗a

2∗a−1 (Ω, |x|−2∗ae1). Also, the se-
quence {|vj |ξ−2vj} is bounded in L

ξ
ξ−1 (Ω, |x|−β1). Moreover,

(|uj |α−2|vj |γuj)(x)→ (|u|α−2|v|γu)(x) and (|vj |ξ−2vj)(x)→ (|v|ξ−2v)(x),

as j →∞, for almost everywhere x ∈ Ω. Then, by [13, Lemma 4.8], we obtain

|uj |α−2|vj |γuj ⇀ |u|α−2|v|γu weakly in L
2∗a

2∗a−1 (Ω, |x|−2∗ae1) as j →∞,

|vj |ξ−2vj ⇀ |v|ξ−2v weakly in L
ξ
ξ−1 (Ω, |x|−β1) as j →∞.

In particular, we have

lim
n→∞

∫
Ω

|x|−2∗ae1 |uj |α−2|vj |γujw dx =
∫

Ω

|x|−2∗ae1 |u|α−2|v|γuw dx, (2.6)

lim
j→∞

∫
Ω

|x|−β1 |vj |ξ−2vjz dx =
∫

Ω

|x|−β1 |v|ξ−2vz dx. (2.7)

Similarly, we obtain

lim
j→∞

∫
Ω

|x|−2∗ae1 |uj |α|vj |γ−2vjz dx =
∫

Ω

|x|−2∗ae1 |u|α|v|γ−2vz dx. (2.8)

By combining the limits (2.3)-(2.8), we conclude that

lim
j→∞
〈I ′(uj , vj), (w, z)〉 = 〈I ′(u, v), (w, z)〉, ∀ (w, z) ∈ E.

�

Definition 2.2. We say that {(uj , vj)} ⊂ E is a (PS)∗c -sequence with relation
to the functional I if (uj , vj) ∈ Xnj , nj → ∞ as j → ∞, I(uj , vj) → c, and
‖I ′|Xnj (uj , vj)‖(Xnj )∗ ≤ εnj , εnj → 0 as j → ∞. Moreover, if all (PS)∗c -sequence
be precompact, we say that functional I satisfies the (PS)∗c -condition.

Lemma 2.3. Assume (H1), (H2)–(H5). Then, all (PS)∗c-sequence is bounded in
E, if one of the following conditions occurs:

(i) µ1 > 0, µ2 ≥ 0, and (H7) are satisfied with θ2 ∈ (1, 2) ∩ (1, ξ];
(ii) ξ < 2, β1 < (b+ 1)ξ[1− (ξ/2)], µ1 > 0, µ2 < 0, and (H7) are satisfied with

θ2 ∈ [ξ, 2).

Proof. Let {(uj , vj)} be a (PS)∗c -sequence with relation to the functional I. We
consider θ1 ∈ (2, τ ] and θ2 ∈ (1, 2)∩ (1, ξ] if (i) is satisfied and, for (ii), we consider
θ1 ∈ (2, τ ] and θ2 ∈ [ξ, 2). In both cases, we obtain

c+ o(1)‖(uj , vj)‖+ o(1) ≥ I(uj , vj)− 〈I ′|Xnj (uj , vj), (
1
θ1
uj ,

1
θ2
vj)〉

≥ (
1
2
− 1
θ1

)‖uj‖2a + (
1
θ2
− 1

2
)‖vj‖2b ,

so, {(uj , vj)} is bounded in E. �

Theorem 2.4. Assume (H1), (H2)–(H5). Let {(uj , vj)} ⊂ E be a (PS)∗c-sequence
with relation to the functional I such that (uj , vj) ⇀ (u, v) weakly in E as j →∞.
Then, (u, v) is a weak solution of system (1.2) and (uj , vj) → (u, v) strongly in E
as j →∞, provided that one of the following conditions is satisfied

(i) µ1 > 0 and µ2 ≥ 0;
(ii) ξ < 2, β1 < (b+ 1)ξ + [1− (ξ/2)], µ1 > 0, and µ2 < 0.
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Proof. Due to weak convergence, {(uj , vj)} is bounded in E.
Step I. We will prove that (uj , vj)→ (u, v) strongly in E as j →∞. For each z ∈
W 1,2

0 (Ω, |x|−2b), we can write z =
∑∞
k=1 akϕ

b
k. Thus, we have the projection P 0

nj :
W 1,2

0 (Ω, |x|−2b) → span{ϕb1, . . . , ϕbnj} given by P 0
nj (z) =

∑nj
k=1 akϕ

b
k. Moreover, it

is easy to see that P 0
nj (z)→ z strongly in W 1,2

0 (Ω, |x|−2b) as j →∞.
By definition of (PS)∗c -sequence, we obtain∫

Ω

|x|−2b∇vj∇(v − vj) dx

= 〈I ′|Xnj (uj , vj), (0, vj − P 0
nj (v))〉 − 〈I ′(uj , vj), (0, v − P 0

nj (v))〉

+ µ2

∫
Ω

|x|−β1 |vj |ξ−2vj(vj − v) dx+
∫

Ω

|x|−β2Hv(x, uj , vj)(vj − v) dx

+ γ

∫
Ω

|x|−2∗ae1 |uj |α|vj |γ−2vj(vj − v) dx.

(2.9)

Since that (0, vj − P 0
nj (v)) ∈ Xnj and {(0, vj − P 0

nj (v))} is bounded in E, we have

〈I ′|Xnj (uj , vj), (0, vj − P 0
nj (v))〉 → 0 as j →∞. (2.10)

From P 0
nj (v) → v strongly in W 1,2

0 (Ω, |x|−2b) as j → ∞ and boundedness of
{(uj , vj)} in E follow that

〈I ′(uj , vj), (0, v − P 0
nj (v))〉 → 0 as j →∞. (2.11)

Similarly to proof of Theorem 2.1, we obtain

lim
j→∞

∫
Ω

|x|−β1 |vj |ξ−2vjv dx =
∫

Ω

|x|−β1 |v|ξ dx, (2.12)

lim
j→∞

∫
Ω

|x|−β2Hv(x, uj , vj)(vj − v) dx = 0, (2.13)

lim
j→∞

∫
Ω

|x|−2∗ae1 |uj |α|vj |γ−2vjv dx =
∫

Ω

|x|−2∗ae1 |u|α|v|γ dx. (2.14)

By compact embedding, uj(x)→ u(x) and vj(x)→ v(x), as j →∞, for almost
everywhere x ∈ Ω. Then |x|−2∗ae1 |uj |α(x)|vj |γ(x) → |x|−2∗ae1 |u|α(x)|v|γ(x), as j →
∞, for almost everywhere x ∈ Ω. Hence, we obtain by Fatou’s Lemma that∫

Ω

|x|−2∗ae1 |u|α|v|γ dx ≤ lim inf
j→∞

∫
Ω

|x|−2∗ae1 |uj |α|vj |γ dx. (2.15)

Hence, taking the lower limit in equation (2.9) and by using (2.10)-(2.15), we
obtain

‖v‖2b − lim sup
j→∞

‖vj‖2b = lim inf
j→∞

∫
Ω

|x|−2a∇vj∇(v − vj) dx

≥ lim inf
j→∞

(
µ2

∫
Ω

|x|−β1 |vj |ξ−2vj(vj − v) dx
)

≥ lim inf
j→∞

(
µ2

∫
Ω

|x|−β1 |vj |ξ dx
)
− µ2

∫
Ω

|x|−β1 |v|ξ dx.

(2.16)
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Consider µ2 ≥ 0. Then, since |x|−β1 |vj |ξ(x) → |x|−β1 |v|ξ(x) as j → ∞ for almost
everywhere x ∈ Ω, we obtain by Fatou’s Lemma that∫

Ω

|x|−β1 |v|ξ dx ≤ lim inf
j→∞

∫
Ω

|x|−β1 |vj |ξ dx;

therefore, from (2.16) we obtain

‖v‖2b − lim sup
j→∞

‖vj‖2b ≥ 0.

But, if µ2 < 0, ξ < 2, and β1 < (b + 1)ξ + [1 − (ξ/2)], then the embedding
W 1,2

0 (Ω, |x|−2b) ↪→ Lξ(Ω, |x|−β1) is compact. Therefore,∫
Ω

|x|−β1 |v|ξ dx = lim
j→∞

∫
Ω

|x|−β1 |vj |ξ dx,

and from (2.16) it follows that

‖v‖2b − lim sup
j→∞

‖vj‖2b ≥ 0.

Then, in both cases, we have

lim sup
j→∞

‖vj‖2b ≤ ‖v‖2b ≤ lim inf
j→∞

‖vj‖2b ,

so, vj → v strongly in W 1,2
0 (Ω, |x|−2b) as j →∞.

Define ũj := uj − u and ṽj := vj − v. From definition of (PS)∗c -sequence and by
Brezis-Lieb’s Lemma follow

‖ũj‖2a − α
∫

Ω

|x|−2∗ae1 |ũj |α|ṽj |γdx

= 〈I ′|Xnj (uj , vj), (uj , 0)〉 − 〈I ′(u, v), (u, 0)〉+ o(1),
(2.17)

where o(1)→ 0 as j →∞.
As {(uj , 0)} is bounded in E, (uj , 0), (w, 0) ∈ Xnj := E+ ⊕ span{ϕb1, . . . , ϕbnj}

where E+ := W 1,2
0 (Ω, |x|−2a)× {0}, we have by definition of (PS)∗c -sequence that

〈I ′|Xnj (uj , vj), (uj , 0)〉 → 0 and 〈I ′|Xnj (uj , vj), (w, 0)〉 → 0 as j → ∞ for all w ∈
W 1,2

0 (Ω, |x|−2a). On the other hand, by Theorem 2.1, 〈I ′|Xnj (un, vn), (w, 0)〉 →
〈I ′(u, v), (w, 0)〉 as j →∞ for all w ∈W 1,2

0 (Ω, |x|−2a). Then,

〈I ′(u, v), (w, 0)〉 = 0, ∀w ∈W 1,2
0 (Ω, |x|−2a). (2.18)

Thus, we obtain by Hölder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality,
boundedness of {ũn} in W 1,2

0 (Ω, |x|−2a), and (2.17) that

‖ũj‖2a = α

∫
Ω

|x|−2∗ae1 |ũj |α|ṽj |γdx+ o(1) ≤M‖v‖γb + o(1), (2.19)

so, as ṽj → 0 strongly in E as j → ∞, it follows that ũj → 0 strongly in
W 1,2

0 (Ω, |x|−2a) as j → ∞. Hence, we conclude that (uj , vj) → (u, v) strongly
in E as n→∞.
Step II. We will prove that (u, v) is a weak solution of system (1.2). Consider
z ∈W 1,2

0 (Ω, |x|−2b). Then, we have

〈I ′(uj , vj), (0, z)〉 = 〈I ′|Xnj (uj , vj), (0, P 0
nj (z))〉+〈I

′(uj , vj), (0, z−P 0
nj (z))〉. (2.20)
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However, as (0, P 0
nj (z)) ∈ Xnj and {(0, P 0

nj (z))} is bounded in E, we have

〈I ′|Xnj (uj , vj), (0, P 0
nj (z))〉 → 0 as j →∞. (2.21)

Also, follows similar to (2.11) that

〈I ′(uj , vj), (0, z − P 0
nj (z))〉 → 0 as j →∞. (2.22)

Hence, by (2.20), (2.21), and (2.22), we obtain

〈I ′(uj , vj), (0, z)〉 → 0 as j →∞.

But, by Theorem 2.1, we have 〈I ′(uj , vj), (0, z)〉 → 〈I ′(u, v), (0, z)〉 as j → ∞ for
all z ∈W 1,2

0 (Ω, |x|−2b). Then,

〈I ′(u, v), (0, z)〉 = 0, ∀z ∈W 1,2
0 (Ω, |x|−2b). (2.23)

Hence, by using (2.18) and (2.23), we conclude that (u, v) is a weak solution of
system (1.2). �

3. Proof of main results

Lemma 3.1. Assume (H1), (H2)–(H5), (H7), µ1 > 0, and µ2 ∈ R. Then, there
exist r, σ > 0 such that

inf I(∂Br(E+)) ≥ σ, (3.1)
provided that one of the following conditions is satisfied

(i) p0 ∈ (2, 2N
N−2 );

(ii) p0 = 2 and K0 ∈ (0,
λ1β2

2 ).
Moreover, if p0 ∈ (1, 2), there exist µ̄0, r, σ > 0 such that (3.1) is held for each
µ1 ∈ (0, µ̄0) and µ2 ∈ R.

Proof. If (i) is satisfied, we obtain

I(u, 0) ≥ 1
2
‖u‖2a −

µ1

τ
C
τ
2 ‖u‖τa −K0

∫
Ω

|x|−β2 |u|p0 dx

≥ 1
2
‖u‖2a −

µ1

τ
C
τ
2 ‖u‖τa −K0C

p0
2 ‖u‖p0a ,

so, as µ1 > 0 and τ, p0 > 2, there exist r, σ ∈ (0, 1) such that I(u, 0) ≥ σ for all
(u, 0) ∈ E+ with ‖(u, 0)‖ = r.

Assuming (ii), we obtain

I(u, 0) ≥ 1
2
‖u‖2a −

µ1

τ
C
τ
2 ‖u‖τa −K0

∫
Ω

|x|−β2 |u|2 dx

= (
1
2
− K0

λ1β2

)‖u‖2a −
µ1

τ
C
τ
2 ‖u‖τa,

so, as µ1 > 0, K0 ∈ (0,
λ1β2

2 ), and τ > 2, there exist r, σ ∈ (0, 1) such that
I(u, 0) ≥ σ for all (u, 0) ∈ E+ with ‖(u, 0)‖ = r.

Now, for p0 ∈ (1, 2), we have

I(u, 0) ≥ 1
2
‖u‖2a −

µ1

τ
C
τ
2 ‖u‖τa −K0C

p0
2 ‖u‖p0a

= (
1
4
‖u‖2a −K0C

p0
2 ‖u‖p0a ) + (

1
4
‖u‖2a −

µ1

τ
C
τ
2 ‖u‖τa).
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Since p0 ∈ (1, 2), there exist r, σ > 0 such that

( 1
4r

2 −K0C
p0
2 rp0) ≥ σ.

We choose µ̄0 > 0 such that

(
1
4
r2 − µ1

τ
C
τ
2 rτ ) ≥ 0

for all µ1 ∈ (0, µ̄0).
Hence, we conclude that I(u, 0) ≥ σ for all (u, 0) ∈ E+ with ‖(u, 0)‖ = r,

provided that µ1 ∈ (0, µ̄0) and µ2 ∈ R. �

Consider (e, 0) ∈ E+ with ‖(e, 0)‖ = r. We define the sets

M = M(ρ) := {(se, v) : v ∈W 1,2
0 (Ω, |x|−2b), ‖(se, v)‖ ≤ ρ},

M0 = M0(ρ) := {(se, v) : v ∈W 1,2
0 (Ω, |x|−2b), ‖(se, v)‖ = ρ

and s > 0 or ‖v‖b ≤ ρ and s = 0}.

Lemma 3.2. Assume (H1) and (H2)-(H7). Then, there exists ρ > r > 0 such that
I(u, v) ≤ 0 for all (se, v) ∈M0, for each µ1 > 0 and µ2 ∈ R.

Proof. If (se, v) ∈M0, then, by using (H6), we obtain

I(se, v) ≤ r2

2
s2 − sτ µ1

τ

∫
Ω

|x|−β0 |e|τ dx− 1
2
‖v‖2b . (3.2)

Fix ρ0 > r > 0 such that

r2

2
s2 − sτ µ1

τ

∫
Ω

|x|−β0 |e|τ dx ≤ 0,∀s ≥ ρ0, (3.3)

and, define

0 < b0 := max
s≥0

(
r2

2
s2 − sτ µ1

τ

∫
Ω

|x|−β0 |e|τ dx) <∞.

Then, we choose ρ > max{ρ0, rρ0} > r such that
1
2
‖v‖2b ≥ b0, for all v with ‖v‖b ≥ ρ− ρ0r. (3.4)

Thus, if s = 0 and ‖v‖b ≤ ρ, follows by (3.2) that I(0, v) ≤ 0.
If s > 0 and ‖(se, v)‖ = ρ, we have ‖v‖b = ρ − s‖e‖a = ρ − sr. Then, for

s ≥ ρ0, we obtain by (3.2) and (3.3) that I(0, v) ≤ 0. However, if s < ρ0, we have
‖v‖b = ρ − sr ≥ ρ − ρ0r, so, by (3.2) and (3.4), we obtain I(se, v) ≤ 0. Note that
1
2‖v‖

2
b ≤ b0 and s > 0 imply s ≥ (ρ−

√
2b0)/r > ρ0. �

Proof of Theorems 1.1 and 1.2. We have

Xn = E+ ⊕ span{ϕb1, · · · , ϕbn}.
We define

Mn := M ∩Xn, M0,n := M0 ∩Xn, Nn := ∂Br(E+),

cn := inf
h∈Γn

max I(h(Mn)),

where
Γn := {h ∈ C(Mn, Xn) : h|M0,n ≡ idM0,n}.

Similar to the proof of [20, Theorem 2.12], we obtain

h(Mn) ∩ ∂Br(E+) 6= ∅, ∀h ∈ Γn.
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Then, by using Lemmata 3.1 and 3.2, we obtain

sup I(M0,n) ≤ 0 < σ ≤ inf I(∂BrE+) ≤ cn ≤ k0 := sup I(Mn) <∞.

In particular, we obtain a subsequence {cnj} of {cn} and c ∈ [σ, k0] such that
cnj → c as j →∞.

Then, by applying [20, Theorem 2.8], we obtain (un, vn) ∈ Xn with |I(un, vn)−
cn| ≤ 1/n and ‖I ′|Xn(un, vn)‖(Xn)∗ ≤ 1/n for each n ∈ N. Thus, {(unj , vnj )} is a
(PS)∗c -sequence with relation to the functional I. Due to Lemma 2.3, {(unj , vnj )}
is bounded in E. Therefore, there exists (u, v) ∈ E such that (unj , vnj ) ⇀ (u, v)
weakly in E as j → ∞. Hence, by Theorem 2.4, we conclude that (u, v) is a
weak solution of system (1.2) and (unj , vnj ) → (u, v) strongly in E as j → ∞. In
particular, I(u, v) = c > 0, then (u, v) is nontrivial. �

Lemma 3.3. Assume (H1), (H2)–(H6), µ1 > 0, and µ2 ∈ R. Then, there exists
Rm > 0 such that I(u, v) ≤ 0 for all (u, v) ∈ Xm with ‖(u, v)‖ ≥ Rm.

Proof. We recall that Xm ≈ span{ϕa,1, . . . , ϕa,m} × W 1,2
0 (Ω, |x|−2b). Thus, as

span{ϕa,1, . . . , ϕa,m} has finite dimension, all norms in this space are equivalent.
From Caffarelli, Kohn, and Nirenberg’s inequality ‖w‖Lτ (Ω,|x|−β0 ) ≤ C1/2‖w‖a for
all w ∈ W 1,2

0 (Ω, |x|−2a) and ‖z‖Lξ(Ω,|x|−β1 ) ≤ C1/2‖z‖b for all z ∈ W 1,2
0 (Ω, |x|−2b).

In particular, ‖ · ‖Lτ (Ω,|x|−β0 ) define a norm on the space span{ϕa,1, . . . , ϕa,m}.
Then, there exists Km > 0 such that

‖w‖Lτ (Ω,|x|−β0 ) ≥ Km‖w‖a, ∀w ∈ span{ϕa,1, . . . , ϕa,m}.

Hence, we obtain

I(u, v) ≤ (
1
2
‖u‖2a −

µ1

τ
Kτ
m‖u‖τa)− 1

2
‖v‖2b ≤ 0,

for all (u, v) ∈ Xm, ‖(u, v)‖ ≥ Rm, for some Rm > 0 large enough, because
τ > 2. �

Lemma 3.4. In addition to (H1), (H2)–(H5), µ1 > 0, and µ2 ∈ R, suppose either
H(x, s, 0) ≤ 0 for all s ∈ R, x ∈ Ω or p0 = τ . Then, there exist rm, am > 0
such that am → ∞ as m → ∞ and I(u, v) ≥ am for all (u, v) ∈ (Xm−1)⊥ with
‖(u, v)‖ = rm.

Proof. We have (Xm−1)⊥ ≈ span{ϕa,j : j ≥ m}×{0} ≈ span{ϕa,j : j ≥ m}. Thus,
we can consider (Xm−1)⊥ ⊂W 1,2

0 (Ω, |x|−2a). Let

σm := sup
u∈(Xm−1)⊥, ‖u‖a=1

‖u‖Lτ (Ω,|x|−β0 ),

ρm := sup
u∈(Xm−1)⊥, ‖u‖a=1

‖u‖Lp0 (Ω,|x|−β2 ).

Since that (Xm)⊥ ⊂ (Xm−1)⊥, it follows that σm ≥ σm+1 for all m ∈ N. Thus,
σm ↘ σ ≥ 0 as m → ∞. We will prove that σ = 0. By definition of σm, for each
m ∈ N, there exists um ∈ (Xm−1)⊥ with ‖um‖a = 1 and

‖um‖Lτ (Ω,|x|−β0 ) ≥
σm
2
·

Moreover, as (Xm−1)⊥ ≈ span{ϕa,j : j ≥ m}, we obtain um ⇀ 0 weakly in
W 1,2

0 (Ω, |x|−2a) as m→∞. We have, from compact embedding W 1,2
0 (Ω, |x|−2a) ↪→
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Lτ (Ω, |x|−β0), that um → 0 strongly in Lτ (Ω, |x|−β0) as m→∞. Then, σm ↘ σ =
0 as m→∞. Similarly, we have that ρm ↘ 0 as m→∞.

If H(x, s, 0) ≤ 0 for all s ∈ R, x ∈ Ω, then, for each (u, 0) ∈ (Xm−1)⊥, we obtain

I(u, 0) ≥ 1
2
‖u‖2a − µ1(σm)τ‖u‖τa,

therefore, taking rm := [µ1(σm)τ ]
1

2−τ and am := ( 1
2 −

1
τ )r2

m, we conclude that

I(u, 0) ≥ am,

where am →∞ as m→∞, for all (u, 0) ∈ (Xm−1)⊥ with ‖(u, 0)‖ = rm.
However, if p0 = τ , we define l := max{µ1/τ,K0} and ηm := max{σm, ρm}.

Then, for each (u, 0) ∈ (Xm−1)⊥, we obtain

I(u, 0) ≥ 1
2
‖u‖2a −

µ1

τ
(σm)τ‖u‖τa −K0

∫
Ω

|x|−β2 |u|τ dx

≥ 1
2
‖u‖2a −

µ1

τ
(σm)τ‖u‖τa −K0(ρm)τ‖u‖τa

≥ 1
2
‖u‖2a − 2l(ηm)τ‖u‖τa,

so, taking rm := [2 τ l (ηm)τ ]
1

2−τ and am := ( 1
2 −

1
τ )r2

m, we conclude that

I(u, 0) ≥ am,

where am →∞ as m→∞, for all (u, 0) ∈ (Xm−1)⊥ with ‖(u, 0)‖ = rm. �

Proof of Theorem 1.3. We remark that I is an even functional in the variables u
and v. By using Lemma 3.3, we obtain

sup
Xm

I <∞. (3.5)

Then, by Lemmata 2.3, 3.3, and 3.4, Theorem 2.4, and by (3.5), we have the
hypotheses of [10, Proposition 2.1], which concludes Theorem 1.3. �

Proof of Theorem 1.4. The proof is similar to prove of Theorem 1.2, the difference
is that we apply the next lemma instead of Lemma 3.2. �

Lemma 3.5. Assume (H1), (H2)–(H5), (H7), (H9), ξ < 2, β1 < (b + 1)ξ +
N [1 − (ξ/2)], and θ2 ∈ [ξ, 2). Then, there exist µ̃0 > 0 and ρ > r > 0 such
that sup I(M0) < σ for all µ1 > 0 and µ2 ∈ (−µ̃0, 0), where σ, r > 0 are coming
from Lemma 3.1.

Proof. If (se, v) ∈M0, then

I(se, v) ≤ r2

2
s2 − sτ µ1

τ

∫
Ω

|x|−β0 |e|τ dx− 1
2
‖v‖2b +

|µ2|
ξ

∫
Ω

|x|−β1 |v|ξ dx

≤
(r2

2
s2 − sτ µ1

τ

∫
Ω

|x|−β0 |e|τ dx
)

+
( |µ2|
ξ
C
ξ
2 ‖v‖ξb −

1
2
‖v‖2b

)
.

(3.6)

It is easy verify that

tµ1 :=
( r2

µ1

∫
Ω
|x|−β0 |e|τ dx

) 1
τ−2

, tµ2 :=
(
|µ2|C

ξ
2
) 1

2−ξ
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are the respective maximum points of the functions f : (0,∞)→ R and g : (0,∞)→
R given by

f(s) :=
r2

2
s2 − sτ µ1

τ

∫
Ω

|x|−β0 |e|τ dx, g(t) :=
|µ2|
ξ
C
ξ
2 tξ − t2

2
·

Moreover, we have

f(tµ1) = (
1
2
− 1
τ

)(µ1

∫
Ω

|x|−β0 |e|τ dx)
−2
τ−2 (r2)

τ
τ−2 ,

g(tµ2) = (
1
ξ
− 1

2
)(|µ2|C

ξ
2 )

2
2−ξ .

Let us fix µ̃0 > 0 and ρ0 > r > 0 such that

g(tµ2) < σ if 0 < |µ2| < µ̃0, (3.7)

f(s) ≤ 0 for all s ≥ ρ0. (3.8)

Also, we choose ρ > max{ρ0, rρ0} > r such that

g(‖v‖b) + f(tµ1) ≤ 0, ∀‖v‖b ≥ ρ− ρ0r. (3.9)

Thus, if s = 0 and ‖v‖b ≤ ρ, it follows by (3.6) and (3.7) that I(0, v) ≤ g(tµ2) < σ
if 0 < |µ2| < µ̃0.

If s > 0 and ‖(se, v)‖ = ρ, we have ‖v‖b = ρ− s‖e‖a = ρ− sr. Then, for s ≥ ρ0,
we obtain by (3.6), (3.7), and (3.8) that I(se, v) ≤ g(tµ2) < σ if 0 < |µ2| < µ̃0.
However, if s < ρ0, we have ‖v‖b = ρ − sr ≥ ρ − ρ0r, so, by (3.6) and (3.9), we
obtain I(se, v) ≤ f(tµ1) + g(‖v‖b) ≤ 0 < σ. Note that ‖v‖b ≤ ρ − rρ0 and s > 0
imply s ≥ ρ0. �

To prove Theorem 1.5, we will need of the following lemma.

Lemma 3.6. Assume (H1), (H2)–(H5), (H7), (H9), ξ < 2, β1 < (b+ 1)ξ +N [1−
(ξ/2)], θ2 ∈ [ξ, 2), µ1 > 0, and µ2 < 0. Then, there exists Rm > 0 such that
I(u, v) ≤ 0 for all (u, v) ∈ Xm with ‖(u, v)‖ ≥ Rm.

We remark that I is an even functional in the variables u and v. By using Lemma
3.6, we obtain

sup
Xm

I <∞. (3.10)

Then, by Lemmata 3.6 and 3.4, Theorem 2.4, and (3.10), we have the hypotheses
of [10, Proposition 2.1], which concludes Theorem 1.5.

Proof of Lemma 3.6. We have Xm ≈ span{ϕa,1, . . . , ϕa,m} ×W 1,2
0 (Ω, |x|−2b). Fol-

lowing as in Lemma 3.3, we obtain that there exists Km > 0 such that

‖w‖Lτ (Ω,|x|−β0 ) ≥ Km‖w‖a, ∀w ∈ span{ϕa,1, . . . , ϕa,m}.

Hence, we obtain

I(u, v) ≤ (
1
2
‖u‖2a −

µ1

τ
Kτ
m‖u‖τa)− 1

2
‖v‖2b +

|µ2|
ξ
C
ξ
2 ‖v‖ξb

≤ −(µ1K
τ‖u‖τ−2

a − 1
2

)‖u‖2a − (
1
2
‖v‖2−ξb − |µ2|C

ξ
2 )‖v‖ξb

≤ 0, ∀(u, v) ∈ Xm, ‖(u, v)‖ ≥ Rm,

for some Rm > 0 large enough, because τ > 2 > ξ. �
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4. Appendix: Basis for L2(Ω, |x|−2a) and W 1,2
0 (Ω, |x|−2a)

The next result was proved in [4].

Theorem 4.1. For each f ∈ L2(Ω, |x|−2a), the problem

−div(|x|−2a∇u) = |x|−2(a+1)+cf in Ω,
u = 0 on ∂Ω,

has an unique weak solution u ∈ W 1,2
0 (Ω, |x|−2a) for each c > 0. Moreover, the

operator Tc : L2(Ω, |x|−2a) → L2(Ω, |x|−2a), Tcf = u is continuous and nonde-
creasing.

Lemma 4.2. If c = 2, then the operator T := T2 is a compact self-adjoint operator
and N(T ) = {0}.

Proof. Let {fn} ⊂ L2(Ω, |x|−2a) a bounded sequence and f ∈ L2(Ω, |x|−2a) such
that fn ⇀ f weakly in L2(Ω, |x|−2a) as n→∞. By using definition of T , we obtain∫

Ω

|x|−2a|∇(Tfn)|2 dx =
∫

Ω

|x|−2afn(Tfn) dx

≤M(
∫

Ω

|x|−2a(Tfn)2 dx)1/2

≤M(
∫

Ω

|x|−2a|∇(Tfn)|2 dx)1/2,

where M is a positive constant; therefore

‖Tfn‖W 1,2
0 (Ω,|x|−2a) ≤M, ∀n ∈ N.

Consequently, there exists g ∈ W 1,2
0 (Ω, |x|−2a) such that Tfn ⇀ g weakly in

W 1,2
0 (Ω, |x|−2a) as n→∞. Hence form the compact embedding W 1,2

0 (Ω, |x|−2a) ↪→
L2(Ω, |x|−2a) we conclude that Tfn → g strongly in L2(Ω, |x|−2a) as n → ∞, in
other words, T is compact.

Now, we prove that T is self-adjoint. Let f, g ∈ L2(Ω, |x|−2a). Then, we have∫
Ω

|x|−2ag(Tf) dx =
∫

Ω

|x|−2a∇(Tf)∇(Tg) dx =
∫

Ω

|x|−2af (Tg) dx;

that is,
〈Tf, g〉L2(Ω,|x|−2a) = 〈f, Tg〉L2(Ω,|x|−2a),

so, T is self-adjoint.
Let f ∈ N(T ). We have Tf = 0 almost everywhere x ∈ Ω, then

0 =
∫

Ω

|x|−2a∇(Tf)∇w dx =
∫

Ω

|x|−2afw dx, ∀w ∈W 1,2
0 (Ω, |x|−2a).

Then, we obtain f ≡ 0. �

Theorem 4.3. The normalized eigenfunctions {ϕa,n} ⊂ C1(Ω \ {0}) ∩ C0(Ω) of
eigenvalue problem

−div(|x|−2a∇u) = λ|x|−2au in Ω,
u = 0 on ∂Ω,

(4.1)
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is a Hilbertian basis of space L2(Ω, |x|−2a). Moreover, if {λa,n} are the respective
eigenvalues of {ϕa,n}, the sequence { ϕa,n√

λa,n
} ⊂ C1(Ω \ {0})∩C0(Ω) is a Hilbertian

basis for space W 1,2
0 (Ω, |x|−2a).

Proof. First of all, we recall that Xuan [21] proved that the eigenvalue problem
(4.1) has a sequence of eigenfunctions {ϕa,n} associated to eigenvalues {λa,n} with
0 < λa,1 < λa,2 ≤ λa,3 ≤ · · · ↗ +∞. Changing {ϕa,n} by ϕa,n/‖ϕa,n‖L2(Ω,|x|−2a),
if necessary, we can consider ‖ϕa,n‖L2(Ω,|x|−2a) = 1. Moreover,

{ϕa,n} ⊂ L∞(Ω, |x|−2a) ∩ C1(Ω \ {0})

and ϕ1 > 0 in Ω \ {0}. Then, by [4, Theorem 2.1], we obtain {ϕa,n} ⊂ C0(Ω).
Thus, by applying the [14, Theorem 1] follows that {ϕa,n} ⊂ C1(Ω \ {0}). Also, by
strong maximum principle, see [15, Theorem 2.1], we obtain ϕa,1 > 0 in Ω.

By the definition of T , we have∫
Ω

|x|−2a∇(Tϕa,n)∇w dx =
∫

Ω

|x|−2aϕa,nw dx

= λ−1
a,n

∫
Ω

|x|−2a∇ϕa,n∇w dx

=
∫

Ω

|x|−2a∇(λ−1
a,nϕa,n)∇w dx

for all w ∈W 1,2
0 (Ω, |x|−2a). Hence, we conclude

Tϕn = λ−1
a,nϕa,n, ∀n ∈ N;

that is, {λ−1
a,n} and {ϕa,n} are the eigenvalues and eigenfunctions of T , respectively.

But, by Lemma 4.2 and [3, Theorem V.I.11], we obtain that the eigenfunctions of
T is a Hilbertian basis for space L2(Ω, |x|−2a).

To prove the second claim, we remark that { ϕa,n√
λa,n
} ⊂ W 1,2

0 (Ω, |x|−2a). More-

over, from (4.1), we obtain that { ϕa,n√
λa,n
} is an orthonormal set with respect to inner

product of W 1,2
0 (Ω, |x|−2a).

Now, we prove that the space spanned by {ϕa,n} is dense in W 1,2
0 (Ω, |x|−2a).

Indeed, if u ∈ W 1,2
0 (Ω, |x|−2a) is such that 〈u, ϕa,n〉W 1,2

0 (Ω,|x|−2a) = 0 for all n ∈ N.
Then, by (4.1), we obtain∫

Ω

|x|−2auϕa,n dx = 0, ∀n ∈ N.

Then, since that {ϕa,n} is a Hilbertian basis of L2(Ω, |x|−2a), we conclude that
u = 0 for almost everywhere in Ω. Hence, by [3, Corollary I.8] follows that {ϕa,n}
is dense in W 1,2

0 (Ω, |x|−2a). �
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matica Scientia, 27B (2007), 673-688.

[12] J. Hulshof, E. Mitidieri, R. van der Vorst; Strongly indefinite systems with critical Sobolev
exponents, Trans. Amer. Math. Soc., 350 (1998), 2349-2365.
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