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AN APPROACH FOR CONSTRUCTING COEFFICIENTS OF
DEGENERATE ELLIPTIC COMPLEX EQUATIONS

GUO CHUN WEN

ABSTRACT. This article deals with the inverse problem for degenerate elliptic
systems of first order equations with Riemann-Hilbert type map in simply con-
nected domains. Firstly the formulation and the complex form of the problem
for the first-order elliptic systems with the degenerate rank 0 are given, and
then the coefficients of the systems are constructed by a new complex analytic
method. Here we verify and apply the Holder continuity of a singular integral
operator.

1. FORMULATION OF THE INVERSE PROBLEM FOR DEGENERATE ELLIPTIC
COMPLEX EQUATIONS OF FIRST ORDER

In [I1 2 B Bl 6] [7, 15, [16], the authors discussed the inverse problem of second-
order elliptic equations without degeneracy. In this article, by using the methods
of integral equations and complex analysis, the existence of solutions of the inverse
problem for degenerate elliptic complex equations of first order with Riemann-
Hilbert type map is discussed.

Let D(D {0}) be a simply connected bounded domain in the complex plane C
with the boundary D =T € C}(0 < p < 1). There is no harm in assuming that
the domain D is {|z| < 1} with boundary I' = {|z| = 1}. Consider the linear elliptic
systems of first-order equations with degenerate rank 0,

Hi(y)uy — Ho(y)vy = au+bv in D

1.1
Hi(y)vy + Ha(y)uy = cu+dv in D, (L.1)

in which H;(y) = |y|™i/%h;(y),hj(y) (j = 1,2) are positive continuous functions
in D, m; (j = 1,2,ma < min(1,m,)) are positive constants, and a,b,c,d (j = 1,2)
are functions of x + iy (€ D) satisfying the conditions a,b,c,d € Lo (D), which
is called Condition C. In this article, the notation is the same as in references
[8, 91 10, 1T, 12, 3], 14 15 [16]. The following degenerate elliptic system is a special
case of system with H;(y) = |y|™/? (j = 1,2):

|y\m1/2u$ - |y|m2/2vy =au+bv in D,

(1.2)
|y|m1/2vm 4 |y|m2/2uy =cu+dv in D,
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For convenience, we mainly discuss equation (1.2]), and equation (1.1) can be sim-
ilarly discussed. From the elliptic condition in (1.2) (see [I3| (1.3), Chpater IIJ),

namely
J = 4K\ Ky — (Ky + K3)? = 4H?(y) = 4[Hy(y)/H2(y)]> > 0 in D\y

and J =0on~vy={-1< 2z < 1,y = 0}, hence system or is elliptic
system of first-order equations in D with the parabolic degenerate line v = (—1,1)
on the z-axis in x + iy-plane. Setting Y = G(y) = [ H(t)dt, Z =z +4Y in D, if
H(y) = |y|™?hi(y)/ha(y), m = my —ma, Y = [ H(t)dt < |soy|™F2/2 where s
is a positive constant, thus we have soly| > |Y'|*/("+2). Denote

W(z) = u + v,

We = SIH@)W, + i)W, = TN, 1wy (13)

= Hi(y)Wo—iy = Hi(y)W,

where dY = H(y)dy = Hi(y)dy/H2(y), Hou, = Hyuy, then the system (L.1)) can
be written in the complex form

Wz = H(y)W = A(z)W + B(z2)W in D,
1 . _ 1 _ _ (1.4)
A:Z[a+zc—zb+d], B:Z[a—I—zc—I-ﬂ)—dL

in which Dy is the image domain of D with respect to the mapping Z = Z(z) =
x+1Y = x4+ iG(y) in D, and denoted by D again for simply, and z = z(Z) is
the inverse function of Z = Z(z). For convenience we only discuss the complex
equation about the number Z replaced by z in Sections 1 and 2 later on.

Introduce the Riemann-Hilbert boundary conditions for the equation as
follows:

ReA(2)W(2)] = r(2) + f(2) = fi(2), z€T,
IIIl[)\(a])W(CL])] :bj7 j: 1,,2K+1, KZO,

0 K>0
f<z>={’ ke on=h

(1.5)

where

go+Red  “1 (9h +ig,)2™, K <O,

in which A(z) (# 0), r(z) € Cyo(L), (0 < « < 1) is a positive constant, go,
gt (m =1,...,—K —1,K < 0) are unknown real constants to be determined
appropriately, a;(e I' = {|z] =1}, j =1,...,2K + 1, K > 0) are distinct points,
and bj(j = 1,...,2K + 1) are all real constants, in which K = ;=ArpargA(z) is
called the index of A(z) on I'. The above Riemann-Hilbert boundary value problem
is called Problem RH for equation (1.4). Under Condition C, the solution W(z)
of Problem RH in D can be found. From [8, (5.114) and (5.115), Chapter VI], we
see that Problem RH of equation possesses the important application to the
shell and elasticity.

It is clear that the above solution W (z) satisfies the following Riemann-Hilbert
type boundary condition for the equation :

ImA(z)W (2)] = fo(z) onT, (1.6)
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and then the boundary condition of Riemann-Hilbert to Riemann-Hilbert type map
can be written as follows

M)W (z) = fi(2) +ifa(z) onT,i.e.
W) = h(=) = [(2) +ifs(]/AE) on T,

which will be called Problem RR for the complex equation (or (L.1))), where
h(z) € Cy(T') is a complex function. Thus we can define the Riemann-Hilbert to
Riemann-Hilbert type map A : Co(I')—Cy (), i.e. fi(z)—fa(z) by Afi = fo

Our inverse problem is to determine the coefficient a,b,c,d of equation
(or A(z),B(z) in (L.4)) from the map A. Obviously the function fi(z) + if2(2)
corresponds to the function h(z) one by one. Denote by Ry, the set of {h(z)}. It is
clear that for any function f(z) of the set C(I") in the Riemann-Hilbert boundary
condition (L.5), there is a set {f2(z)} of the functions of Riemann-Hilbert type
boundary condition (I.6), where R, = {h(z)} is corresponding to the complex
equation (1.4). Inversely from the set R, = {h(z)}, one complex equation in
can be determined, which will be verified later on.

In Section 3, we prove Theorems and which are important results in the
present paper. In fact we first assume that the coefficients A = B =0, H = H(y)
of the complex equation in the e-neighborhood D, = D N {|Imz| < &} of
D N {Imz = 0}, note that the above coefficients A(z), B(z) weakly converge to
A(z),B(z) in D as ¢ — 0, and on the basis of Theorem below, we see the
Holder continuity of solution W (Z) and TW+ = T[AW + BW|/H; of the complex
equation with above coefficients and TW+ = T[AW +BW|/H; (see [8,[11,13],
hence from {W(z)} and TW+, we can choose the subsequences, which uniformly
converges the Hélder continuous functions in D respectively. From this, we can also
obtain the corresponding Pompeiu and Plemelj-Sokhotzki formulas about W (z) in
D.

(1.7)

2. EXISTENCE OF SOLUTIONS OF THE INVERSE PROBLEM FOR DEGENERATE
ELLIPTIC COMPLEX EQUATIONS OF FIRST ORDER

We introduce a singular integral operator

Tf(z) =T //f W) i,

where |y|"f(z) € L (D) with 7 = max(1 — m1/2,0), my is a positive constant,
Hi (y) is as stated in ). Suppose that f(z) = 0in C\D. Then |y|” f(2) € Lo (C),
from Theorem . below it follows (T'f): = f(z)/H; in C. We consider the first-
order complex equation with singular coefficients

H Wz — A(z)W — B(z)W =0, ie.,
Hi(y)[g(2)]z — A(2)g(2) — B(2)g(z) =0 in C,

where G1(y fo Hy(y)dy, g(z) = W(z). Applying the Pompeiu formula (see [8]
Chapters I and II1]), the corresponding integral equation of the complex equation

(2.1) is as follows

9(2) = T[(Ag + Bg)/Hi] = %m/r Cg(_ozdc in D. (2.2)

(2.1)
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For simplicity we can consider only the integral equation
9(2) = T[(Ag + Bg)/H1] = 1

or ¢ in D later on. On the basis of Theorem below, we know that the integral
in is a completely continuous operator, hence by using the similar method as
in [8 Sec. 5, Chapter III] and the proof of [I5, Lemma 2.2], we can verify that the
above integral equation has a unique solution.

We first prove the following lemma (see [7]).

Lemma 2.1. The function g(z) = hj(z) (h;j(2),7 = 1,2) are a solutions of the
integral equations

() — T(A/H)g  T(B/Hy)g = {1 in D,

- h1 z
g(Z) - {hQ(Z) on Fv
if and only if it is a solution of the integral equation
396)+ 5 [ 2ELac - { (0) = {hz(C% I

d¢ =1 —
¢=1 2 27i Jp (— 2

hi(2) _’_L/ h1(¢)
2 2mi Jr (— 2
respectively.

Proof. 1t is clear that we need to discuss only the case of hy. If g(z) is a solution
of the first integral equation in (2.3), then gz = Ag/H; + Bg/H;. On the basis of
the Pompeiu formula

o) = 5 | 9O g+ 7190 = o= [ 2L ac + T(Ag/H, + By (25)

B Tm T C_ z B Tm T C —Z
in D (see [8, Chapters I and III]), we have

9(z,k) = TAg/H, —TBg/H, =1 = QLM : Cg(f)z

d¢ in D, (2.6)

where g(¢) = h1(¢) on I". Moreover by using the Plemelj-Sokhotzki formula for
Cauchy type integral (see [4l, [9])

L2 0k Lo 90 = m(©) on Ga,

o % T C —Z

this is the first formula in ([2.4)).
Conversely if the first integral equation in (2.4)) is true, then by the conditions

in Section 1, there exists a solution of equation gz = Ag/Hy, + Bg/H; in D with

the boundary values ¢g(¢{) = h1(¢) on T', thus we have (2.5)), where the integral
1 9(9)

2mi JT (=2

d( in D is analytic, whose boundary value on T is

By IR VR By (P
r

i —
(eD)(ery 2mi Jp C — 2 2 i JoC— 2

hence

1 9(¢)

21 FC—Z

d¢=1 in D,
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and the first formula in (2.3)) is true. d

Theorem 2.2. Under the above conditions, the functions hi(z), ha(z) as stated in
Section 1 are the solutions of the system of integral equations

hl h2
?—%Shl—l ?—Fshg—’l

1 ha(¢) 1 / ha(¢)
Shy = — d Sho = — dc.
R e & 2T omi JpC—t ¢
Proof. From the theory of integral equations (see [4, [6] [15]), we can derive the

solutions hy and hg of (2.7)). In fact, on the basis of Lemma [2.1) we can find the
solutions of the integral equations

Wi(z) =1+ T[(AW, + BW,)/H;] in D,
Wy(z) =i + T[(AW, + BW5)/H;] in D.

By using the Pompeiu formula, the above equations can be rewritten as

(2.7)

1 AW1 ¢) + BW1(C) .
Wi(z) = 5] t — z // i doc in D,

1 AW2 ¢) + BW>(C) :
Wy(z) = 5] t— Z // Y dos in D

and W1(z) = hy(z) and Wa(z) = ha(z) on I'. Because the functions - e Py (O dt

(j = 1,2) are analytic in D’ = C\D (see [6]), we can analytically extend h;(z ) (] =
1,2) to the domain D’; i.e., define

wi(z) =1-— L M(©) d¢ ze€C\D,
2m Jp (— 2 (2.8)
wa(z) =10 — ! ha(©) d¢, ze€C\D,

% T C —Z
which are analytic in D’ with the boundary values hq(z), ha(z) on T respectively.
According to the Plemelj-Sokhotzki formula for Cauchy type integrals, we immedi-
ately obtain the formulas

L[ h(Q) 1 B
i) =1- i d¢ =1+ Shi(t) — Sh € C\D
1( ) z(ED’%—»t(eF) 21 Jp (— 2 ¢ + 9 1( ) 1z \ ,

; i L[ ha(Q) 1 B
halt) =1~ ) 2 d¢ =i+ —h(t) — Shy z€C\D.
A0 =1 Z(eD’ﬁr—r}t(er) 27t Jp C— 2 (=it D) 1(t) 2 % \

This is just the formula (2.7) with h;(t), j = 1,2. 0

Theorem 2.3. For the inverse problem of Problem RR for equation (1.1) with
Condition C, we can reconstruct the coefficients a(z),b(z),c(z) and d(z).

Proof. We shall find two solutions ¢;(z) = Wi(z) and i¢a(2z) = Wa(z) of complex
equation
[0z — A/H1¢ — B¢/H; =0 inC (2.9)
with the conditions ¢ (z) — 1 and i¢a(z) — ¢ as z — oo. In fact the above solutions
F(z) = ¢1(2), G(2) = ipa(z) are also the solutions of integral equations
F(z) = T[(AF + BF)/H;} =1 inC,

- o (2.10)
G(z) - T[(AG+ BG)/H,1} =i inC.
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As stated in Lemma [2.1] and Theorem [2.2] we can require that the above solutions
satisfy the boundary conditions

F(z) = hi(z), G(z) = ha(z) onT,

where hy(z), ha(2) € Ry,.
Noting that F'(z), G(z) satisfy the complex equations

F: — {(AF + BF)/H,} =0 inC,

_ (2.11)
G: —{(AG+ BG)/H;} =0 inC.
Moreover, on the basis of Lemma [2.4] below, we have
Im[F(2)G(2)] = [F(2)G(z) — F(2)G(2)]/2i #0 in D. (2.12)
Thus from , the coefficients A/H, and B/H; can be determined as follows
A/H, = w B/H, = _EG-GE D;ie.,
FG - FG FG - FG
A= le B = —le in D.
FG - FG FG - FG

From the above formulas, the coefficients a(z) and b(z) of the system (1.1} are
obtained; i.e.,
a(z) +ic(z) = 2[A(z) + B(z)], d(z) — ib(z) = 2[A(z) — B(z)] in D.
O

Lemma 2.4. For the solution [F(z),G(z)] of the system (2.11)), we can get the
inequality (2.12]).

Proof. Suppose that (2.12) is not true, then there exists a point zo € D such that
Im[F(z9)G(z0)] = 0; i.e.,

Re F(z) ImF(z)|

ReG(z9) ImG(zg)|

Thus we have two real constants cj, c, which are not both equal to 0, such that
c1F(20) + c2G(z0) = 0. Next, we prove that the equality of ¢; F(29) + caG(20) =0
can not be true. If W(z) = ¢1F(20) + c2G(20) = 0, then W(z) = ®(2)e?®) =
(2 — 20)@0(2)e?®) | where ®(z), ®o(z) are analytic functions in D, and

o(2) L1 // — 2 (I)O e¢ C)[flc/le—F BW( )/HIW( )]d0'<

(z — 20)Po(z

= ¢y + cot.

Letting z — 2o, we have
1 _
L / / Bo(C)e O [A/Hy + BW(Q)/HW (O)ldoe = e1 + eai,
D
and then
c1 + Czi
= (z — 20)Po(z)e??)

// — 24 2 — 20)®o(¢)e?(©) [A/H1 + BW (C)/HW(Q)]
¢—

dUC
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1o O [ A/H, :
= (2 — 20){Bo(2)e?® 4+ & // o (¢)e? A/Hgtle( QHW O],

1 PO A/, ! oo
+7r//D%(O [A/H, + BW(Q)/H\W ({)ldog

The above equality implies

ey L [ [ L ) OLA Hy + BVEQ/IWQ 0 o o
(—=z

and the above homogeneous integral equation only have the trivial solution, namely
o(z) =0 in D, thus W(z2) = ®(2)e?®) = (2 — 29)®(2)e?®) = 0 in D. This is
impossible.

In addition, by using another way, we can prove that the equality ¢ F(z0) +
¢2G(zp) = 0 can not be true. According to the method in [8, Section 5, Chapter
III], we know that the integral equations

W(z) — T[AW/H, + BW/Hy] = {Cl +ep i D,
c1 + et in C,
have the unique solutions W (2) = ¢1 F(z) + c2G(2) in D and C respectively, where
A,B € L,(D) and A = B = 0 in C\D, this shows that the function W(z) in D
can be continuously extended in C. Moreover according to the method in [8) [13],
the solution W (z) can be expressed as W (z) = ®(z)eT A/ Hi+BW/HiW] in C. Note
that T[A/H, + BW/H,W] — 0 as z — oo, and the entire function ®(z) in C
satisfies the condition ®(z) — ¢1 + 2% as z — 00, hence ®(z) = ¢ + ¢ot in C, thus
W(2) = (c1 + coi)eTA/HABW/HIWI in D and W(z) = ¢1F(20) + c2G(20) # 0.
This contradiction verifies that is true.
For the above discussion, we see that four real coefficients a(z), b(2), ¢(2), d(z) of
system or two complex coefficients A(z), B(z) of the complex equation
can be determined by two boundary functions hq(z), he(z) in the set Rj,. O

3. HOLDER CONTINUITY OF A SINGULAR INTEGRAL OPERATOR

It is clear that the complex equation
Wz =0 inDy (3.1)
is a special case of equation (1.4)), where Dz is a bounded simply connected domain
with boundary 0D € C}L (0 < pu < 1). On the basis of [I1, Theorem 1.3, Chapter
I], we can find a unique solution of Problem RH for equation (3.1)) in Dy.

Now we consider the function g(Z) € Loo(Dz), and first extend the function
9(Z) to the exterior of Dz in C, ie. set g(Z) = 0 in C\Dz, hence we can only
discuss the domain Dy = {|z| < Ro} N{ImY # 0} D Dy, here Z =z + Y and Ry
is an appropriately large positive number. In the following we shall verify that the

integral
)/Hy(Im ¢
\I/(Z) = // / 1 m )dO't in .D()7

Loo[9(Z), Dol < k3,

satisfies the estimate (3-3) below, where H;(y) = y™i/2h;(y) (m; > 0,5 = 1,2,ms <
min(1,m;y)) are as stated in Section 1, and Hy(y) = Hi[Im 2(Z)], 2(Z) is as stated
in (1.3). It is clear that the function g(Z)/H:(y) = g(Z)/H1[lm z(Z)] belongs to

(3.2)



8 G.-C. WEN EJDE-2013/72

the space Li(Dp) and in general is not belonging to the space L,(Dy) (p > 2),
and the integral ¥(Zy) is definite when Im Zy # 0. If Zy € Dy and Im Zy = 0,
we can define the integral ¥(Zy) as the limit of the corresponding integral over
Don{|Ret—ReZy| > e} N{|Imt —Im Zy| > ¢} as ¢ — 0, where ¢ is a sufficiently
small positive number. The Holder continuity of the singular integral will be proved
by the following method.

Theorem 3.1. If the function g(Z) in Dy satisfies the condition in (3.2), and
Hi(y) = y"™/?hi(y), where my is a positive number, hy(y) is a continuous positive
function, then the integral in (3.2) satisfies the estimate

Csl¥(Z),Dz] < M, (3.3)

in which = (2—mg)/(m+2)—0, m =my —ma, 0 is a sufficiently small positive
constant, and My = M1(8, ks, H1,Dy) is a positive constant.

Proof. We first give the estimates for ¥(Z) of in DN{ImY > 0}, and verify the
boundedness of the function in . As stated Section 1, if Hi(y) = y™/2hy(y),
then Hy(y) > sY™1/(m+2) where s is a positive constant. For any two points
Zyg =x9 € v = (—1,1) on z-axis and Z; = x1 + 1Y1(Y] > 0) € Dy satisfying the
condition 2Tm Z; /v/3 < |Zy — Zo| < 2Im Z;, this means that the inner angle at Z
of the triangle ZyZ1 75 (Z3 = xo +1iY1 € Dy) is not less than 7/6 and not greater
than 7/3, choose a sufficiently large positive number ¢, from the Holder inequality,
we have L1 [U(Z), Do) < Lq[g9(Z), Do) Lp[1/H1(Imt)(t—Z), Dy), where p = q/(¢—1)
(> 1) is close to 1. In fact we can derive it as follows

< // /Hllmt) o

1 P 1/p
3.4
Z), Dol // tml/(mm)(t_zo)‘ d"t} 34

1 1/p
= L Z), D
o q[g( ), Do) Jy

W (Zo)

IN

in which

// tm1/m+2)t— ‘d"t

//D |t‘Pm1/(m+2 | Im(t — ZO)|P,30| Re(t — ZQ)‘Z’ (1—Bo)
o 1 ds 1
= ‘/0 yrmi/(m+2)|y — Y;|pBo dy/d1 de < ky,

where dy = max,p5-Im 7, di = min, p-ReZ, dy = max, p5-ReZ, fp = (2 —
mz)/(m+2) —e, e(< 1/p—mq/(m + 2)) is a sufficiently small positive constant,
we can choose € = 2(p — 1)/p (< (2 — m2)/(m + 2)), such that p(1 — Fp) < 1 and
plmi/(m+2) + Go] < 1, and ky = kq(0, ks, H1, Do) is a non-negative constant.

doy
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Next we estimate the Holder continuity of the integral ¥(Z) in Dy; i.e.,

|U(Z1) — ¥ (Zo)|
< ZO“ / /D /Hltlin 2)‘“ ’ (3.5)
= |le; ‘LQ["(Z)’DO} //D ’tml/(m+2)(tiZo)(t—Z1) pd‘”r/p’

and

1 p
Jo = d
2 // ‘tml/(m+2) (t — ZO)(t _ Zl ‘ Ot

// |Re(t — Zg)|P (Bo/2— 1)|Re(t —Z)P (Bo/2-1)
[t[pm1/(m+2)| Tm(t — Zo)|PPo/2| Tm(t — Z,)[PBo/2

1
<
~Jo YP7”1/(W+2)| Im(Y — ZO)|pﬁo/2|1m(Y — Zl)|pﬁo/2

doy

dy

x /dz : dRet
dy | Re(t — Z0)|P(1*ﬁ0/2)‘ Re(t — Zl)|p(1fﬁ0/2) €

do 1
<
< ks /d1 ‘SE - x0)|P(1fﬂo/2)|x — $1|p(1,50/2) dx,

where By = (2 — ma2)/(m + 2) — € is chosen as before and

do
ks = max / [YPm1/(m+2) | Im(Y — Zo) PP/ 2| Tm (Y — Z,)[PP/2) 2 dY.
Zo,Z1€Do Jg

Denote py = |Re(Z1 — Zy)| = |z1 — zo|, L1 = Do N {]x — zo| < 2p0,Y = Y}
and Ly = Do N{2pg < |z — 20| < 2p1 < 00,Y =Yy} D [d1,do]\L1, where p; is a
sufficiently large positive number, we can derive

1
<
Jo < ks [/L1 |z — 20|P(1=P0/2) | — g1 |P(1=F0/2) de

1
t /L2 iz — 2oP—Bo/D | — 7, |[P(1—Fo/2) dx

1
< — qn|t=2p+PB0
= ks [‘xl ol /£|<2 |E|P(—Ra/D)|¢ £ 1]p(—Bo/2) de

+k6|/ ppﬁo 2pdp|

< krlay — -730|1 P(2—00)

= kp|zy — ao|P(B-m2)/(m42)—et1/p=2)
in which we use | —xo| = §|z1 — 20|, |z —21| = |t —20 — (x1 —20)| = | £ 1|21 — 20|
ifx e Ly, |v—ax0| =p < 2)z—a1|if © € Ly, choose that p (> 1) is close to 1
such that 1 — p(2 — By) < 0, and k; = k;(8, ks, H, Do) (j = 6,7) are non-negative
constants. Thus we obtain

|W(Z1) —W(Z)| < k7| Z1 — Zo||y — | B2/ (mA2)=eF1/p=2 < o) 7, — 74 |P, (3.6)

in which we use that the inner angle at Zy of the triangle ZoZ1Zs (Z3 = 29 +iY; €
Dy) is not less than 7/6 and not greater than /3, and choose € = 2(p — 1)/p,
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B=2-m3)/(m+2)—9,=3(p—1)/p, ks = ks(B, ks, H1, Dy) is a non-negative
constant. The above points Zy = o, Z1 = x1+4Y1 can be replaced by Zy = zo+iYp,
Z1 =x1+1iY; € Do, 0<Yy, <Y and 2(Y1 — Yo)/\/g < |Zl — Z0| < 2(Y1 — YQ)
Finally we consider any two points Z; = x1 + iY1, Z2 = 2 + Y7 and 21 < X9,
from the above estimates, the following estimate can be derived
(W(Z1) = W(2Z2)| < [W(Z1) — W (Zs)| + [W(Zs) — W(2Z2)]
< ks|Z1 — Zs|7 + ksl Zs — Zo|” < kol Z1 — Zo)°,

where Z3 = (z1 +x2)/2+i[Y1 + (22 — 21)/(2V3)]. If Z1 = 21 +iY1, Zo = 21 +iY5,
Y] < Ys, and we choose Z3 = x1 + (Yo — Y1)/2v/3 + i(Ys + Y1)/2, and can also
get . If Zy = 21 +iY7, Zy = a0 + 1Yo, 11 < Z2,Y] < Y5, and we choose
Z3 = x5 + iY7, obviously

(W(Z1) = U(Z2)| < |W(21) — W(Zs)| + [¥(Z5) — W(Z2)],

and |U(Z1) — ¥(Z3)|, |¥(Z3) — U(Z3)| can be estimated by the above way, hence
we can obtain the estimate of |¥(Z1) — ¥(Z3)|. For the function ¥(Z) of (3.2)
in DN {ImY < 0}, the similar estimates can be also derived. Hence we have the

estimate ((3.3)). O

Theorem 3.2. If the condition H;(y) = y"“/th(y) i Theorem s replaced
by Hi(y) = y"h1(y), herein n is a positive constant satisfying the inequality n <
(m+2)/(2 —ms), then by the same method we can prove that the integral ¥(Z) =
T(g/H,) satisfies the estimate

Cp[¥(Z), Dz] < My, (3.8)
in which f=1—n(2—ms)/(m+2)—0, ¢ is a sufficiently small positive constant,
and My = My(B, ks, H1, D7) is a positive constant. In particular if Hi(y) = y; i.e.,

n = 1, then we can choose 8 = my/(m +2) — 8, 0 is a sufficiently small positive
constant.

(3.7)
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