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AN APPROACH FOR CONSTRUCTING COEFFICIENTS OF
DEGENERATE ELLIPTIC COMPLEX EQUATIONS

GUO CHUN WEN

Abstract. This article deals with the inverse problem for degenerate elliptic
systems of first order equations with Riemann-Hilbert type map in simply con-

nected domains. Firstly the formulation and the complex form of the problem

for the first-order elliptic systems with the degenerate rank 0 are given, and
then the coefficients of the systems are constructed by a new complex analytic

method. Here we verify and apply the Hölder continuity of a singular integral
operator.

1. Formulation of the inverse problem for degenerate elliptic
complex equations of first order

In [1, 2, 3, 5, 6, 7, 15, 16], the authors discussed the inverse problem of second-
order elliptic equations without degeneracy. In this article, by using the methods
of integral equations and complex analysis, the existence of solutions of the inverse
problem for degenerate elliptic complex equations of first order with Riemann-
Hilbert type map is discussed.

Let D(⊃ {0}) be a simply connected bounded domain in the complex plane C
with the boundary ∂D = Γ ∈ C1

µ(0 < µ < 1). There is no harm in assuming that
the domain D is {|z| < 1} with boundary Γ = {|z| = 1}. Consider the linear elliptic
systems of first-order equations with degenerate rank 0,

H1(y)ux −H2(y)vy = au+ bv in D

H1(y)vx +H2(y)uy = cu+ dv in D,
(1.1)

in which Hj(y) = |y|mj/2hj(y), hj(y) (j = 1, 2) are positive continuous functions
in D, mj (j = 1, 2,m2 < min(1,m1)) are positive constants, and a, b, c, d (j = 1, 2)
are functions of x + iy (∈ D) satisfying the conditions a, b, c, d ∈ L∞(D), which
is called Condition C. In this article, the notation is the same as in references
[8, 9, 10, 11, 12, 13, 14, 15, 16]. The following degenerate elliptic system is a special
case of system (1.1) with Hj(y) = |y|mj/2 (j = 1, 2):

|y|m1/2ux − |y|m2/2vy = au+ bv in D,

|y|m1/2vx + |y|m2/2uy = cu+ dv in D,
(1.2)
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For convenience, we mainly discuss equation (1.2), and equation (1.1) can be sim-
ilarly discussed. From the elliptic condition in (1.2) (see [13, (1.3), Chpater II]),
namely

J = 4K1K4 − (K2 +K3)2 = 4H2(y) = 4[H1(y)/H2(y)]2 > 0 in D\γ

and J = 0 on γ = {−1 < x < 1, y = 0}, hence system (1.1) or (1.2) is elliptic
system of first-order equations in D with the parabolic degenerate line γ = (−1, 1)
on the x-axis in x+ iy-plane. Setting Y = G(y) =

∫ y
0
H(t)dt, Z = x+ iY in D, if

H(y) = |y|m/2h1(y)/h2(y), m = m1 −m2, Y =
∫ y

0
H(t)dt ≤ |s0y|(m+2)/2, where s0

is a positive constant, thus we have s0|y| ≥ |Y |2/(m+2). Denote

W (z) = u+ iv,

Wz̃ =
1
2

[H1(y)Wx + iH2(y)Wy] =
H1(y)

2
[Wx + iWY ]

= H1(y)Wx−iY = H1(y)WZ ,

(1.3)

where dY = H(y)dy = H1(y)dy/H2(y), H2uy = H1uY , then the system (1.1) can
be written in the complex form

Wz̃ = H1(y)WZ = A(z)W +B(z)W in D,

A =
1
4

[a+ ic− ib+ d], B =
1
4

[a+ ic+ ib− d],
(1.4)

in which DZ is the image domain of D with respect to the mapping Z = Z(z) =
x + iY = x + iG(y) in D, and denoted by D again for simply, and z = z(Z) is
the inverse function of Z = Z(z). For convenience we only discuss the complex
equation (1.4) about the number Z replaced by z in Sections 1 and 2 later on.

Introduce the Riemann-Hilbert boundary conditions for the equation (1.4) as
follows:

Re[λ(z)W (z)] = r(z) + f(z) = f1(z), z ∈ Γ,

Im[λ(aj)W (aj)] = bj , j = 1, . . . , 2K + 1, K ≥ 0,
(1.5)

where

f(z) =

{
0, K ≥ 0,
g0 + Re

∑−K−1
m=1 (g+

m + ig−m)zm, K < 0,

in which λ(z) ( 6= 0), r(z) ∈ Cα(L), α(0 < α < 1) is a positive constant, g0,
g±m (m = 1, . . . ,−K − 1,K < 0) are unknown real constants to be determined
appropriately, aj(∈ Γ = {|z| = 1}, j = 1, . . . , 2K + 1, K ≥ 0) are distinct points,
and bj(j = 1, . . . , 2K + 1) are all real constants, in which K = 1

2π∆Γ arg λ(z) is
called the index of λ(z) on Γ. The above Riemann-Hilbert boundary value problem
is called Problem RH for equation (1.4). Under Condition C, the solution W (z)
of Problem RH in D can be found. From [8, (5.114) and (5.115), Chapter VI], we
see that Problem RH of equation (1.4) possesses the important application to the
shell and elasticity.

It is clear that the above solution W (z) satisfies the following Riemann-Hilbert
type boundary condition for the equation (1.4):

Im[λ(z)W (z)] = f2(z) on Γ, (1.6)
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and then the boundary condition of Riemann-Hilbert to Riemann-Hilbert type map
can be written as follows

λ(z)W (z) = f1(z) + if2(z) on Γ, i.e.

W (z) = h(z) = [f1(z) + if2(z)]/λ(z) on Γ,
(1.7)

which will be called Problem RR for the complex equation (1.4) (or (1.1)), where
h(z) ∈ Cα(Γ) is a complex function. Thus we can define the Riemann-Hilbert to
Riemann-Hilbert type map Λ : Cα(Γ)→Cα(Γ), i.e. f1(z)→f2(z) by Λf1 = f2

Our inverse problem is to determine the coefficient a, b, c, d of equation (1.1)
(or A(z), B(z) in (1.4)) from the map Λ. Obviously the function f1(z) + if2(z)
corresponds to the function h(z) one by one. Denote by Rh the set of {h(z)}. It is
clear that for any function f1(z) of the set Cα(Γ) in the Riemann-Hilbert boundary
condition (1.5), there is a set {f2(z)} of the functions of Riemann-Hilbert type
boundary condition (1.6), where Rh = {h(z)} is corresponding to the complex
equation (1.4). Inversely from the set Rh = {h(z)}, one complex equation in (1.4)
can be determined, which will be verified later on.

In Section 3, we prove Theorems 3.1 and 3.2, which are important results in the
present paper. In fact we first assume that the coefficients A = B = 0, H = H(y)
of the complex equation (1.4) in the ε-neighborhood Dε = D ∩ {| Im z| < ε} of
D ∩ {Im z = 0}, note that the above coefficients A(z), B(z) weakly converge to
A(z), B(z) in D as ε → 0, and on the basis of Theorem 3.1 below, we see the
Hölder continuity of solution W (Z) and TWZ = T [AW +BW ]/H1 of the complex
equation (1.4) with above coefficients and TWZ = T [AW+BW ]/H1 (see [8, 11, 13],
hence from {W (z)} and TWZ , we can choose the subsequences, which uniformly
converges the Hölder continuous functions in D respectively. From this, we can also
obtain the corresponding Pompeiu and Plemelj-Sokhotzki formulas about W (z) in
D.

2. Existence of solutions of the inverse problem for degenerate
elliptic complex equations of first order

We introduce a singular integral operator

T̃ f(z) = T
( f

H1

)
= − 1

π

∫ ∫
D

f(ζ)/H1(y)
ζ − Z

dσζ ,

where |y|τf(z) ∈ L∞(D) with τ = max(1 − m1/2, 0), m1 is a positive constant,
H1(y) is as stated in (1.1). Suppose that f(z) = 0 in C\D. Then |y|τf(z) ∈ L∞(C),
from Theorem 3.1 below, it follows (T̃ f)z̄ = f(z)/H1 in C. We consider the first-
order complex equation with singular coefficients

H1Wz −A(z)W −B(z)W = 0, i.e.,

H1(y)[g(z)]z −A(z)g(z)−B(z)g(z) = 0 in C,
(2.1)

where G1(y) =
∫ y

0
H1(y)dy, g(z) = W (z). Applying the Pompeiu formula (see [8,

Chapters I and III]), the corresponding integral equation of the complex equation
(2.1) is as follows

g(z)− T [(Ag +Bg)/H1] =
1

2πi

∫
Γ

g(ζ)
ζ − z

dζ in D. (2.2)
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For simplicity we can consider only the integral equation

g(z)− T [(Ag +Bg)/H1] = 1

or i in D later on. On the basis of Theorem 3.1 below, we know that the integral
in (2.2) is a completely continuous operator, hence by using the similar method as
in [8, Sec. 5, Chapter III] and the proof of [15, Lemma 2.2], we can verify that the
above integral equation has a unique solution.

We first prove the following lemma (see [7]).

Lemma 2.1. The function g(z) = hj(z) (hj(z), j = 1, 2) are a solutions of the
integral equations

g(z)− T (A/H1)g − T (B/H1)g =

{
1
i

in D,

g(z) =

{
h1(z)
h2(z)

on Γ,

(2.3)

if and only if it is a solution of the integral equation

1
2
g(z) +

1
2πi

∫
Γ

g(ζ)
ζ − z

dζ =

{
1,
i,

g(ζ) =

{
h1(ζ),
h2(ζ),

i.e.,

h1(z)
2

+
1

2πi

∫
Γ

h1(ζ)
ζ − z

dζ = 1,
h2(z)

2
+

1
2πi

∫
Γ

h2(ζ)
ζ − z

dζ = i on Γ

(2.4)

respectively.

Proof. It is clear that we need to discuss only the case of h1. If g(z) is a solution
of the first integral equation in (2.3), then gz = Ag/H1 + Bg/H1. On the basis of
the Pompeiu formula

g(z) =
1

2πi

∫
Γ

g(ζ)
ζ − z

dζ + T [g(ζ)]ζ =
1

2πi

∫
Γ

g(ζ)
ζ − z

dζ + T [Ag/H1 +Bg/H1] (2.5)

in D (see [8, Chapters I and III]), we have

g(z, k)− TAg/H1 − TBg/H1 = 1 =
1

2πi

∫
Γ

g(ζ)
ζ − z

dζ in D, (2.6)

where g(ζ) = h1(ζ) on Γ. Moreover by using the Plemelj-Sokhotzki formula for
Cauchy type integral (see [4, 9])

1 =
1

2πi

∫
Γ

g(ζ)
ζ − z

dζ +
1
2
g(z), g(ζ) = h1(ζ) on Ga,

this is the first formula in (2.4).
Conversely if the first integral equation in (2.4) is true, then by the conditions

in Section 1, there exists a solution of equation gz = Ag/H1 + Bg/H1 in D with
the boundary values g(ζ) = h1(ζ) on Γ, thus we have (2.5), where the integral

1
2πi

∫
Γ
g(ζ)
ζ−zdζ in D is analytic, whose boundary value on Γ is

lim
z′(∈D)→z(∈Γ)

1
2πi

∫
Γ

g(ζ)
ζ − z′

dζ =
1
2
g(z) +

1
2πi

∫
Γ

g(ζ)
ζ − z

dζ = 1,

hence
1

2πi

∫
Γ

g(ζ)
ζ − z

dζ = 1 in D,
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and the first formula in (2.3) is true. �

Theorem 2.2. Under the above conditions, the functions h1(z), h2(z) as stated in
Section 1 are the solutions of the system of integral equations

h1

2
+ Sh1 = 1,

h2

2
+ Sh2 = i,

Sh1 =
1

2πi

∫
Γ

h1(ζ)
ζ − t

dζ, Sh2 =
1

2πi

∫
Γ

h2(ζ)
ζ − t

dζ.
(2.7)

Proof. From the theory of integral equations (see [4, 6, 15]), we can derive the
solutions h1 and h2 of (2.7). In fact, on the basis of Lemma 2.1, we can find the
solutions of the integral equations

W1(z) = 1 + T [(AW1 +BW 1)/H1] in D,

W2(z) = i+ T [(AW2 +BW2)/H1] in D.

By using the Pompeiu formula, the above equations can be rewritten as

W1(z) =
1

2πi

∫
L

W1(t)
t− z

dt− 1
π

∫ ∫
D

AW1(ζ) +BW1(ζ)
(ζ − z)H1

dσζ in D,

W2(z) =
1

2πi

∫
L

W2(t)
t− z

dt− 1
π

∫ ∫
D

AW2(ζ) +BW2(ζ)
(ζ − z)H1

dσζ in D

and W1(z) = h1(z) and W2(z) = h2(z) on Γ. Because the functions 1
2πi

∫
L
hj(ζ)
ζ−z dt

(j = 1, 2) are analytic in D′ = C\D (see [6]), we can analytically extend hj(z) (j =
1, 2) to the domain D′; i.e., define

w1(z) = 1− 1
2πi

∫
Γ

h1(ζ)
ζ − z

dζ z ∈ C\D,

w2(z) = i− 1
2πi

∫
Γ

h2(ζ)
ζ − z

dζ, z ∈ C\D,
(2.8)

which are analytic in D′ with the boundary values h1(z), h2(z) on Γ respectively.
According to the Plemelj-Sokhotzki formula for Cauchy type integrals, we immedi-
ately obtain the formulas

h1(t) = 1− lim
z(∈D′)→t(∈Γ)

1
2πi

∫
Γ

h1(ζ)
ζ − z

dζ = 1 +
1
2
h1(t)− Sh1 z ∈ C\D,

h2(t) = i− lim
z(∈D′)→t(∈Γ)

1
2πi

∫
Γ

h2(ζ)
ζ − z

dζ = i+
1
2
h1(t)− Sh2 z ∈ C\D.

This is just the formula (2.7) with hj(t), j = 1, 2. �

Theorem 2.3. For the inverse problem of Problem RR for equation (1.1) with
Condition C, we can reconstruct the coefficients a(z), b(z), c(z) and d(z).

Proof. We shall find two solutions φ1(z) = W1(z) and iφ2(z) = W2(z) of complex
equation

[φ]z̄ −A/H1φ−Bφ/H1 = 0 in C (2.9)
with the conditions φ1(z)→ 1 and iφ2(z)→ i as z →∞. In fact the above solutions
F (z) = φ1(z), G(z) = iφ2(z) are also the solutions of integral equations

F (z)− T [(AF +BF )/H1} = 1 in C,

G(z)− T [(AG+BG)/H1} = i in C.
(2.10)
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As stated in Lemma 2.1 and Theorem 2.2, we can require that the above solutions
satisfy the boundary conditions

F (z) = h1(z), G(z) = h2(z) on Γ,

where h1(z), h2(z) ∈ Rh.
Noting that F (z), G(z) satisfy the complex equations

Fz̄ − {(AF +BF )/H1} = 0 in C,

Gz̄ − {(AG+BG)/H1} = 0 in C.
(2.11)

Moreover, on the basis of Lemma 2.4 below, we have

Im[F (z)G(z)] = [F (z)G(z)− F (z)G(z)]/2i 6= 0 in D. (2.12)

Thus from (2.11), the coefficients A/H1 and B/H1 can be determined as follows

A/H1 =
Fz̄G−Gz̄F
FG− FG

, B/H1 = −Fz̄G−Gz̄F
FG− FG

in D; i.e.,

A = H1
Fz̄G−Gz̄F
FG− FG

, B = −H1
Fz̄G−Gz̄F
FG− FG

in D.

From the above formulas, the coefficients a(z) and b(z) of the system (1.1) are
obtained; i.e.,

a(z) + ic(z) = 2[A(z) +B(z)], d(z)− ib(z) = 2[A(z)−B(z)] in D.

�

Lemma 2.4. For the solution [F (z), G(z)] of the system (2.11), we can get the
inequality (2.12).

Proof. Suppose that (2.12) is not true, then there exists a point z0 ∈ D such that
Im[F (z0)G(z0)] = 0; i.e., ∣∣∣∣ReF (z0) ImF (z0)

ReG(z0) ImG(z0)

∣∣∣∣ = 0.

Thus we have two real constants c1, c2, which are not both equal to 0, such that
c1F (z0) + c2G(z0) = 0. Next, we prove that the equality of c1F (z0) + c2G(z0) = 0
can not be true. If W (z0) = c1F (z0) + c2G(z0) = 0, then W (z) = Φ(z)eφ(z) =
(z − z0)Φ0(z)eφ(z), where Φ(z),Φ0(z) are analytic functions in D, and

(z − z0)Φ0(z)eφ(z) +
1
π

∫ ∫
D

(ζ − z0)Φ0(ζ)eφ(ζ)[A/H1 +BW (ζ)/H1W (ζ)]
ζ − z

dσζ

= c1 + c2i.

Letting z → z0, we have
1
π

∫ ∫
D

Φ0(ζ)eφ(ζ)[A/H1 +BW (ζ)/H1W (ζ)]dσζ = c1 + c2i,

and then

c1 + c2i

= (z − z0)Φ0(z)eφ(z)

+
1
π

∫ ∫
D

(ζ − z + z − z0)Φ0(ζ)eφ(ζ)[A/H1 +BW (ζ)/H1W (ζ)]
ζ − z

dσζ
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= (z − z0){Φ0(z)eφ(z) +
1
π

∫ ∫
D

Φ0(ζ)eφ(ζ)[A/H1 +BW (ζ)/H1W (ζ)]
ζ − z

dσζ}

+
1
π

∫ ∫
D

Φ0(ζ)eφ(ζ)[A/H1 +BW (ζ)/H1W (ζ)]dσζ .

The above equality implies

Φ0(z)eφ(z) +
1
π

∫ ∫
D

Φ0(ζ)eφ(ζ)[A/H1 +BW (ζ)/H1W (ζ)]
ζ − z

dσζ = 0 in D,

and the above homogeneous integral equation only have the trivial solution, namely
Φ0(z) = 0 in D, thus W (z) = Φ(z)eφ(z) = (z − z0)Φ0(z)eφ(z) ≡ 0 in D. This is
impossible.

In addition, by using another way, we can prove that the equality c1F (z0) +
c2G(z0) = 0 can not be true. According to the method in [8, Section 5, Chapter
III], we know that the integral equations

W (z)− T [AW/H1 +BW/H1] =

{
c1 + c2i in D,

c1 + c2i in C,

have the unique solutions W (z) = c1F (z) + c2G(z) in D and C respectively, where
A,B ∈ Lp(D) and A = B = 0 in C\D, this shows that the function W (z) in D
can be continuously extended in C. Moreover according to the method in [8, 13],
the solution W (z) can be expressed as W (z) = Φ(z)eT [A/H1+BW/H1W ] in C. Note
that T [A/H1 + BW/H1W ] → 0 as z → ∞, and the entire function Φ(z) in C
satisfies the condition Φ(z)→ c1 + c2i as z →∞, hence Φ(z) = c1 + c2i in C, thus
W (z) = (c1 + c2i)eT [A/H1+BW/H1W ] in D and W (z0) = c1F (z0) + c2G(z0) 6= 0.
This contradiction verifies that (2.12) is true.

For the above discussion, we see that four real coefficients a(z), b(z), c(z), d(z) of
system (1.1) or two complex coefficients A(z), B(z) of the complex equation (1.4)
can be determined by two boundary functions h1(z), h2(z) in the set Rh. �

3. Hölder continuity of a singular integral operator

It is clear that the complex equation

WZ = 0 in DZ (3.1)

is a special case of equation (1.4), where DZ is a bounded simply connected domain
with boundary ∂D ∈ C1

µ (0 < µ < 1). On the basis of [11, Theorem 1.3, Chapter
I], we can find a unique solution of Problem RH for equation (3.1) in DZ .

Now we consider the function g(Z) ∈ L∞(DZ), and first extend the function
g(Z) to the exterior of DZ in C, i.e. set g(Z) = 0 in C\DZ , hence we can only
discuss the domain D0 = {|x| < R0} ∩{ImY 6= 0} ⊃ DZ , here Z = x+ iY and R0

is an appropriately large positive number. In the following we shall verify that the
integral

Ψ(Z) = T
( g

H1

)
= − 1

π

∫ ∫
D0

g(t)/H1(Im t)
t− Z

dσt in D0,

L∞[g(Z), D0] ≤ k3,

(3.2)

satisfies the estimate (3.3) below, whereHj(y) = ymj/2hj(y) (mj > 0, j = 1, 2,m2 <
min(1,m1)) are as stated in Section 1, and H1(y) = H1[Im z(Z)], z(Z) is as stated
in (1.3). It is clear that the function g(Z)/H1(y) = g(Z)/H1[Im z(Z)] belongs to
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the space L1(D0) and in general is not belonging to the space Lp(D0) (p > 2),
and the integral Ψ(Z0) is definite when ImZ0 6= 0. If Z0 ∈ D0 and ImZ0 = 0,
we can define the integral Ψ(Z0) as the limit of the corresponding integral over
D0 ∩ {|Re t−ReZ0| ≥ ε} ∩ {| Im t− ImZ0| ≥ ε} as ε→ 0, where ε is a sufficiently
small positive number. The Hölder continuity of the singular integral will be proved
by the following method.

Theorem 3.1. If the function g(Z) in DZ satisfies the condition in (3.2), and
H1(y) = ym1/2h1(y), where m1 is a positive number, h1(y) is a continuous positive
function, then the integral in (3.2) satisfies the estimate

Cβ [Ψ(Z), DZ ] ≤M1, (3.3)

in which β = (2−m2)/(m+ 2)− δ, m = m1−m2, δ is a sufficiently small positive
constant, and M1 = M1(β, k3, H1, DZ) is a positive constant.

Proof. We first give the estimates for Ψ(Z) of (3.2) inD∩{ImY ≥ 0}, and verify the
boundedness of the function in (3.2). As stated Section 1, if H1(y) = ym1/2h1(y),
then H1(y) ≥ sY m1/(m+2), where s is a positive constant. For any two points
Z0 = x0 ∈ γ = (−1, 1) on x-axis and Z1 = x1 + iY1(Y1 > 0) ∈ D0 satisfying the
condition 2 ImZ1/

√
3 ≤ |Z1−Z0| ≤ 2 ImZ1, this means that the inner angle at Z0

of the triangle Z0Z1Z2 (Z2 = x0 + iY1 ∈ D0) is not less than π/6 and not greater
than π/3, choose a sufficiently large positive number q, from the Hölder inequality,
we have L1[Ψ(Z), D0] ≤ Lq[g(Z), D0]Lp[1/H1(Im t)(t−Z), D0], where p = q/(q−1)
(> 1) is close to 1. In fact we can derive it as follows

|Ψ(Z0)| ≤
∣∣ 1
π

∫ ∫
D0

g(t)/H1(Im t)
t− Z0

dσt
∣∣

≤ 1
sπ
Lq[g(Z), D0]

[ ∫ ∫
D0

∣∣∣ 1
tm1/(m+2)(t− Z0)

∣∣∣pdσt]1/p
=

1
sπ
Lq[g(Z), D0] J1/p

1 ,

(3.4)

in which

J1 =
∫ ∫

D0

∣∣∣ 1
tm1/(m+2)(t− Z0)

∣∣∣pdσt
≤
∫ ∫

D0

1
|t|pm1/(m+2)| Im(t− Z0)|pβ0 |Re(t− Z0)|p(1−β0)

dσt

≤
∣∣∣ ∫ d0

0

1
Y pm1/(m+2)|Y − Y0|pβ0

dY

∫ d2

d1

1
|x− x0|p(1−β0)

dx
∣∣∣ ≤ k4,

where d0 = maxZ∈D0
ImZ, d1 = minZ∈D0

ReZ, d2 = maxZ∈D0
ReZ, β0 = (2 −

m2)/(m + 2) − ε, ε (< 1/p −m1/(m + 2)) is a sufficiently small positive constant,
we can choose ε = 2(p − 1)/p (≤ (2 −m2)/(m + 2)), such that p(1 − β0) < 1 and
p[m1/(m+ 2) + β0] < 1, and k4 = k4(β, k3, H1, D0) is a non-negative constant.
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Next we estimate the Hölder continuity of the integral Ψ(Z) in D0; i.e.,

|Ψ(Z1)−Ψ(Z0)|

≤ |Z1 − Z0|
π

∣∣∣ ∫ ∫
D0

g(t)/H1(Im t)
(t− Z0)(t− Z1)

dσt

∣∣∣
≤ |Z1 − Z0|

sπ
Lq[g(Z), D0]

[ ∫ ∫
D0

∣∣∣ 1
tm1/(m+2)(t− Z0)(t− Z1)

∣∣∣pdσt]1/p,
(3.5)

and

J2 =
∫ ∫

D0

∣∣ 1
tm1/(m+2)(t− Z0)(t− Z1)

∣∣pdσt
≤
∫ ∫

D0

|Re(t− Z0)|p(β0/2−1)|Re(t− Z1)|p(β0/2−1)

|t|pm1/(m+2)| Im(t− Z0)|pβ0/2| Im(t− Z1)|pβ0/2
dσt

≤
∫ d0

0

1
Y pm1/(m+2)| Im(Y − Z0)|pβ0/2| Im(Y − Z1)|pβ0/2

dY

×
∫ d2

d1

1
|Re(t− Z0)|p(1−β0/2)|Re(t− Z1)|p(1−β0/2)

dRe t

≤ k5

∫ d2

d1

1
|x− x0)|p(1−β0/2)|x− x1|p(1−β0/2)

dx,

where β0 = (2−m2)/(m+ 2)− ε is chosen as before and

k5 = max
Z0,Z1∈D0

∫ d0

0

[Y pm1/(m+2)| Im(Y − Z0)|pβ0/2| Im(Y − Z1)|pβ0/2]−1dY.

Denote ρ0 = |Re(Z1 − Z0)| = |x1 − x0|, L1 = D0 ∩ {|x − x0| ≤ 2ρ0, Y = Y0}
and L2 = D0 ∩ {2ρ0 < |x − x0| ≤ 2ρ1 < ∞, Y = Y0} ⊃ [d1, d2]\L1, where ρ1 is a
sufficiently large positive number, we can derive

J2 ≤ k5

[ ∫
L1

1
|x− x0|p(1−β0/2)|x− x1|p(1−β0/2)

dx

+
∫
L2

1
|x− x0|p(1−β0/2)|x− x1|p(1−β0/2)

dx
]

≤ k5

[
|x1 − x0|1−2p+pβ0

∫
|ξ|≤2

1
|ξ|p(1−β0/2)|ξ ± 1|p(1−β0/2)

dξ

+ k6|
∫ 2ρ1

2ρ0

ρpβ0−2pdρ|
]

≤ k7|x1 − x0|1−p(2−β0)

= k7|x1 − x0|p((2−m2)/(m+2)−ε+1/p−2),

in which we use |x−x0| = ξ|x1−x0|, |x−x1| = |x−x0−(x1−x0)| = |ξ±1||x1−x0|
if x ∈ L1, |x − x0| = ρ ≤ 2|x − x1| if x ∈ L2, choose that p (> 1) is close to 1
such that 1 − p(2 − β0) < 0, and kj = kj(β, k3, H,D0) (j = 6, 7) are non-negative
constants. Thus we obtain

|Ψ(Z1)−Ψ(Z0)| ≤ k7|Z1−Z0||x1−x0|(2−m2)/(m+2)−ε+1/p−2 ≤ k8|Z1−Z0|β , (3.6)

in which we use that the inner angle at Z0 of the triangle Z0Z1Z2 (Z2 = x0 + iY1 ∈
D0) is not less than π/6 and not greater than π/3, and choose ε = 2(p − 1)/p,
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β = (2−m2)/(m+ 2)− δ, δ = 3(p− 1)/p, k8 = k8(β, k3, H1, D0) is a non-negative
constant. The above points Z0 = x0, Z1 = x1+iY1 can be replaced by Z0 = x0+iY0,
Z1 = x1 + iY1 ∈ D0, 0 < Y0 < Y1 and 2(Y1 − Y0)/

√
3 ≤ |Z1 − Z0| ≤ 2(Y1 − Y0).

Finally we consider any two points Z1 = x1 + iY1, Z2 = x2 + iY1 and x1 < x2,
from the above estimates, the following estimate can be derived

|Ψ(Z1)−Ψ(Z2)| ≤ |Ψ(Z1)−Ψ(Z3)|+ |Ψ(Z3)−Ψ(Z2)|

≤ k8|Z1 − Z3|β + k8|Z3 − Z2|β ≤ k9|Z1 − Z2|β ,
(3.7)

where Z3 = (x1 +x2)/2 + i[Y1 + (x2−x1)/(2
√

3)]. If Z1 = x1 + iY1, Z2 = x1 + iY2,
Y1 < Y2, and we choose Z3 = x1 + (Y2 − Y1)/2

√
3 + i(Y2 + Y1)/2, and can also

get (3.7). If Z1 = x1 + iY1, Z2 = x2 + iY2, x1 < x2, Y1 < Y2, and we choose
Z3 = x2 + iY1, obviously

|Ψ(Z1)−Ψ(Z2)| ≤ |Ψ(Z1)−Ψ(Z3)|+ |Ψ(Z3)−Ψ(Z2)|,
and |Ψ(Z1) − Ψ(Z3)|, |Ψ(Z3) − Ψ(Z2)| can be estimated by the above way, hence
we can obtain the estimate of |Ψ(Z1) − Ψ(Z2)|. For the function Ψ(Z) of (3.2)
in D ∩ {ImY ≤ 0}, the similar estimates can be also derived. Hence we have the
estimate (3.3). �

Theorem 3.2. If the condition H1(y) = ym1/2h1(y) in Theorem 3.1 is replaced
by H1(y) = yηh1(y), herein η is a positive constant satisfying the inequality η <
(m+ 2)/(2−m2), then by the same method we can prove that the integral Ψ(Z) =
T (g/H1) satisfies the estimate

Cβ [Ψ(Z), DZ ] ≤M1, (3.8)

in which β = 1− η(2−m2)/(m+ 2)− δ, δ is a sufficiently small positive constant,
and M1 = M1(β, k3, H1, DZ) is a positive constant. In particular if H1(y) = y; i.e.,
η = 1, then we can choose β = m1/(m + 2) − δ, δ is a sufficiently small positive
constant.
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