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SINGULAR BOUNDARY-VALUE PROBLEMS WITH VARIABLE
COEFFICIENTS ON THE POSITIVE HALF-LINE

SMAÏL DJEBALI, OUIZA SAIFI, SAMIRA ZAHAR

Abstract. This work concerns the existence and the multiplicity of solutions
for singular boundary-value problems with a variable coefficient, posed on the

positive half-line. When the nonlinearity is positive but may have a space

singularity at the origin, the existence of single and twin positive solutions is
obtained by means of the fixed point index theory. The singularity is treated

by approximating the nonlinearity, which is assumed to satisfy general growth

conditions. When the nonlinearity is not necessarily positive, the Schauder
fixed point theorem is combined with the method of upper and lower solutions

on unbounded domains to prove existence of solutions. Our results extend

those in [18] and are illustrated with examples.

1. Introduction

This article is devoted to the existence and the multiplicity of positive solutions
to the following boundary-value problem posed on the positive half-line:

x′′(t)− k2(t)x(t) +m(t)f(t, x(t)) = 0, t > 0,

x(0) = 0, lim
t→+∞

x(t) = 0, (1.1)

where the coefficient k : I → I is a continuous bounded function, m : I → I is con-
tinuous, and f ∈ C(R+ ×R+,R); here I = (0,+∞) and R+ = [0,+∞). Boundary-
value problems on infinite intervals appear in many problems from mechanics,
chemistry, biology, plasma physics, nonlinear mechanics, and non-Newtonian fluid
flows (see e.g., [1, 2] and the references therein). For instance, the case k2(t) =
1 + 2ω + t2(ω > 0) corresponds to the well-known Holt’s equation [15]. The case
where the function k is constant is considered in several recent works. In particu-
lar, when the nonlinearity f has no space singularity, the existence of solutions to
problem (1.1) is obtained in [20] by the Tychonoff fixed point theorem while the
Krasnosels’kii fixed point theorem of cone expansion and compression of norm type
is employed in [26] to prove existence of multiple solutions (see also [10]). When
m is singular at t = 0, the authors in [6, 7, 8] have showed the existence of single
and multiple positive solutions to (1.1) using the Krasnosels’kii and the Leggett-
Williams fixed point theorems. In [24], B. Yan et al have obtained some existence
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results when f may have a space singularity at x = 0, f is allowed to change sign,
and k is constant; they have used the upper and lower solution method. The index
fixed point theory in a cone with a spacial Banach norm is also used in [23] to study
the existence of positive solution to the second-order differential equation

(px′)′ + λ(f(t, x)− k2x) = 0, t > 0

subject to Sturm-Liouville boundary conditions at the origin and at positive infinity.
Here λ > 0, k is constant, and the nonlinearity f = f(t, x) only has time singularity
at t = 0. Also, the upper and lower solution method is considered in [9] and [17]
to investigate some boundary value problems on infinite intervals of the real line.
If the constant k is time depending, then the problem is more difficult. In [18], Ma
and Zhu have considered the case where k is a bounded continuous function and the
nonlinearity f ∈ C(R+ × R+,R) is semi-positone, has no singularity but satisfies
a sublinear polynomial growth condition. They showed that if the parameter λ is
small enough, then the problem

x′′(t)− k2(t)x(t) + λm(t)f(t, x(t)) = 0, t > 0,

x(0) = 0, lim
t→+∞

x(t) = 0,

has a positive solution; the authors have employed the index fixed point theory.
Motivated by the papers mentioned above, our aim in this work is two-fold: we not
only consider the case where k = k(t) is time-dependant but we also investigate a
large class of singular nonlinearities, including the superlinear and sublinear cases.
For this, we will employ separately the fixed point index theory and the upper and
lower solution techniques.

In Section 2, we first recall some preliminaries needed in this paper. In partic-
ular, some properties of the Green’s function taken from [18] are recalled. This
enables us to reformulate in Section 3 problem (1.1) as a fixed point problem for an
integral operator. We study the compactness of a sequence of approximating oper-
ators under a quite general growth condition. The fixed point index of an operator
defined on a cone of a weighted Banach space is used in Section 4 together with
a regularization technique to overcome the singularity. Then the existence of one
solution is obtained by using a method of approximation combined with the com-
putation of a fixed point index on an appropriate cone. The nonlinearity satisfies a
general growth condition which includes the polynomial case. The existence of twin
positive solutions is proved in Section 5 when f is superlinear. Section 6 is devoted
to the case when f is not necessarily positive. The existence of bounded solutions
is proved by a combination of a regularization technique, the Schauder fixed point
theorem, and the method of upper and lower solution (see [4] for a description of
this method on bounded domains). In this case, the Nagumo condition is assumed
in the nonlinearity. A uniqueness result is also given under a monotonicity condi-
tion. The paper ends in Section 7 with three examples of applications illustrating
the obtained results while some concluding remarks are presented in Section 8.

2. Preliminaries

In this section, we collect some definitions and lemmas used in this work. Let E
be a Banach space. A mapping A : E → E is said to be completely continuous if
it is continuous and maps bounded sets into relatively compact sets. A nonempty



EJDE-2013/73 SINGULAR BVPS WITH VARIABLE COEFFICIENTS 3

subset P of a Banach space E is called a cone if P is convex, closed, and satisfies
P ∩ −P = {0} and the condition:

αx ∈ P, for all x ∈ P and all α ≥ 0.

Let P,Ω be a cone and an open subset of E respectively. The index fixed point
of a completely continuous map A : Ω ∩ P → Ω, i(A,Ω ∩ P,P), is defined as the
Leray-Schauder topological degree of the restriction of I−A on Ω∩P; here I refers
to the identity operator. The properties of the degree naturally translate to the
index. Among them, the existence property states that if i(A,Ω ∩ P,P) 6= 0, then
A has a fixed point. In the following lemma, we recall some important properties
we need in this paper. For further details and properties of the fixed point index
on cones of Banach spaces, we refer the reader to [5, 11, 14, 25].

Lemma 2.1. Let Ω be a bounded open set in a real Banach space E, P a cone of
E and A : Ω ∩ P → Ω a completely continuous map.

(i) If λAx 6= x, ∀x ∈ ∂Ω ∩ P,∀λ ∈ (0, 1], then i(A,Ω ∩ P,P) = 1.
(ii) If Ax 6≤ x, ∀x ∈ ∂Ω ∩ P, then i(A,Ω ∩ P,P) = 0.

To study the boundary-value problem (1.1), we need some restrictions on the
bounded function k. Let

H := sup
t∈I

k(t) and h := inf
t∈I

k(t) > 0

and assume

(H1) the function k : I → I is continuous, bounded and there exist d ∈ [h,H],
such that for all ρ > 0,

lim
t→∞

e−ρt
∫ t

0

eρs[k2(s)− d2]ds exists;

(H2) the function k : I → I is continuous and periodic (hence bounded).

The construction of the Green’s function is given in [18] by Ma and Zhu where the
following properties are discussed. For the asymptotic behavior of solutions of the
equation x′′(t)− k2(t)x(t) = 0, we also refer to [2, Theorem 7].

Lemma 2.2 ([18]). Assume that k is bounded and continuous. Then

(a) the Cauchy problem

x′′(t)− k2(t)x(t) = 0, t > 0,

x(0) = 0, x′(0) = 1
(2.1)

has a unique solution φ1 defined on R+. Moreover φ′1 > 0 and φ1 is un-
bounded.

(b) The limit problem

x′′(t)− k2(t)x(t) = 0, t > 0,

x(0) = 1, lim
t→+∞

x(t) = 0 (2.2)

has a unique solution φ2 defined on R+ with

0 < φ2 ≤ 1, φ′2 < 0.
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If further (H1) holds, then

lim
t→∞

φ′2(t)
φ2(t)

= −d.

(c) If either (H1) or (H2) holds, then there exists M > 0 such that

sup
t∈R+

φ1(t)φ2(t) < M.

Then {φ1, φ2} forms a fundamental system of solutions and thus, regarding the
non-homogeneous linear problem, we have the following lemma [18].

Lemma 2.3. Assume that either (H1) or (H2) holds. Then for every function
y ∈ L1(R+), the problem

x′′(t)− k2(t)x(t) + y(t) = 0, t > 0,

x(0) = 0, x(+∞) = 0

is equivalent to the integral equation

x(t) =
∫ ∞

0

G(t, s)y(s)ds, t > 0,

where

G(t, s) =

{
φ1(t)φ2(s), 0 ≤ t ≤ s < +∞,
φ1(s)φ2(t), 0 ≤ s ≤ t < +∞.

The Green’s function G(t, s) satisfies the following properties:

Lemma 2.4 ([18]). (a) For all t, s ∈ R+, G(t, s) < 1
2h .

(b) For every θ ∈ (1,+∞) and all t, s ∈ R+,

φ2(s)G(s, s) ≥ h

H
G(t, s)φθ2(t) .

(c) For all t, s ∈ R+,

G(t, s) ≥ γ(t)G(s, s)φ2(s),

where γ(t) := min{2hφ1(t), φ2(t)}, t ∈ R+.

In Sections 3–5, we shall assume that the function f ∈ C(I×R+,R+) is positive
and satisfies limx→0+ f(t, x) = +∞, uniformly on compact subintervals of I; i.e.,
f(t, x) may be singular at x = 0.

3. Compactness of a sequence of integral operators

Let θ > 1, γ̃(t) = γ(t)φθ2(t) and F (t, x) = f
(
t, x
φθ2(t)

)
. Since φ2 ≤ 1,

γ̃(t) ≤ 1, ∀t ≥ 0. (3.1)

Consider the growth condition:
(H3) there exist functions r ∈ C(R+,R+) and p ∈ C(I, I) such that

0 ≤ F (t, x) ≤ r(t)p(x), ∀t ∈ R+, ∀x ∈ I (3.2)

and there exists a decreasing function q ∈ C(I, I) such that p(x)
q(x) is increas-

ing and∫ +∞

0

G(s, s)φ2(s)r(s)m(s)q(cγ̃(s))ds < +∞, for each c > 0. (3.3)
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Let C`(R+,R) = {x ∈ C(R+,R) : limt→+∞ x(t) exists}. To study problem (1.1),
consider the weighted space

E = {x ∈ C(R+,R) : lim
t→+∞

x(t)φθ2(t) exists}.

Clearly E is a Banach space with norm ‖x‖ = supt∈R+ |x(t)|φθ2(t).

Definition 3.1. Let N ⊆ C`(R+,R).
(a) N is said to be almost equicontinuous on R+ if it equicontinuous on every

compact interval of R+.
(b) N is called equiconvergent at +∞ if, given ε > 0, there corresponds Λ(ε) >

0 such that |x(t)− x(+∞))| < ε, for all t ≥ Λ(ε), x ∈ N .

Next, we recall a classical compactness criterion due to Corduneanu [3, p. 62]

Theorem 3.2. Let N ⊆ C`(R+,R). Then N is relatively compact in C`(R+,R) if
the following conditions hold:

(a) N is uniformly bounded in Cl(R+,R);
(b) N is almost equicontinuous;
(c) N is equiconvergent at +∞.

We can easily deduce the following result.

Theorem 3.3. Let D ⊆ E and

Dφθ2 = {u : u(t) = x(t)φθ2(t), x ∈ D}.

Then D is relatively compact in E if the following conditions hold:
(a) D is uniformly bounded in E,
(b) Dφθ2 is almost equicontinuous on [0,+∞),
(c) Dφθ2 is equiconvergent at +∞.

Given f ∈ C(R+ × I,R+), define a sequence of functions {fn}n≥1 by

fn(t, x) = f
(
t,max{ 1

nφθ2(t)
, x}
)
, n ∈ {1, 2, . . . },

consider the positive cone

P = {x ∈ E : x(t) ≥ h

H
γ(t)‖x‖, ∀t ≥ 0}

and for x ∈ P, define a sequence of operators

Anx(t) =
∫ +∞

0

G(t, s)m(s)fn(s, x(s)) ds, n ∈ {1, 2, . . . }.

Theorem 3.4. Assume that either (H1), (H3), or (H2)-(H3) hold. Then, for each
n ≥ 1, the operator An sends P into P and is completely continuous.

Proof. Step 1. We show that An(P) ⊂ P. For x ∈ P, let

Rn(s) = max{ 1
n
, x(s)φθ2(s)} and Ln(x) =

p

q

(
max{ 1

n
, ‖x‖}

)
.

Since, for all positive s,
1
n
≤ max{ 1

n
, x(s)φθ2(s)} ≤ max{ 1

n
, ‖x‖},
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it follows that
p

q

(
Rn(s)

)
≤ Ln(x).

By (3.1), 0 < γ̃(t) ≤ 1. Using (H3) and Lemma 2.4, parts (a), (b), for all t ∈ R+,
we obtain the estimates

Anx(t)φθ2(t) =
∫ +∞

0

G(t, s)φθ2(t)m(s)fn(s, x(s)) ds

≤ H

h

∫ +∞

0

G(s, s)φ2(s)m(s)F (s,Rn(s))ds

≤ H

h

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(Rn(s))
p

q
(Rn(s))ds

≤ H

h
Ln(x)

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(
1
n

)ds

≤ H

h
Ln(x)

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(
1
n
γ̃(s))ds.

(3.4)

Hence supt≥0 |Anx(t)|φθ2(t) < ∞. Similarly, for x ∈ P, by Lemma 2.4, parts (b),
(c), for all positive t, we have

Anx(t) =
∫ +∞

0

G(t, s)m(s)fn(s, x(s)) ds

≥
∫ +∞

0

γ(t)φ2(s)G(s, s)m(s)fn(s, x(s)) ds

≥ hγ(t)
H

∫ +∞

0

G(ξ, s)φθ2(ξ)m(s)fn(s, x(s)) ds, ∀ξ ≥ 0

≥ hγ(t)
H

Anx(ξ)φθ2(ξ), ∀ξ ≥ 0.

Passing to the supremum over ξ ≥ 0, we obtain

Anx(t) ≥ h

H
γ(t)‖Anx‖, ∀t ≥ 0.

Therefore, AnP ⊆ P.
Step 2. An : P → P is continuous. Let a sequence {xj}j≥1 ⊆ P be such that

limj→+∞ xj = x0 ∈ P. Then there exists M > 0, which can be chosen without loss
of generality greater than 1, such that ‖xj‖ < M for all j ∈ N. By the continuity
of fn, we have

|fn(s, xj(s))− fn(s, x0(s))| → 0, as j → +∞.

Moreover,

‖Anxj −Anx0‖ = sup
t≥0
|Anxj(t)−Anx0(t)|φθ2(t)

≤ sup
t≥0

∫ +∞

0

G(t, s)φθ2(t)m(s)|fn(s, xj(s))− fn(s, x0(s))| ds

≤ H

h

∫ +∞

0

G(s, s)φ2(s)m(s)|fn(s, xj(s))− fn(s, x0(s))| ds.
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Since

G(s, s)φ2(s)m(s)|fn(s, xj(s))− fn(s, x0(s))| ≤ p(M)
hq(M)

φ2(s)m(s)r(s)q
( 1
n
γ̃(s)

)
,

the Lebesgue dominated convergence theorem and the continuity of fn guarantee
that the right-hand term tends to zero, as j → +∞. Hence An is continuous, for
each n ∈ {1, 2, . . . }.

Step 3. Let D ⊆ P be a bounded subset. Then there exists M > 1 such that

‖x‖ ≤M, ∀x ∈ D.

(a) An(D) is a bounded subset of E. Indeed, using (3.4), we have

‖Anx‖ = sup
t≥0
|Anx(t)|φθ2(t)

≤ Hp(M)
hq(M)

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(
1
n
γ̃(s))ds <∞.

(b) Now, we show that the functions {Anx(.)φθ2(.), x ∈ D} are almost equicontinu-
ous on [0,+∞). For a given Λ > 0, x ∈ D, and t, t′ ∈ [0,Λ] (t > t′), proceeding as
in Step 1, we obtain the estimates:

|Anx(t)φθ2(t)−Anx(t′)φθ2(t′)|

≤
∫ +∞

0

|G(t, s)φθ2(t)−G(t′, s)φθ2(t′)|m(s)fn(s, x(s)) ds

≤ p

q
(M)

∫ Λ

0

|G(t, s)φθ2(t)−G(t′, s)φθ2(t′)|m(s)r(s)q(
1
n
γ̃(s))ds

+
p

q
(M)

∫ +∞

Λ

|G(t, s)φθ2(t)−G(t′, s)φθ2(t′)|m(s)r(s)q(
1
n
γ̃(s))ds

≤ p

q
(M)

∫ Λ

0

|G(t, s)φθ2(t)−G(t′, s)φθ2(t′)|m(s)r(s)q(
1
n
γ̃(s))ds

+
p

q
(M)|φ1(t)φθ2(t)− φ1(t′)φθ2(t′)|

∫ +∞

Λ

φ2(s)m(s)r(s)q(
1
n
γ̃(s))ds.

Then, for every ε > 0 and Λ > 0, there exists δ > 0 such that for all x ∈ D,

|Anx(t)φθ2(t)−Anx(t′)φθ2(t′)| < ε,

for all t, t′ ∈ [0,Λ] with |t− t′| < δ.
(c) The functions {Anx(.)φθ2(.), x ∈ D} are almost equiconvergent. Let σ := θ−1

2 >
0. Since limt→+∞ φ2(t) = 0, then for every ε > 0, there exists Λ > 0 such that for
all t > Λ

φ2(t) ≤
( εh

H
∫ +∞

0
G(s, s)φ2(s)m(s)r(s)q( 1

n γ̃(s))ds

)1/σ

.

Using Lemma 2.4 (b), we deduce that for the above ε > 0, there exists Λ > 0, such
that for x ∈ D and t > Λ, we have

0 ≤ Anx(t)φθ2(t) =
∫ +∞

0

G(t, s)φθ2(t)m(s)fn(s, x(s)) ds

≤ φσ2 (t)
∫ +∞

0

G(t, s)φσ+1
2 (t)m(s)fn(s, x(s)) ds
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≤ φσ2 (t)
H

h
K

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(
1
n
γ̃(s))ds ≤ ε.

Hence the functions {Anx(.)φθ2(.), x ∈ D} are almost equiconvergent. Conse-
quently, for each n, the operator An is completely continuous. �

4. Existence of at least one positive solution

We sue the hypotheses:
(H4) there exists R > 0 such that

hRq(R) > Hp(R)
∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q
( h
H
γ̃(s)R

)
ds.

(H5) There exists ψ ∈ C(R+, I) such that

F (t, x) ≥ ψ(t), ∀t ∈ R+, ∀x ∈ (0, R]

with ∫ +∞

0

G(s, s)φ2(s)m(s)ψ(s)ds < +∞.

Note that (H4) is equivalent to

sup
c>0

2h2cq(c)

Hp(c)
∫ +∞

0
φ2(s)m(s)r(s)q( hH γ̃(s)c)ds

> 1.

Now we prove our first existence result.

Theorem 4.1. Assume that either (H1), (H3)–(H5) or (H2)–(H5) hold. Then,
problem (1.1) has at least one positive solution.

Proof. Step 1. With R being given by (H4), we define Ω1 = {x ∈ E : ‖x‖ < R},
and then claim that x 6= λAnx for all x ∈ ∂Ω1 ∩ P, λ ∈ (0, 1] and n ≥ n0 > 1/R.
On the contrary, suppose that there exist n ≥ n0, x0 ∈ ∂Ω1 ∩ P and λ0 ∈ (0, 1]
such that x0 = λ0Anx0. Since x0 ∈ ∂Ω1 ∩ P, we have

x0(t) ≥ h

H
γ(t)‖x0‖ =

h

H
γ(t)R, ∀t ∈ R+.

Then
x0(t)φθ2(t) ≥ h

H
γ̃(t)‖x0‖ =

h

H
γ̃(t)R

and so

R = ‖x0‖ = λ0‖Anx0‖

≤ sup
t≥0

∫ +∞

0

G(t, s)φθ2(t)m(s)fn(s, x0(s)) ds

≤ H

h

∫ +∞

0

G(s, s)φ2(s)m(s)F
(
s,max{ 1

n
, x0(s)φθ2(s)}

)
ds

≤ H

h

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q
(

max{ 1
n
, x0(s)φθ2(s)}

)
× p

q

(
max{ 1

n
, x0(s)φθ2(s)}

)
ds

≤ H

h

p(R)
q(R)

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(
hγ̃(s)
H

R) ds.
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As a consequence

2h2Rq(R) ≤ Hp(R)
∫ +∞

0

φ2(s)m(s)r(s)q
(hγ̃(s)

H
R
)
ds,

which is contradictory. By Lemma 2.1, we infer that

i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . . }. (4.1)

By the existence property of the fixed point index, there exists an xn ∈ Ω1∩P such
that Anxn = xn, ∀n ≥ n0. Writing

fn(t, xn(t)) = f
(
t,max{ 1

nφθ2(t)
, xn(t)}

)
= f

(
t,

1
φθ2(t)

max{ 1
n
, φθ2(t)xn(t)}

)
= F

(
t,max{ 1

n
, φθ2(t)xn(t)}

)
,

noting that ‖xn‖ < R, and using (H5), we obtain

fn(t, xn(t)) ≥ ψ(t), t ≥ 0, n ≥ n0.

Let

c∗ :=
∫ +∞

0

G(s, s)φ2(s)m(s)ψ(s)ds < +∞.

Then

xn(t) = Anxn(t)

=
∫ +∞

0

G(t, s)m(s)fn(s, xn(s)) ds

≥
∫ +∞

0

G(t, s)m(s)ψ(s)ds

≥ γ(t)
∫ +∞

0

G(s, s)φ2(s)m(s)ψ(s)ds

= c∗γ(t).

Hence xn(t)φθ2(t) ≥ c∗γ̃(t) for all t ≥ 0. From (H3), we finally deduce that

fn(s, xn(s)) = F
(
s,max{ 1

n
, xn(s)φθ2(s)}

)
≤ r(s)q(c∗γ̃(s))

p

q
(R).

Step 2. The sequence {xn}n≥n0 is relatively compact.
(a) {xn}n≥n0 is uniformly bounded for

‖xn‖ = sup
t≥0
|xn(t)|φθ2(t)

≤ sup
t≥0

∫ +∞

0

G(t, s)φθ2(t)m(s)fn(s, xn(s)) ds

≤ H

h

p(R)
q(R)

∫ +∞

0

φ2(s)m(s)r(s)q(c∗γ̃(s)) ds <∞.

(b) Almost equicontinuity. For all Λ > 0 and t, t′ ∈ [0,Λ], we have

|xn(t)φθ2(t)− xn(t′)φθ2(t′)|
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=
∫ +∞

0

|G(t, s)φθ2(t)−G(t′, s)φθ2(t′)|m(s)fn(s, xn(s)) ds

≤
∫ Λ

0

|G(t, s)φθ2(t)−G(t′, s)φθ2(t′)|m(s)r(s)q(γ̃(s)c∗)
p(R)
q(R)

ds

+ |φ1(t)φθ2(t)− φ1(t′)φθ2(t′)|
∫ +∞

Λ

φ2(s)m(s)r(s)q(γ̃(s)c∗)
p(R)
q(R)

ds.

Then by (3.3), for every ε > 0 and Λ > 0, there exists δ > 0 such that |xn(t)φθ2(t)−
xn(t′)φθ2(t′)| < ε for all t, t′ ∈ [0,Λ] with |t − t′| < δ. Hence {xn(.)φθ2(.)}n≥n0 is
almost equicontinuous.
(c) The sequence {xn(.)φθ2(.)}n≥n0 is equiconvergent at +∞. Let σ := θ−1

2 > 0.
Since limt→+∞ φ2(t) = 0, then for some given ε > 0, there exists Λ > 0 such that
for all t > Λ

φ2(t) ≤
( εhq(R)

Hp(R)
∫ +∞

0
G(s, s)φ2(s)m(s)r(s)q(c∗γ̃(s))ds

)1/σ

.

From Lemma 2.4 (b), we deduce that for the above ε > 0, there exists Λ > 0, such
that for n ≥ n0 and t > Λ,

0 ≤ xn(t)φθ2(t) =
∫ +∞

0

G(t, s)φθ2(t)m(s)fn(s, x(s)) ds

≤ φσ2 (t)
∫ +∞

0

G(t, s)φσ+1
2 (t)m(s)fn(s, x(s)) ds

≤ φσ2 (t)
H

h

p(R)
q(R)

∫ +∞

0

G(s, s)φ2(s)m(s)r(s)q(c∗γ̃(s))ds ≤ ε.

Then the sequence {xn(.)φθ2(.)}n≥n0 is equiconvergent at +∞. By Theorem 3.3,
there exists a subsequence {xnk}k≥1 with limk→+∞ xnk = x0. Since xnk(t) ≥
c∗γ̃(t),∀k ≥ 1 and ∀t ≥ 0, we have x0(t) ≥ c∗γ̃(t),∀t ≥ 0. Hence∫ +∞

0

G(t, s)m(s)f(s, x0(s)) ds < +∞.

The continuity of f guarantees that, for all s ∈ R+:

lim
k→+∞

fnk(s, xnk(s)) = lim
k→+∞

f(s,max{1/φθ2(s)nk, xnk(s)})

= f(s,max{0, x0(s)})
= f(s, x0(s)).

With the Lebesgue dominated convergence theorem, we conclude that

x0(t) = lim
k→+∞

xnk(t)

= lim
k→+∞

∫ +∞

0

G(t, s)m(s)fnk(s, xnk(s)) ds

=
∫ +∞

0

G(t, s)m(s)f(s, x0(s)) ds,

proving that x0 is a positive solution of (1.1) with ‖x0‖ ≤ R. Now, using (H4) the
same reasoning as in Step 1 guarantees that ‖x0‖ < R. �
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5. Existence of at least two positive solutions

With R given by (H4), we define the assumptions:
(H6) there exists [α, β] ⊂ I and R′ > R such that

f(t, x) > N∗x, ∀t ∈ [α, β], ∀x ≥ R′,

where

N∗ = 1 +
1

rmint∈[α,β] γ̃(t)
∫ β
α
G(s, s)φ2(s)m(s) ds

and r = h
H mint∈[α,β] γ(t).

(H5’) There exists ψ ∈ C(R+, I) such that

F (t, x) ≥ ψ(t), ∀t ∈ R+, ∀x ∈ (0, R′/r]

with ∫ +∞

0

G(s, s)φ2(s)m(s)ψ(s)ds < +∞.

Note that (H6) is satisfied for instance in the super-linear case:

lim
x→+∞

f(t, x)
x

= +∞, uniformly for t ∈ [α, β].

Theorem 5.1. Assume that either (H1), (H3), (H4), (H5’), (H6) or (H2), (H3),
(H4), (H5’), (H6) hold. Then problem (1.1) has at least two positive solutions.

Proof. By Theorem 4.1, there exists a positive solution x0 such that ‖x0‖ < R,
where R is as introduced in (H4). Let

Ω2 = {x ∈ E : ‖x‖ < R′/r},

where R′ is as introduced in (H6). We show that Anx 6≤ x for all x ∈ ∂Ω2 ∩ P
and n ∈ {1, 2, . . . }. Suppose on the contrary that there exists n ∈ {1, 2, . . . } and
x0 ∈ ∂Ω2 ∩ P such that Anx0 ≤ x0. Since x0 ∈ P, we have

x0(t) ≥ h

H
γ(t)‖x0‖ ≥

h

H
min
s∈[α,β]

γ(s)
R′

r
≥ R′, ∀t ∈ [α, β].

Then for every t ∈ [α, β], we have

x0(t)φθ2(t) ≥ Anx0(t)φθ2(t)

=
∫ +∞

0

G(t, s)φθ2(t)m(s)fn(s, x0(s)) ds

≥ γ(t)φθ2(t)
∫ β

α

G(s, s)φ2(s)m(s)fn(s, x0(s)) ds

≥ γ̃(t)
∫ β

α

G(s, s)φ2(s)m(s)N∗max{ 1
φθ2(s)n

, x0(s)} ds

≥ N∗R′ min
t∈[α,β]

γ̃(t)
∫ β

α

G(s, s)φ2(s)m(s) ds > R′/r,

contradicting ‖x0‖ = R′/r. Finally, Lemma 2.1 guarantees

i(An,Ω2 ∩ P,P) = 0, ∀n ∈ {1, 2, . . . } (5.1)
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while (4.1) and (5.1) imply that

i(An, (Ω2 \ Ω1) ∩ P,P) = −1, ∀n ≥ n0. (5.2)

The existence property of the fixed point index guarantees that An has a second
fixed point yn ∈ (Ω2 \ Ω1) ∩ P , for all n ≥ n0. The sequence {yn}n≥n0 satisfies
yn(t) ≥ h

H γ(t)R for all t ≥ 0 and ‖yn‖ < R′/r for all n ≥ n0. Arguing as above,
we can show that {yn}n≥n0 has a subsequence {ynj}j≥1 converging to some limit
y0 solution of (1.1). Moreover

‖x0‖ < R ≤ ‖y0‖ < R′/r·
Hence x0 and y0 are two distinct positive solutions of problem (1.1). �

6. Upper and lower solutions

We first define upper and lower solutions on the half-line.

Definition 6.1. (a) We say that α is a lower solution of problem (1.1) if α ∈
C0(R+) ∩ C2(I) and

α′′(t)− k2(t)α(t) +m(t)f(t, α(t)) ≥ 0, t > 0

α(0) ≤ 0, α(+∞) ≤ 0.

(b) A function β is an upper solution of problem (1.1) if β ∈ C0(R+) ∩ C2(I) and

β′′(t)− k2(t)β(t) +m(t)f(t, β(t)) ≤ 0, t > 0

β(0) ≥ 0, β(+∞) ≥ 0.

In this section, we assume that the nonlinearity f : R+ × R → R is continuous,
but not necessarily positive. We enunciate some growth assumptions:

(H7) There exist α ≤ β lower and upper solutions of problem (1.1) respectively.
(H8) There exists a continuous function ψ : I → R+ such that∫ ∞

0

m(s)ψ(s)ds <∞, (6.1)

|f(t, x)| ≤ ψ(t), ∀(t, x) ∈ Dβ
α, (6.2)

where Dβ
α := {(t, x) ∈ I × R : α(t) ≤ x ≤ β(t)}.

Consider the Banach space

X = {x ∈ C0(R+) | lim
t→+∞

x(t) = 0}

with the sup-norm ‖x‖ = supt∈[0,∞) |x(t)|. Define the truncation function f̃ by

f̃(t, x) =


f(t, β(t)), β(t) ≤ x,
f(t, x), α(t) ≤ x ≤ β(t),
f(t, α(t)), x ≤ α(t)

and consider the modified problem

x′′(t)− k2(t)x(t) +m(t)f̃(t, x(t)) = 0, t > 0

x(0) = 0, x(+∞) = 0.
(6.3)

Lemma 6.2. Under Assumption (H7), all possible solutions of problem (6.3) satisfy

α(t) ≤ x(t) ≤ β(t), ∀t ≥ 0.
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Proof. Suppose, on the contrary that supt∈[0,∞)(x−β)(t) > 0. Since (x−β)(+∞) =
−β(+∞) ≤ 0 and (x − β)(0) = −β(0) ≤ 0, then there is t0 ∈ (0,∞) such that
x(t0) − β(t0) = supt>0(x − β)(t) > 0 and (x′′ − β′′)(t0) ≤ 0. In addition, by
definition of an upper solution, we have

(x′′ − β′′)(t0) = k2(t0)x(t0)−m(t0)f̃(t0, x(t0))− β′′(t0)

≥ k2(t0)x(t0)−m(t0)f̃(t0, x(t0))− k2(t0)β(t0) +m(t0)f(t0, β(t0))

= k2(t0)(x− β)(t0)−m(t0)[f̃(t0, x(t0))− f(t0, β(t0))]

= k2(t0)(x− β)(t0) > 0,

leading to a contradiction. Similarly, we can prove that x(t) ≥ α(t), for all t ≥ 0. �

6.1. Existence of bounded solutions. Our main existence result in this section
is as follows.

Theorem 6.3. Assume that either Assumptions (H1), (H7), (H8) or (H2), (H7),
(H8) hold. Then problem (1.1) has at least one solution x ∈ X with the represen-
tation

x(t) =
∫ ∞

0

G(t, s)m(t)f(s, x(s))ds

and such that
α(t) ≤ x(t) ≤ β(t), ∀t ∈ R+.

Proof. Step 1. We show that problem (6.3) has at least one solution in X. Let us
consider the operator T : X → X defined by

(Tx)(t) =
∫ ∞

0

G(t, s)m(s)f̃(s, x(s))ds. (6.4)

Then solving problem (6.3) amount to proving the existence of a fixed point for T .
(a) T : X → X is well defined. Given x ∈ X, from (6.1), (6.2), and the monotonicity
of φ1, φ2, we have

(Tx)(t) ≤
∫ ∞

0

G(t, s)m(s)f̃(s, x(s))ds

≤
∫ ∞

0

G(t, s)m(s)ψ(s)ds

≤
∫ t

0

φ1(s)φ2(t)m(s)ψ(s)ds+
∫ ∞
t

φ1(t)φ2(s)m(s)ψ(s)ds

≤ φ1(t)
∫ t

0

φ2(t)m(s)ψ(s)ds+ φ1(t)
∫ ∞
t

φ2(t)m(s)ψ(s)ds

= φ1(t)φ2(t)
∫ ∞

0

m(s)ψ(s)ds

≤M
∫ ∞

0

m(s)ψ(s)ds.

Hence the integral in (6.4) is well defined. Moreover Tx is continuous and by
(6.1) and (6.2), the map s 7→ m(s)f̃(s, x(s)) is L1; hence Lemma 2.3 implies that
limt→+∞ Tx(t) = 0 and so Tx ∈ X.
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(b) T : X → X is continuous. Let (xn)n∈N be a sequence converging to some limit
x in X. We have∫ ∞

0

m(s)
∣∣∣f̃(s, xn(s))− f̃(s, x(s))

∣∣∣ ds ≤ 2
∫ ∞

0

m(s)ψ(s)ds <∞

and

‖Txn − Tx‖ = sup
t∈[0,∞)

|
∫ ∞

0

G(t, s)m(s)[f̃(s, xn(s))− f̃(s, x(s))]ds|

≤ 1
2h

∫ ∞
0

m(s)|f̃(s, xn(s))− f̃(s, x(s))|ds.

By the Lebesgue dominated convergence theorem, the right-hand side term tends
to 0, as n→ +∞, proving our claim.
(c) T : X → X is compact. For every x ∈ X as above, we have

‖Tx‖ ≤ 1
2h

∫ ∞
0

m(s)ψ(s)ds <∞,

hence T is bounded. Now, for a given Λ > 0 and t1, t2 ∈ [0,Λ], we have the
estimates:

|(Tx)(t2)− (Tx)(t1)| ≤
∫ ∞

0

|G(t2, s)−G(t1, s)|m(s)ψ(s)ds

≤
∫ Λ

0

|G(t2, s)−G(t1, s)|m(s)ψ(s)ds

+
∫ ∞

Λ

|φ1(t2)φ2(s)− φ1(t1)φ2(s)|m(s)ψ(s)ds

≤
∫ Λ

0

|G(t2, s)−G(t1, s)|m(s)ψ(s)ds

+ |φ1(t2)− φ1(t1)|
∫ ∞

0

m(s)ψ(s)ds.

By (6.1) and the continuity of the Green’s function, the Lebesgue dominated con-
vergence theorem guarantees that

lim
|t1−t2|→0

∫ Λ

0

|G(t2, s)−G(t1, s)|m(s)ψ(s)ds = 0.

In addition, (6.1) and the continuity of φ1 imply that

lim
|t1−t2|→0

|φ1(t2)− φ1(t1)|
∫ ∞

0

m(s)ψ(s)ds = 0.

Hence the right-hand side term goes to 0, as |t1 − t2| → 0, proving that the family
{Tx} is almost equicontinuous. Finally, to prove equiconvergence at +∞, we first
note that from Lemma 2.3, we have limt→∞ Tx(t) = 0. Thus using the fact that

lim
t→∞

φ2(t) = 0 and
∫ ∞

0

m(s)ψ(s)ds <∞,

we have that for every ε > 0, there exists Λ > 0 such that

0 ≤ sup
x∈X
|Tx(t)− 0| = sup

x∈X

∫ ∞
0

G(t, s)m(s)f̃(s, x(s))ds
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≤
∫ t

0

φ1(s)φ2(t)m(s)ψ(s)ds+
∫ ∞
t

φ1(t)φ2(s)m(s)ψ(s)ds

=
∫ Λ

0

φ1(s)φ2(t)m(s)ψ(s)ds+
∫ t

Λ

φ1(s)φ2(t)m(s)ψ(s)ds

+
∫ ∞
t

φ1(t)φ2(s)m(s)ψ(s)ds

≤
∫ Λ

0

φ1(s)φ2(t)m(s)ψ(s)ds+
∫ ∞

Λ

φ1(t)φ2(t)m(s)ψ(s)ds

+
∫ ∞

Λ

φ1(t)φ2(t)m(s)ψ(s)ds

≤ φ1(Λ)φ2(t)
∫ Λ

0

m(s)ψ(s)ds+M

∫ ∞
Λ

m(s)ψ(s)ds

+M

∫ ∞
Λ

m(s)ψ(s)ds

≤ ε

3
+
ε

3
+
ε

3
= ε.

The compactness of T then follows from Theorem 3.2. By the Schauder fixed
theorem point, we conclude that T has at least a fixed point x ∈ X and then
problem (6.3) has a continuous, bounded solution.
Step 2. Problem (1.1) has at least one solution in X. By Lemma 6.2, every
solution x of problem (6.3) satisfies the estimates

α(t) ≤ x(t) ≤ β(t), ∀t ≥ 0.

Then f̃(t, x(t)) = f(t, x(t)) and x is a solution of problem (1.1), which completes
the proof of the theorem. A similar result is obtained when Assumptions (H2),
(H7), (H8) hold; the details of the proof are omitted. �

6.2. Uniqueness result. The following result complements Theorem 6.3.

Proposition 6.4. In addition to the hypotheses in Theorem 6.3, assume that
(H9) x1 ≥ x2 → f(t, x1) ≤ f(t, x2) for all t > 0.

Then problem (1.1) has a unique solution x such that, for every t ∈ R,

α(t) ≤ x(t) ≤ β(t), ∀t ≥ 0.

Proof. Suppose that there exist two distinct solutions x1, x2 to problem (1.1) and
let z = x1 − x2. Assume that z(t1) > 0 for some t1. Since z(+∞) = z(0) = 0, z
has a positive maximum at some t0 <∞. Hence

0 ≥ z′′(t0) = k2(t0)z(t0)−m(t0)f(t0, x1(t0)) +m(t0)f(t0, x2(t0))

= k2(t0)z(t0) +m(t0)[f(t0, x2(t0))− f(t0, x1(t0))] > 0,

leading to a contradiction and completing the proof. �

7. Applications

Example 7.1. Consider the boundary-value problem

x′′(t)− (sin t+ 3)2x(t) + e−t(t+ x(t)) = 0, t > 0,

x(0) = 0, x(+∞) = 0.
(7.1)
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Then α(t) ≡ 0 and β(t) = t are respectively lower-solution and upper-solution.
Moreover

m(t)|f(t, x)| ≤ e−t(1 + t) ∈ L1, ∀(t, x) ∈ Dβ
α.

Then Assumptions (H2), (H7)-(H9) are satisfied. As a consequence, Theorem 6.3
and Proposition 6.4 imply that problem (7.1) has exactly one nontrivial solution x
such that

0 ≤ x(t) ≤ t, ∀t ≥ 0.

Example 7.2. Let m,n, p ∈ {1, 2, . . . } and δ ≥ 0 an arbitrary real parameter.
Consider the boundary-value problem:

x′′(t)− (2 + δ + | sinm t cosn t|)px(t) + e−t(t+ 1)(1 + x2(t)) = 0, t > 0,

x(0) = 0, x(+∞) = 0.
(7.2)

Clearly the trivial solution is a lower-solution while β(t) = t+1 is an upper-solution.
Indeed, since e−t(t2 + 2t+ 2) ≤ 2, for t ≥ 0, we have

β′′(t)− (2 + δ + | sinm t cosn t|)pβ(t) + e−t(t+ 1)(1 + β2(t))

= −(2 + δ + | sinm t cosn t|)p(1 + t) + e−t(t+ 1)(t2 + 2t+ 2)

≤ −2p(t+ 1) + 2(1 + t) = (t+ 1)(−2p + 2) ≤ 0.

In addition,

m(t)|f(t, x)| ≤ e−t(1 + t)(t2 + 2t+ 2) ∈ L1, ∀(t, x) ∈ Dβ
α.

Then Assumptions (H2), (H7), (H8) are satisfied. By Theorem 6.3 problem (7.2)
has at least one nontrivial solution x such that

0 ≤ x(t) ≤ (1 + t), ∀t ≥ 0.

Example 7.3. Consider the singular boundary-value problem

x′′(t)− (sin(t) + 3)2x(t) +
1
4
e−tγ(t)

φ4
2(t)x2 + 1√

x
= 0,

x(0) = 0, lim
t→+∞

x(t) = 0.
(7.3)

Let f(t, x) = γ(t)φ
4
2(t)x2+1√

x
, m(t) = 1

4e
−t, and k(t) = sin(t)+3. With θ = 2, we have

F (t, x) = φ2(t)γ(t)x
2+1√
x
·. The functions φ2 and γ are as introduced in Lemmas 2.2,

2.4. Then Assumptions (H2), (H3), (H4), (H5’), and (H6) are satisfied. Indeed:
For (H2), k is continuous, periodic, hence bounded with h = 2 and H = 4. For
(H3), the function q(x) = 1

x : I → I is continuous, decreasing, and

F (t, x) ≤ r(t)p(x), ∀t ≥ 0, ∀x > 0,

with p(x) = x2+1√
x

and r(t) = φ2(t)γ(t). The function p
q (x) =

√
x(x2 + 1) is

increasing on I and for any c > 0, we have∫ +∞

0

φ2(s)m(s)r(s)q(cγ̃(s))ds =
1
4c

< +∞.

For (H4), since

sup
c>0

2h2cq(c)

Hp(c)
∫ +∞

0
φ2(s)m(s)r(s)q( hH γ̃(s)c)ds

= sup
c>0

16c
√
c

c2 + 1
> 1,
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there exists R > 0 satisfying (H4). For (H6), in any subinterval [α, β] ⊂ (0,+∞),

lim
x→+∞

f(t, x)
x

= +∞, uniformly for t ∈ [α, β];

hence (H6) is satisfied with some R′ > R. For satisfying (H5’), there exists ψ(t) =
φ2(t)γ(t)

√
r√
R′ ∈ C(R+, I) such that

F (t, x) ≥ ψ(t), ∀t ∈ R+, ∀x ∈ (0, R′/r]

with ∫ +∞

0

G(s, s)φ2(s)m(s)ψc(s)ds < +∞.

Therefore, all conditions of Theorem 5.1 are met and then problem (7.3) has at
least two positive solutions.

Concluding remarks. In this work, we have obtained some existence results and
even a uniqueness theorem for problem (1.1). This problem has the particularity
that the derivation operator is time depending. As far as we know, this problem
was only considered in [2, 18] where the nonlinearity is positone and in [12, 13]
where bounded solutions were sought for the following boundary conditions:

−x′′(t) + k2(t)x(t) = f(t, x(t)), t > 0,

x(0) = x0, x is bounded,

k being bounded from below; the method of upper and lower solutions has been
employed. The nonlinearity f is allowed to change sign and has a space singularity.
In each case, we have developed the upper and lower solution method on infinite
intervals of the real line together with the index fixed point theory to prove exis-
tence of single or twin solutions in appropriate cones of a weighted Banach space.
Quite general growth conditions of the right-hand side nonlinearity, including super-
linearities, were assumed. Indeed Assumption (H3) allows singular nonlinearities of
the form p(x) = xpx−q for positive p, q. Finally, notice that Theorems 4.1 provides
a solution lying in a ball of a Banach space and thus may be the trivial one. To
avoid such a solution, one may add the assumption that f(t, 0) 6≡ 0 in Theorem 4.1
and α 6≡ 0 in Theorem 6.3. As for the second solution obtained in Theorem 5.1,
it is of course positive. We believe that this work can make a contribution in the
study of a class of Sturm-Liouville boundary values problems on the half-line with
time-depending derivation operator.

Acknowledgments. The authors are grateful to the anonymous referee for his/her
careful reading of the manuscript and the pertinent remarks that have substantially
improved the first draft.
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