Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 77, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF PERIODIC SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER HAMILTONIAN SYSTEMS

YUE WU, TIANQING AN

Abstract

The purpose of this paper is to study the existence of periodic solutions for a class of non-autonomous second order Hamiltonian systems. New results are obtained by using the least action principle and the minimax methods, without the so-called Ahmad-Lazer-Paul type condition.

1. Introduction and main results

Consider the second-order Hamiltonian system

$$
\begin{gather*}
\ddot{u}(t)=\nabla F(t, u(t)) \\
u(T)-u(0)=\dot{u}(T)-\dot{u}(0)=0 \tag{1.1}
\end{gather*}
$$

where $T>0$ and $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies the following assumption:
(A) $F(t, x)$ is measurable in t for every $x \in \mathbb{R}^{N}$, continuously differentiable in x for a.e. $t \in[0, T]$, and there exist $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in \mathscr{L}^{1}\left(0, T ; \mathbb{R}^{+}\right)$such that

$$
|F(t, x)| \leq a(|x|) b(t), \quad|\nabla F(t, x)| \leq a(|x|) b(t)
$$

for all $x \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$.
The corresponding functional $\varphi: H_{T}^{1} \rightarrow \mathbb{R}$,

$$
\varphi(u)=\frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t+\int_{0}^{T} F(t, u(t)) d t
$$

is continuously differentiable and weakly lower semi-continuous on H_{T}^{1} (see [4]), where H_{T}^{1} is the usual Sobolev space with the norm

$$
\|u\|=\left[\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right]^{1 / 2}
$$

It is well know that the solutions of problem 1.1) correspond to the critical points of φ.

Problem 1.1 has been extensively studied in the past thirty years; see for example the references in this article. Under some suitable solvability conditions,

[^0]such as the coercivity condition (cf. [2]), the periodicity condition (cf. [5]), the convexity condition (cf. [6]), the subadditive condition (cf. [10]), the existence and multiplicity results are obtained. We note that in many contributions (for example, see [1, 3, 9, 12, 13, 14, 15]), the following condition was assumed:
\[

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|^{-2 \alpha} \int_{0}^{T} F(t, x) d t=\infty \quad \text { or } \quad-\infty \tag{1.2}
\end{equation*}
$$

\]

where α is a constant. In this article, instead of $\sqrt{1.2}$, we discuss the existence of periodic solutions of (1.1) under a weak condition that $\liminf |x| \rightarrow \infty, ~|x|^{-2 \alpha} \int_{0}^{T} F(t, x) d t$ or $\lim \sup _{|x| \rightarrow \infty}|x|^{-2 \alpha} \int_{0}^{T} F(t, x) d t$ has appropriate lower or upper bound.

Our main results are as follows:
Theorem 1.1. Suppose that $F(t, x)=F_{1}(t, x)+F_{2}(x)$, where F_{1} and F_{2} satisfy assumption (A) and the following conditions:
(F1) there exist $f, g \in \mathscr{L}^{1}\left(0, T ; \mathbb{R}^{+}\right)$and $\gamma \in[0,1)$ such that

$$
\left|\nabla F_{1}(t, x)\right| \leq f(t)|x|^{\gamma}+g(t)
$$

for all $x \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$;
(F2) there exist constants $r>0$ and $\alpha \in[0,2)$ such that

$$
\left(\nabla F_{2}(x)-\nabla F_{2}(y), x-y\right) \geq-r|x-y|^{\alpha}
$$

for all $x, y \in \mathbb{R}^{N}$;
item [(F3)]

$$
\liminf _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t \geq \frac{T^{2}}{8 \pi^{2}} \int_{0}^{T} f^{2}(t) d t
$$

Then problem 1.1) has at least one periodic solution which minimizes φ on H_{T}^{1}.
Theorem 1.2. Suppose that $F(t, x)=F_{1}(t, x)+F_{2}(x)$, where F_{1} and F_{2} satisfy assumptions (A), (F1), (F2) and the following conditions:
(F4) there exist $\delta \in[0,2)$ and $C>0$ such that

$$
\left(\nabla F_{2}(x)-\nabla F_{2}(y), x-y\right) \leq C|x-y|^{\delta}
$$

for all $x, y \in \mathbb{R}^{N}$;

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t \leq-\frac{3 T^{2}}{8 \pi^{2}} \int_{0}^{T} f^{2}(t) d t \tag{F5}
\end{equation*}
$$

Then problem (1.1) has at least one periodic solution which minimizes φ on H_{T}^{1}.
Theorem 1.3. Suppose that $F(t, x)=F_{1}(t, x)+F_{2}(x)$, where F_{1} and F_{2} satisfy assumptions (A), (F1), and the following conditions:
(F2') there exists a constant $0<r<4 \pi^{2} / T^{2}$, such that

$$
\left(\nabla F_{2}(x)-\nabla F_{2}(y), x-y\right) \geq-r|x-y|^{2}
$$

for all $x, y \in \mathbb{R}^{N}$;
(F3')

$$
\liminf _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t \geq \frac{T^{2}}{2\left(4 \pi^{2}-r T^{2}\right)} \int_{0}^{T} f^{2}(t) d t
$$

Then problem (1.1) has at least one periodic solution which minimizes φ on H_{T}^{1}.

Theorem 1.4. Suppose that $F=F_{1}+F_{2}$, where F_{1} and F_{2} satisfy assumptions (A), (F1) and the following conditions:
(F6) there exist $k \in \mathscr{L}^{1}\left(0, T ; \mathbb{R}^{+}\right)$and (λ, μ)-subconvex potential $G: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $\lambda>1 / 2$ and $0<\mu<2 \lambda^{2}$, such that

$$
\left(\nabla F_{2}(t, x), y\right) \geq-k(t) G(x-y)
$$

for all $x, y \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$;

$$
\begin{gather*}
\limsup _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F_{1}(t, x) d t \leq-\frac{3 T^{2}}{8 \pi^{2}} \int_{0}^{T} f^{2}(t) d t \tag{F7}\\
\limsup _{|x| \rightarrow \infty}|x|^{-\beta} \int_{0}^{T} F_{2}(t, x) d t \leq-8 \mu \max _{|s| \leq 1} G(s) \int_{0}^{T} k(t) d t
\end{gather*}
$$

where $\beta=\log _{2 \lambda}(2 \mu)$.
Then problem (1.1) has at least one periodic solution which minimizes φ on H_{T}^{1}.
Remark 1.5. Theorems 1.11 .3 extend some existing results. On the one hand, we decomposed the potential F into F_{1} and F_{2}. On the other hand, we weaken the so-called Ahmad-Lazer-Paul type condition (1.2) as conditions (F3), (F5) and (F3'). Note that [13, Theorem 2] and [3, Theorem 1] are the direct corollaries of Theorem 1.1 and Theorem 1.3 respectively. If $F_{2}=0$, [11, Theorems 1 and 2] are special cases of Theorem 1.1 and Theorem 1.2 respectively. Some examples of F are given in section 3, which are not covered in the references. Moreover, our Theorem 1.4 is a new result.

2. Proof of Theorems

For $u \in H_{T}^{1}$, let

$$
\bar{u}=\frac{1}{T} \int_{0}^{T} u(t) d t, \quad \tilde{u}(t)=u(t)-\bar{u}
$$

The following inequalities are well known (cf. [4]):

$$
\begin{gathered}
\|\tilde{u}\|_{\infty}^{2} \leq \frac{T}{12}\|\dot{u}\|_{L^{2}}^{2} \quad \text { (Sobolev's inequality) } \\
\|\tilde{u}\|_{L^{2}}^{2} \leq \frac{T^{2}}{4 \pi^{2}}\|\dot{u}\|_{L^{2}}^{2} \quad \text { (Wirtinger's inequality) }
\end{gathered}
$$

For convenience, we denote

$$
M_{1}=\left(\int_{0}^{T} f^{2}(t) d t\right)^{1 / 2}, \quad M_{2}=\int_{0}^{T} f(t) d t, \quad M_{3}=\int_{0}^{T} g(t) d t
$$

Now we give the proofs of the main results.
Proof of Theorem 1.1. By (F3), we can choose an $a_{1}>T^{2} /\left(4 \pi^{2}\right)$ such that

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t>\frac{a_{1}}{2} M_{1}^{2} \tag{2.1}
\end{equation*}
$$

By (F1) and the Sobolev's inequality, for any $u \in H_{T}^{1}$,

$$
\begin{align*}
\mid & \int_{0}^{T}\left[F_{1}(t, u(t))-F_{1}(t, \bar{u})\right] d t \mid \\
= & \left|\int_{0}^{T} \int_{0}^{1}\left(\nabla F_{1}(t, \bar{u}+s \tilde{u}(t)), \tilde{u}(t)\right) d s d t\right| \\
\leq & \int_{0}^{T} \int_{0}^{1} f(t)|\bar{u}+s \tilde{u}(t)|^{\gamma}|\tilde{u}(t)| d s d t+\int_{0}^{T} \int_{0}^{1} g(t)|\tilde{u}(t)| d s d t \\
\leq & |\bar{u}|^{\gamma}\left(\int_{0}^{T} f^{2}(t) d t\right)^{1 / 2}\left(\int_{0}^{T}|\tilde{u}(t)|^{2} d t\right)^{1 / 2} \tag{2.2}\\
& +\|\tilde{u}\|_{\infty}^{\gamma+1} \int_{0}^{T} f(t) d t+\|\tilde{u}\|_{\infty} \int_{0}^{T} g(t) d t \\
\leq & \frac{1}{2 a_{1}}\|\tilde{u}\|_{L^{2}}^{2}+\frac{a_{1}}{2} M_{1}^{2}|\bar{u}|^{2 \gamma}+M_{2}\|\tilde{u}\|_{\infty}^{\gamma+1}+M_{3}\|\tilde{u}\|_{\infty} \\
\leq & \frac{T^{2}}{8 \pi^{2} a_{1}}\|\dot{u}\|_{L^{2}}^{2}+\frac{a_{1}}{2} M_{1}^{2}|\bar{u}|^{2 \gamma}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\|\dot{u}\|_{L^{2}}^{\gamma+1}+\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}}
\end{align*}
$$

Similarly, by (F2) and the Sobolev's inequality, for any $u \in H_{T}^{1}$,

$$
\begin{align*}
\int_{0}^{T}\left[F_{2}(u(t))-F_{2}(\bar{u})\right] d t & =\int_{0}^{T} \int_{0}^{1} \frac{1}{s}\left(\nabla F_{2}(\bar{u}+s \tilde{u}(t))-\nabla F_{2}(\bar{u}), s \tilde{u}(t)\right) d s d t \\
& \geq-\int_{0}^{T} \int_{0}^{1} r s^{\alpha-1}|\tilde{u}(t)|^{\alpha} d s d t \\
& \geq-\frac{r T}{\alpha}\|\tilde{u}\|_{\infty}^{\alpha} \\
& \geq-\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\|\dot{u}\|_{L^{2}}^{\alpha} \tag{2.3}
\end{align*}
$$

It follows from 2.2 and 2.3 that

$$
\begin{aligned}
\varphi(u)= & \frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}+\int_{0}^{T}\left[F_{1}(t, u(t))-F_{1}(t, \bar{u})\right] d t \\
& +\int_{0}^{T}\left[F_{2}(u(t))-F_{2}(\bar{u})\right] d t+\int_{0}^{T} F(t, \bar{u}) d t \\
\geq & \left(\frac{1}{2}-\frac{T^{2}}{8 \pi^{2} a_{1}}\right)\|\dot{u}\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\|\dot{u}\|_{L^{2}}^{\gamma+1}-\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}} \\
& -\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\|\dot{u}\|_{L^{2}}^{\alpha}+|\bar{u}|^{2 \gamma}\left(|\bar{u}|^{-2 \gamma} \int_{0}^{T} F(t, \bar{u}) d t-\frac{a_{1}}{2} M_{1}^{2}\right)
\end{aligned}
$$

for all $u \in H_{T}^{1}$, which implies that $\varphi(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$, due to (2.1) and $\gamma<1$.
By the least action principle (see [4, Theorem 1.1 and Corollary 1.1]), the proof is complete.

Proof of Theorem 1.2. Step 1. We firstly show that φ satisfies the (PS) condition. Suppose that $\left\{u_{n}\right\}$ is a (PS) sequence, that is, $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow 0$ and $\left\{\varphi\left(u_{n}\right)\right\}$
is bounded. By (F5), we can choose an $a_{2}>T^{2} /\left(4 \pi^{2}\right)$ such that

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t<-\left(\frac{a_{2}}{2}+\frac{\sqrt{a_{2}} T}{2 \pi}\right) M_{1}^{2} \tag{2.4}
\end{equation*}
$$

In a way similar to the proof of Theorem 1.1, one has

$$
\begin{align*}
& \int_{0}^{T}\left(\nabla F_{1}\left(t, u_{n}(t)\right), \tilde{u}_{n}(t)\right) d t \\
& \leq \frac{T^{2}}{8 \pi^{2} a_{2}}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\frac{a_{2}}{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\left(\frac{T}{12}\right)^{\frac{(\gamma+1)}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1}+\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}} \tag{2.5}
\end{align*}
$$

and

$$
\int_{0}^{T}\left(\nabla F_{2}\left(u_{n}(t)\right), \tilde{u}_{n}(t)\right) d t \geq-\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\alpha} \int_{0}^{T} r(t) d t
$$

for all n. Hence one has

$$
\begin{align*}
\left\|\tilde{u}_{n}\right\| \geq & \left(\varphi^{\prime}\left(u_{n}\right), \tilde{u}_{n}\right) \\
= & \left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\int_{0}^{T}\left(\nabla F\left(t, u_{n}(t)\right), \tilde{u}_{n}(t)\right) d t \\
\geq & \left(1-\frac{T^{2}}{8 \pi^{2} a_{2}}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}-\frac{a_{2}}{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}-\left(\frac{T}{12}\right)^{\frac{(\gamma+1)}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1} \tag{2.6}\\
& -\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}}-\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\alpha}
\end{align*}
$$

for large n. It follows from Wirtinger's inequality that

$$
\begin{equation*}
\left\|\tilde{u}_{n}\right\| \leq \frac{\left(T^{2}+4 \pi^{2}\right)^{1 / 2}}{2 \pi}\left\|\dot{u}_{n}\right\|_{L^{2}} \tag{2.7}
\end{equation*}
$$

By (2.6) and 2.7),

$$
\begin{align*}
\frac{a_{2}}{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma} \geq & \left(1-\frac{T^{2}}{8 \pi^{2} a_{2}}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1}-\left(\frac{T}{12}\right)^{\frac{1}{2}} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}} \\
& -\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\frac{\alpha}{2}}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\alpha}-\frac{\left(T^{2}+4 \pi^{2}\right)^{1 / 2}}{2 \pi}\left\|\dot{u}_{n}\right\|_{L^{2}} \\
\geq & \frac{1}{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+C_{1} \tag{2.8}
\end{align*}
$$

where

$$
\begin{gathered}
C_{1}=\min _{s \in[0,+\infty)}\left\{\frac{4 \pi^{2} a_{2}-T^{2}}{8 \pi^{2} a_{2}} s^{2}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2} s^{\gamma+1}-\left[\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\right] s^{\alpha}\right. \\
\left.-\left[\left(\frac{T}{12}\right)^{1 / 2} M_{3}+\frac{\left(T^{2}+4 \pi^{2}\right)^{1 / 2}}{2 \pi}\right] s\right\} .
\end{gathered}
$$

Note that $a_{2}>T^{2} /\left(4 \pi^{2}\right)$ implies $-\infty<C_{1}<0$. Hence, it follows from (2.8) that

$$
\begin{equation*}
\left\|\dot{u}_{n}\right\|_{L^{2}}^{2} \leq a_{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}-2 C_{1} \tag{2.9}
\end{equation*}
$$

and then

$$
\begin{equation*}
\left\|\dot{u}_{n}\right\|_{L^{2}} \leq \sqrt{a_{2}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+C_{2} \tag{2.10}
\end{equation*}
$$

where $0<C_{2}<+\infty$. In a way similar to the proof of Theorem 1.1, we have

$$
\begin{align*}
& \left|\int_{0}^{T}\left[F_{1}(t, u(t))-F_{1}(t, \bar{u})\right] d t\right| \\
& \leq M_{1}|\bar{u}|^{\gamma}\|\tilde{u}\|_{L^{2}}+M_{2}\|\tilde{u}\|_{\infty}^{\gamma+1}+M_{3}\|\tilde{u}\|_{\infty} \\
& \leq \frac{\pi}{\sqrt{a_{2}} T}\left\|\tilde{u}_{n}\right\|_{L^{2}}^{2}+\frac{\sqrt{a_{2}} T}{4 \pi} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+M_{2}\left\|\tilde{u}_{n}\right\|_{\infty}^{\gamma+1}+M_{3}\left\|\tilde{u}_{n}\right\|_{\infty} \tag{2.11}\\
& \leq \frac{T}{4 \pi \sqrt{a_{2}}}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\frac{\sqrt{a_{2}} T}{4 \pi} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1} \\
& \quad+\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}} .
\end{align*}
$$

By (F4), we obtain

$$
\begin{aligned}
& \int_{0}^{T}\left[F_{2}\left(u_{n}(t)\right)-F_{2}\left(\bar{u}_{n}\right)\right] d t \\
& =\int_{0}^{T} \int_{0}^{1} \frac{1}{s}\left(\nabla F_{2}\left(\bar{u}_{n}+s \tilde{u}_{n}(t)\right)-\nabla F_{2}\left(\bar{u}_{n}\right), s \tilde{u}_{n}(t)\right) d s d t \\
& \leq \int_{0}^{T} \int_{0}^{1} C s^{\delta-1}\left|\tilde{u}_{n}(t)\right|^{\delta} d s d t \leq \frac{C T}{\delta}\left\|\tilde{u}_{n}\right\|_{\infty}^{\delta} \\
& \leq \frac{C T}{\delta}\left(\frac{T}{12}\right)^{\delta / 2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\delta}
\end{aligned}
$$

It follows from the boundedness of $\left\{\varphi\left(u_{n}\right)\right\}$ and $2.9-2.11$ that

$$
\begin{aligned}
C_{3} \leq & \varphi\left(u_{n}\right) \\
= & \frac{1}{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\int_{0}^{T}\left[F_{1}\left(t, u_{n}(t)\right)-F_{1}\left(t, \bar{u}_{n}\right)\right] d t+\int_{0}^{T}\left[F_{2}\left(u_{n}(t)\right)-F_{2}\left(\bar{u}_{n}\right)\right] d t \\
& +\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
\leq & \left(\frac{1}{2}+\frac{T}{4 \pi \sqrt{a_{2}}}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\frac{\sqrt{a_{2}} T}{4 \pi} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1} \\
& +\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}}+\frac{C T}{\delta}\left(\frac{T}{12}\right)^{\delta / 2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\delta}+\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
\leq & \left(\frac{1}{2}+\frac{T}{4 \pi \sqrt{a_{2}}}\right)\left(a_{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}-2 C_{1}\right)+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left(\sqrt{a_{2}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+C_{2}\right)^{\gamma+1} \\
& +\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left(\sqrt{a_{2}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+C_{2}\right)+\frac{C T}{\delta}\left(\frac{T}{12}\right)^{\delta / 2}\left(\sqrt{a_{2}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+C_{2}\right)^{\delta} \\
& +\frac{\sqrt{a_{2}} T}{4 \pi} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
\leq & \left(\frac{a_{2}}{2}+\frac{\sqrt{a_{2}} T}{2 \pi}\right) M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left(2^{\gamma}\left(\sqrt{a_{2}} M_{1}\right)^{\gamma+1}\left|\bar{u}_{n}\right|^{\gamma(\gamma+1)}+2^{\gamma} C_{2}^{\gamma+1}\right) \\
& +\frac{C T}{\delta}\left(\frac{T}{12}\right)^{\delta / 2}\left(2^{\delta-1}\left(\sqrt{a_{2}} M_{1}\right)^{\delta}\left|\bar{u}_{n}\right|^{\gamma \delta}+2^{\delta-1} C_{2}^{\delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left(\sqrt{a_{2}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+C_{2}\right)-\left(1+\frac{T}{2 \pi \sqrt{a_{2}}}\right) C_{1}+\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
= & \left|\bar{u}_{n}\right|^{2 \gamma}\left[\left|\bar{u}_{n}\right|^{-2 \gamma} \int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t+\left(\frac{a_{2}}{2}+\frac{\sqrt{a_{2}} T}{2 \pi}\right) M_{1}^{2}\right. \\
& +\left(\frac{a_{2} T}{12}\right)^{\frac{\gamma+1}{2}} 2^{\gamma} M_{1}^{\gamma+1} M_{2}\left|\bar{u}_{n}\right|^{\gamma(\gamma-1)}+\left(\frac{a_{2} T}{12}\right)^{1 / 2} M_{1} M_{3}\left|\bar{u}_{n}\right|^{-\gamma} \\
& \left.+\frac{C T}{\delta}\left(\frac{a_{2} T}{12}\right)^{\delta / 2} 2^{\delta-1} M_{1}^{\delta}\left|\bar{u}_{n}\right|^{\gamma(\delta-2)}\right]+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} 2^{\gamma} M_{2} C_{2}^{\gamma+1} \\
& +\frac{C T}{\delta}\left(\frac{T}{12}\right)^{\delta / 2} 2^{\delta-1} C_{2}^{\delta}+\left(\frac{T}{12}\right)^{1 / 2} M_{3} C_{2}-\left(1+\frac{T}{2 \pi \sqrt{a_{2}}}\right) C_{1}
\end{aligned}
$$

for large n. The above inequality and (2.4) imply that $\{|\bar{u}|\}$ is bounded. Hence $\left\{u_{n}\right\}$ is bounded by 2.9. Arguing as in the proof of Proposition 4.1 of [4, we conclude that (PS) condition is satisfied.

Step 2. Let $\widetilde{H}_{T}^{1}=\left\{u \in H_{T}^{1}: \bar{u}=0\right\}$. We show that for $u \in \widetilde{H}_{T}^{1}$,

$$
\begin{equation*}
\varphi(u) \rightarrow+\infty \quad(\|u\| \rightarrow \infty) \tag{2.12}
\end{equation*}
$$

In fact, by (F1) and Sobolev's inequality, one has

$$
\begin{aligned}
\left|\int_{0}^{T}\left[F_{1}(t, u(t))-F_{1}(t, 0)\right] d t\right| & =\left|\int_{0}^{T} \int_{0}^{1}\left(\nabla F_{1}(t, s u(t)), u(t)\right) d s d t\right| \\
& \leq \int_{0}^{T} f(t)|u(t)|^{\gamma+1} d t+\int_{0}^{T} g(t)|u(t)| d t \\
& \leq\left(\frac{T}{12}\right)^{\frac{\alpha+1}{2}} M_{2}\|\dot{u}\|_{L^{2}}^{\alpha+1}+\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}}
\end{aligned}
$$

for all $u \in \widetilde{H}_{T}^{1}$. It follows from (F2) that

$$
\begin{aligned}
\int_{0}^{T}\left[F_{2}(u(t))-F_{2}(0)\right] d t & =\int_{0}^{T} \int_{0}^{1}\left(\nabla F_{2}(s u(t))-\nabla F_{2}(0), u(t)\right) d s d t \\
& \geq-\int_{0}^{T} \int_{0}^{1} r s^{\alpha-1}|u(t)|^{\alpha} d s d t \\
& \geq-\frac{r T}{\alpha}\|u\|_{\infty}^{\alpha} \\
& \geq-\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\|u\|_{L^{2}}^{\alpha}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\varphi(u)= & \frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}+\int_{0}^{T}[F(t, u(t))-F(t, 0)] d t+\int_{0}^{T} F(t, 0) d t \\
\geq & \frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{\frac{\alpha+1}{2}} M_{2}\|\dot{u}\|_{L^{2}}^{\alpha+1}-\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}} \\
& -\frac{r T}{\alpha}\left(\frac{T}{12}\right)^{\alpha / 2}\|u\|_{L^{2}}^{\alpha}+\int_{0}^{T} F(t, 0) d t .
\end{aligned}
$$

By Wirtinger's inequality, $\|u\| \rightarrow \infty$ if and only if $\|\dot{u}\|_{L^{2}} \rightarrow \infty$ in \widetilde{H}_{T}^{1}. Hence 2.12 is satisfied.

Step 3. By (F5), we can easily see that $\int_{0}^{T} F(t, x) d t \rightarrow-\infty$ as $|x| \rightarrow \infty$ for all $x \in \mathbb{R}^{N}$. Thus, for all $u \in\left(\widetilde{H}_{T}^{1}\right)^{\perp}=\mathbb{R}^{N}$,

$$
\varphi(u)=\int_{0}^{T} F(t, u) d t \rightarrow-\infty \quad \text { as }|u| \rightarrow \infty
$$

Now, the proof is completed by saddle point theorem (cf. [7, Theorem 4.6])
Proof of Theorem 1.3. By (F3'), we can choose an $a_{3}>\frac{T^{2}}{4 \pi^{2}-r T^{2}}$ such that

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t>\frac{a_{3}}{2} M_{1}^{2} \tag{2.13}
\end{equation*}
$$

The condition (F2') and the Sobolev's inequality imply that

$$
\begin{aligned}
\int_{0}^{T}\left[F_{2}\left(u(t)-F_{2}(\bar{u})\right)\right] d t & =\int_{0}^{T} \int_{0}^{1} \frac{1}{s}\left(\nabla F_{2}(\bar{u}+s \tilde{u}(t))-\nabla F_{2}(\bar{u}), s \tilde{u}(t)\right) d s d t \\
& \geq-\int_{0}^{T} \int_{0}^{1} r s|\tilde{u}(t)|^{2} d s d t-\frac{r T^{2}}{8 \pi^{2}}\|\dot{u}\|_{L^{2}}^{2}
\end{aligned}
$$

It follows immediately from the similar method of the proof of Theorem 1.1 that

$$
\begin{aligned}
\varphi(u)= & \frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}+\int_{0}^{T} F(t, u(t)) d t \\
\geq & \left(\frac{1}{2}-\frac{T^{2}}{8 \pi^{2} a_{3}}-\frac{r T^{2}}{8 \pi^{2}}\right)\|\dot{u}\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\|\dot{u}\|_{L^{2}}^{\gamma+1} \\
& -\left(\frac{T}{12}\right)^{1 / 2} M_{3}\|\dot{u}\|_{L^{2}}+|\bar{u}|^{2 \gamma}\left(|\bar{u}|^{-2 \gamma} \int_{0}^{T} F(t, \bar{u}) d t-\frac{a_{3}}{2} M_{1}^{2}\right)
\end{aligned}
$$

for all $u \in H_{T}^{1}$, which implies that $\varphi(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$ by 2.13, due to the facts that $\gamma<1, r<\frac{4 \pi^{2}}{T^{2}}$ and $\|u\| \rightarrow \infty$ if and only if

$$
\left(|\bar{u}|^{2}+\|\dot{u}\|_{L^{2}}^{2}\right)^{1 / 2} \rightarrow \infty
$$

By the least action principle, Theorem 1.3 holds.
Proof of Theorem 1.4. We firstly show that φ satisfies the (PS) condition. Suppose that $\left\{u_{n}\right\}$ satisfies $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow 0$ and $\left\{\varphi\left(u_{n}\right)\right\}$ is bounded. By (F7), we can choose an $a_{4}>T^{2} /\left(4 \pi^{2}\right.$ such that

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F_{1}(t, x) d t<-\left(\frac{a_{4}}{2}+\frac{\sqrt{a_{4}} T}{2 \pi}\right) M_{1}^{2} \tag{2.14}
\end{equation*}
$$

By the (λ, μ)-subconvexity of $G(x)$, we have

$$
\begin{equation*}
G(x) \leq\left(2 \mu|x|^{\beta}+1\right) G_{0} \tag{2.15}
\end{equation*}
$$

for all $x \in \mathbb{R}^{N}$, and a.e. $t \in[0, T]$, where $G_{0}=\max _{|s| \leq 1} G(s), \beta=\log _{2 \lambda}(2 \mu)<2$. Then

$$
\begin{align*}
\int_{0}^{T}\left(\nabla F_{2}\left(t, u_{n}(t)\right), \tilde{u}_{n}(t)\right) d t & \geq-\int_{0}^{T} k(t) G\left(\bar{u}_{n}\right) d t \\
& \geq-\int_{0}^{T} k(t)\left(2 \mu\left|\bar{u}_{n}\right|^{\beta}+1\right) G_{0} d t \tag{2.16}\\
& =-2 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}-M_{4}
\end{align*}
$$

where $M_{4}=G_{0} \int_{0}^{T} k(t) d t$. It follows from 2.5 and 2.16 that for large n,

$$
\begin{align*}
\left\|\tilde{u}_{n}\right\| \geq & \geq\left(\varphi\left(u_{n}\right), \tilde{u}_{n}\right) \\
= & \left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\int_{0}^{T}\left(\nabla F\left(t, u_{n}(t)\right), \tilde{u}_{n}(t)\right) d t \\
\geq & \left(1-\frac{T^{2}}{8 \pi^{2} a_{4}}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}-\frac{a_{4}}{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1} \tag{2.17}\\
& -\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}}-2 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}-M_{4}
\end{align*}
$$

Then (2.7) and (2.17) imply that

$$
\begin{align*}
\frac{a_{4}}{2} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+2 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta} \geq & \left(1-\frac{T^{2}}{8 \pi^{2} a_{4}}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1} \\
& -\left(\left(\frac{T}{12}\right)^{1 / 2} M_{3}+\frac{\left(T^{2}+4 \pi^{2}\right)^{1 / 2}}{2 \pi}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}-M_{4} \\
\geq & \frac{1}{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+C_{4} \tag{2.18}
\end{align*}
$$

where

$$
\begin{aligned}
C_{4}= & \min _{s \in[0,+\infty)}\left\{\frac{8 \pi^{2} a_{4}-T^{2}}{8 \pi^{2} a_{4}} s^{2}-\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2} s^{\gamma+1}-M_{4}\right. \\
& \left.-\left[\left(\frac{T}{12}\right)^{1 / 2} M_{3}+\frac{\left(T^{2}+4 \pi^{2}\right)^{1 / 2}}{2 \pi}\right] s\right\} .
\end{aligned}
$$

Note that $-\infty<C_{4}<0$ due to $a_{4}>\frac{T^{2}}{4 \pi^{2}}$. By 2.18), one has

$$
\begin{equation*}
\left\|\dot{u}_{n}\right\|_{L^{2}}^{2} \leq a_{4} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+4 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}-2 C_{4} \tag{2.19}
\end{equation*}
$$

and then

$$
\begin{equation*}
\left\|\dot{u}_{n}\right\|_{L^{2}} \leq \frac{\sqrt{2 a_{4}}}{2} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+\sqrt{2 \mu M_{4}}\left|\bar{u}_{n}\right|^{\beta / 2}+C_{5} \tag{2.20}
\end{equation*}
$$

where $C_{5}>0$. It follows from (F6) and 2.15 that

$$
\begin{align*}
& \int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t \\
& =-\int_{0}^{T} \int_{0}^{1}\left(\nabla F_{2}\left(t, \bar{u}_{n}+s \tilde{u}_{n}(t)\right),-\tilde{u}_{n}(t)\right) d s d t \\
& \leq \int_{0}^{T} \int_{0}^{1} k(t) G\left(\bar{u}_{n}+(s+1) \tilde{u}_{n}(t)\right) d s d t \\
& \leq \int_{0}^{T} \int_{0}^{1} k(t)\left(2 \mu\left|\bar{u}_{n}+(s+1) \tilde{u}_{n}(t)\right|^{\beta}+1\right) G_{0} d s d t \tag{2.21}\\
& \leq 4 \mu \int_{0}^{T} k(t)\left(\left|\bar{u}_{n}\right|^{\beta}+2^{\beta}\left|\tilde{u}_{n}(t)\right|^{\beta}\right) G_{0} d t+G_{0} \int_{0}^{T} k(t) d t \\
& \leq 2^{\beta+2} \mu M_{4}\left\|\tilde{u}_{n}\right\|_{\infty}^{\beta}+4 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}+M_{4} \\
& \leq\left(\frac{T}{12}\right)^{\beta / 2} 2^{\beta+2} \mu M_{4}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\beta}+4 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}+M_{4}
\end{align*}
$$

for all $u \in H_{T}^{1}$. By the boundedness of $\left\{\varphi\left(u_{n}\right)\right\}$ and the inequalities 2.11, 2.19)(2.21), one has

$$
\begin{aligned}
& C_{6} \leq \varphi\left(u_{n}\right) \\
& =\frac{1}{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\int_{0}^{T}\left[F_{1}\left(t, u_{n}(t)\right)-F_{1}\left(t, \bar{u}_{n}\right)\right] d t \\
& +\int_{0}^{T}\left[F_{2}\left(t, u_{n}(t)\right)-F_{2}\left(t, \bar{u}_{n}\right)\right] d t+\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
& \leq\left(\frac{1}{2}+\frac{T}{4 \pi \sqrt{a_{4}}}\right)\left\|\dot{u}_{n}\right\|_{L^{2}}^{2}+\frac{\sqrt{a_{4}} T}{4 \pi} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\gamma+1} \\
& +\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left\|\dot{u}_{n}\right\|_{L^{2}}+\left(\frac{T}{12}\right)^{\beta / 2} 2^{\beta+2} \mu M_{4}\left\|\dot{u}_{n}\right\|_{L^{2}}^{\beta}+4 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}+M_{4} \\
& +\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
& \leq\left(\frac{1}{2}+\frac{T}{4 \pi \sqrt{a_{4}}}\right)\left(a_{4} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+4 \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}-2 C_{4}\right)+\frac{\sqrt{a_{4}} T}{4 \pi} M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma} \\
& +\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left(\sqrt{a_{4}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+2 \sqrt{\mu M_{4}}\left|\bar{u}_{n}\right|^{\beta / 2}+C_{5}\right)^{\gamma+1} \\
& +\left(\frac{T}{12}\right)^{1 / 2} p M_{3}\left(\sqrt{a_{4}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+2 \sqrt{\mu M_{4}}\left|\bar{u}_{n}\right|^{\beta / 2}+C_{5}\right) \\
& +\left(\frac{T}{12}\right)^{\beta / 2} 2^{\beta+2} \mu M_{4}\left(\sqrt{a_{4}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+2 \sqrt{\mu M_{4}}\left|\bar{u}_{n}\right|^{\beta / 2}+C_{5}\right)^{\beta} \\
& +\mu M_{4}\left|\bar{u}_{n}\right|^{\beta}+M_{4}+\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
& \leq\left(\frac{a_{4}}{2}+\frac{\sqrt{a_{4}} T}{2 \pi}\right) M_{1}^{2}\left|\bar{u}_{n}\right|^{2 \gamma}+\left(6+\frac{T}{\pi \sqrt{a_{4}}}\right) \mu M_{4}\left|\bar{u}_{n}\right|^{\beta}-\left(1+\frac{T}{2 \pi \sqrt{a_{4}}}\right) C_{4} \\
& +\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2}\left(2^{\gamma} a_{4} \frac{\gamma+1}{2} M_{1}^{\gamma+1}\left|\bar{u}_{n}\right|^{\gamma(\gamma+1)}+2^{3 \gamma+1} \mu^{\frac{\gamma+1}{2}} M_{4}^{\frac{\gamma+1}{2}}\left|\bar{u}_{n}\right|^{\frac{\beta(\gamma+1)}{2}}\right. \\
& \left.+2^{2 \gamma} C_{5}^{\gamma+1}\right)+\left(\frac{T}{12}\right)^{\frac{\beta}{2}} 2^{\beta+2} \mu M_{4}\left(2^{\beta-1} a_{4}{ }^{\frac{\beta}{2}} M_{1}{ }^{\beta}\left|\bar{u}_{n}\right|^{\gamma \beta}+2^{3 \beta-2} \mu^{\frac{\beta}{2}} M_{4}{ }^{\frac{\beta}{2}}\left|\bar{u}_{n}\right|^{\frac{\beta^{2}}{2}}\right. \\
& \left.+2^{2(\beta-1)} C_{5}^{\beta}\right)+\left(\frac{T}{12}\right)^{1 / 2} M_{3}\left(\sqrt{a_{4}} M_{1}\left|\bar{u}_{n}\right|^{\gamma}+2 \sqrt{\mu M_{4}}\left|\bar{u}_{n}\right|^{\beta / 2}+C_{5}\right) \\
& +M_{4}+\int_{0}^{T} F\left(t, \bar{u}_{n}\right) d t \\
& =\left|\bar{u}_{n}\right|^{2 \gamma}\left[\left|\bar{u}_{n}\right|^{-2 \gamma} \int_{0}^{T} F_{1}\left(t, \bar{u}_{n}\right) d t+\left(\frac{a_{4}}{2}+\frac{\sqrt{a_{4}} T}{2 \pi}\right) M_{1}^{2}\right. \\
& +\left(\frac{T}{12}\right)^{1 / 2} \sqrt{a_{4}} M_{1} M_{3}\left|\bar{u}_{n}\right|^{-\gamma}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} 2^{\gamma-\frac{1}{2}} \sqrt{a_{4}} M_{1} M_{2}\left|\bar{u}_{n}\right|^{\gamma(\gamma-1)} \\
& \left.+\left(\frac{T}{12}\right)^{\beta / 2} 2^{2 \beta+1} \mu a_{4}{ }^{\frac{\beta}{2}} M_{1}^{\beta} M_{4}\left|\bar{u}_{n}\right|^{\gamma(\beta-2)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left|\bar{u}_{n}\right|^{\beta}\left[\left|\bar{u}_{n}\right|^{-\beta} \int_{0}^{T} F_{2}\left(t, \bar{u}_{n}\right) d t+\left(6+\frac{T}{\pi \sqrt{a_{4}}}\right) \mu M_{4}\right. \\
& +\left(\frac{T}{12}\right)^{\beta / 2} 2^{4 \beta} \mu^{\frac{\beta+2}{2}} M_{4}^{\frac{\beta+2}{2}}\left|\bar{u}_{n}\right|^{\frac{1}{2} \beta^{2}-2} \\
& \left.+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} M_{2} 2^{3 \gamma+1} \mu^{\frac{\gamma+1}{2}} M_{2} M_{4}^{\frac{\gamma+1}{2}}\left|\bar{u}_{n}\right|^{\frac{\beta(\gamma-1)}{2}}+\left(\frac{T}{12}\right)^{1 / 2} 2 M_{3} \sqrt{\mu M_{4}}\left|\bar{u}_{n}\right|^{-\beta / 2}\right] \\
& -\left(1+\frac{T}{2 \pi \sqrt{a_{4}}}\right) C_{4}+\left(\frac{T}{12}\right)^{\frac{\gamma+1}{2}} 2^{2 \gamma} M_{2} C_{5}^{\gamma+1}+\left(\frac{T}{12}\right)^{1 / 2} M_{3} C_{5} \\
& +\left(\frac{T}{12}\right)^{\beta / 2} 2^{3 \beta} \mu M_{4} C_{5}^{\beta}+M_{4}
\end{aligned}
$$

for large n. The above inequality and (2.14) imply that $\{|\bar{u}|\}$ is bounded. Hence $\left\{u_{n}\right\}$ is bounded by (2.19). By using the usual method, the (PS) condition holds.

Similar to the proof of Theorem 1.2 , we can verify that functional satisfies the other conditions of the saddle point theorem. We omit the details.

3. Examples

In this section, we give some examples of F to illustrate that our results are new.
Example 3.1. Let $F=F_{1}+F_{2}$, with

$$
\begin{gathered}
F_{1}(t, x)=\sin \left(\frac{2 \pi t}{T}\right)|x|^{7 / 4}+(0.6 T-t)|x|^{3 / 2}+(h(t), x) \\
F_{2}(x)=C(x)-\frac{3 r}{4}|x|^{4 / 3}
\end{gathered}
$$

where $h \in \mathscr{L}^{1}\left(0, T ; \mathbb{R}^{N}\right), r>0, C(x)=\frac{3 r}{4}\left(\left|x_{1}\right|^{4}+\left|x_{2}\right|^{4 / 3}+\cdots+\left|x_{N}\right|^{4 / 3}\right)$.
By Young's inequality, it is easy to see that

$$
\begin{aligned}
\left|\nabla F_{1}(t, x)\right| & \leq \frac{7}{4}\left|\sin \left(\frac{2 \pi t}{T}\right)\right||x|^{3 / 4}+\frac{3}{2}|0.6 T-t||x|^{1 / 2}+|h(t)| \\
& \leq \frac{7}{4}\left(\left|\sin \left(\frac{2 \pi t}{T}\right)\right|+\varepsilon\right)|x|^{3 / 4}+\frac{T^{3}}{\varepsilon^{2}}+|h(t)|
\end{aligned}
$$

for all $x \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$, where $\varepsilon>0$. And

$$
\left(\nabla F_{2}(x)-\nabla F_{2}(y), x-y\right) \geq-r|x-y|^{4 / 3}
$$

for all $x, y \in \mathbb{R}^{N}$. Thus, (F1), (F2) hold with $\gamma=3 / 4, \alpha=4 / 3$ and

$$
f(t)=\frac{7}{4}\left(\left|\sin \left(\frac{2 \pi t}{T}\right)\right|+\varepsilon\right), \quad g(t)=\frac{T^{3}}{\varepsilon^{2}}+|h(t)|
$$

However, F does not satisfy (1.2). In fact

$$
\begin{aligned}
& |x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t \\
& =|x|^{-3 / 2} \int_{0}^{T}\left[\sin \left(\frac{2 \pi t}{T}\right)|x|^{7 / 4}+(0.6 T-t)|x|^{3 / 2}+\left(C(x)-\frac{3 r}{4}|x|^{4 / 3}\right)+(h(t), x)\right] d t \\
& =0.1 T^{2}+\frac{T\left(C(x)-\frac{3 r}{4}|x|^{4 / 3}\right)}{|x|^{3 / 2}}+\left(\int_{0}^{T} h(t) d t,|x|^{-3 / 2} x\right)
\end{aligned}
$$

On the other hand, we have

$$
\frac{T^{2}}{8 \pi^{2}} \int_{0}^{T} f^{2}(t) d t=\frac{49 T^{3}}{128 \pi^{2}}\left(\frac{1}{2}+\frac{4 \varepsilon}{\pi}+\varepsilon^{2}\right)
$$

If $T<\frac{128 \pi^{2}}{245}$, we choose $\varepsilon>0$ sufficient small such that

$$
\liminf _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t=0.1 T^{2}>\frac{T^{2}}{8 \pi^{2}} \int_{0}^{T} f^{2}(t) d t
$$

which implies that (F3) holds. Then $F=F_{1}+F_{2}$ is not convex, not γ-subadditive, not periodic, not a.e. uniformly coercive, and ∇F is not sublinear. Thus, F is not covered by results in the references.

Example 3.2. Let $F=F_{1}+F_{2}$, with

$$
\begin{gathered}
F_{1}(t, x)=(0.5 T-t)|x|^{7 / 4}+(0.4 T-t)|x|^{3 / 2}+(h(t), x) \\
F_{2}(x)=-\frac{4 r}{5}|x|^{5 / 4}
\end{gathered}
$$

where $h \in \mathscr{L}^{1}\left(0, T ; \mathbb{R}^{N}\right), r>0$.
Similar to Example 3.1, we can see that all conditions of Theorem 1.2 hold but F is not covered by results in the references.

Example 3.3. Let $F=F_{1}+F_{2}$, with

$$
\begin{gathered}
F_{1}(t, x)=(0.5 T-t)|x|^{7 / 4}+(0.6 T-t)|x|^{3 / 2}+(h(t), x) \\
F_{2}(x)=C(x)-\frac{r}{2}|x|^{2}
\end{gathered}
$$

where $h \in \mathscr{L}^{1}\left(0, T ; \mathbb{R}^{N}\right), C(x)=\frac{r}{2}\left(\left|x_{1}\right|^{4}+\left|x_{2}\right|^{2}+\cdots+\left|x_{N}\right|^{2}\right), 0<r<\frac{4 \pi^{2}}{T^{2}}$.
In a way similar to Example 3.1, it is easy to see that condition (F1) and (F2') are satisfied with $\gamma=3 / 4$. However, F does not satisfies 1.2 . In fact,

$$
\begin{aligned}
& |x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t \\
& =|x|^{-2 / 3} \int_{0}^{T}\left[(0.5 T-t)|x|^{7 / 4}+(0.6 T-t)|x|^{3 / 2}+\left(C(x)-\frac{r}{2}|x|^{2}\right)+(h(t), x)\right] d t \\
& =0.1 T^{2}+\frac{T\left(C(x)-\frac{r}{2}|x|^{2}\right)}{|x|^{3 / 2}}+\left(\int_{0}^{T} h(t) d t, x|x|^{-3 / 2}\right) \\
& =0.1 T^{2}+\frac{r T\left(\left|x_{1}\right|^{4}-\left|x_{1}\right|^{2}\right)}{2|x|^{3 / 2}}+\left(\int_{0}^{T} h(t) d t, x|x|^{-3 / 2}\right)
\end{aligned}
$$

We can choose $\varepsilon>0$ small enough and some suitable T such that

$$
\liminf _{|x| \rightarrow \infty}|x|^{-2 \gamma} \int_{0}^{T} F(t, x) d t=0.1 T^{2}>\frac{T^{2}}{2\left(4 \pi^{2}-r T^{2}\right)} \int_{0}^{T} f^{2}(t, x) d t
$$

which implies that (F3') holds. F is also not covered by results in the references.

References

[1] Nurbek Aizmahin, Tianqing An; The existence of periodic solutions of non-autonomous second-order Hamiltonian systems. Nonlinear Analysis TMA 74, (2011), 4862-4867.
[2] M. S. Berger, M. Schechter; On the solvability of semilinear gradient operator equations. Adv. Math. 25, (1977), 97-132.
[3] Jian Ma, Chunlei Tang; Periodic solutions for some nonautonomous second-order systems. J. Math. Anal. Appl. 275, (2002), 482-494.
[4] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York, 1989.
[5] J. Mawhin; Oscillations forcees de systemes hamiltoniens. Semin. Analyse Non linaire, Univ. Besancon, 1981.
[6] J. Mawhin; Semi-coercive monotone variational problems. Acad. Roy. Belg. Bull. Cl. Sci. 73, (1987), 118-130.
[7] P. H. Rabinowitz; Minimax methods in critical point with applications to differential equations. CBMS 65, American Mathematical Society, Providence, RI, 1986.
[8] Chunlei Tang; Existence and multiplicity of periodic solutions for non-autonomous second order systems. Nonlinear Analysis TMA 32, (1998), 299-304.
[9] Chunlei Tang; Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Pro. Amer. Math. Soc. 126, (1998), 3263-3270.
[10] Chunlei Tang; Periodic solutions of nonautonomous second order systems with γ quasisubadditive potential. J. Math. Anal. Appl. 186, (1995), 671-675.
[11] X.H. Tang, Qiong Meng; Solutions of a second-order Hamiltonian system with periodic boundary conditions. Nonlinear Analysis RWA 11, (2010), 3722-3733.
[12] Xingping Wu, Chunlei Tang; Periodic solutions of a class of non-autonomous second-order systems. J. Math. Anal. Appl. 236, (1999), 227-235.
[13] Rigao Yang; Periodic solutions of some non-autonomous second order Hamiltonian systems. Nonlinear Analysis TMA 69, (2008), 2333-2338.
[14] Xingyong Zhang, Yinggao Zhou; Periodic solutions of non-autonomous second order Hamiltonian systems. J. Math. Anal. Appl. 345, (2008), 929-933.
[15] Fukun Zhao, Xian Wu; Periodic solutions for a class of non-autonomous second order systems. J. Math. Anal. Appl. 296, (2004), 422-434.

Yue Wu
College of Science, Hohai University, Nanjing 210098, China
E-mail address: wyue007@126.com
Tianqing An
College of Science, Hohai University, Nanjing 210098, China
E-mail address: antq@hhu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34C25, 58F05.
 Key words and phrases. Periodic solution; Hamiltonian systems; critical point; variational method.
 (C) 2013 Texas State University - San Marcos.

 Submitted January 11, 2013. Published March 19, 2013.

