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EXISTENCE OF PERIODIC SOLUTIONS FOR
NON-AUTONOMOUS SECOND-ORDER

HAMILTONIAN SYSTEMS

YUE WU, TIANQING AN

Abstract. The purpose of this paper is to study the existence of periodic

solutions for a class of non-autonomous second order Hamiltonian systems.

New results are obtained by using the least action principle and the minimax
methods, without the so-called Ahmad-Lazer-Paul type condition.

1. Introduction and main results

Consider the second-order Hamiltonian system

ü(t) = ∇F
(
t, u(t)

)
,

u(T )− u(0) = u̇(T )− u̇(0) = 0,
(1.1)

where T > 0 and F : [0, T ]× RN → R satisfies the following assumption:
(A) F (t, x) is measurable in t for every x ∈ RN , continuously differentiable in

x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L 1(0, T ; R+) such
that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

The corresponding functional ϕ : H1
T → R,

ϕ(u) =
1
2

∫ T

0

|u̇(t)|2dt+
∫ T

0

F
(
t, u(t)

)
dt

is continuously differentiable and weakly lower semi-continuous on H1
T (see [4]),

where H1
T is the usual Sobolev space with the norm

‖u‖ =
[ ∫ T

0

|u(t)|2dt+
∫ T

0

|u̇(t)|2dt
]1/2

.

It is well know that the solutions of problem (1.1) correspond to the critical points
of ϕ.

Problem (1.1) has been extensively studied in the past thirty years; see for
example the references in this article. Under some suitable solvability conditions,
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such as the coercivity condition (cf. [2]), the periodicity condition (cf. [5]), the
convexity condition (cf. [6]), the subadditive condition (cf. [10]), the existence and
multiplicity results are obtained. We note that in many contributions (for example,
see [1, 3, 9, 12, 13, 14, 15]), the following condition was assumed:

lim
|x|→∞

|x|−2α

∫ T

0

F (t, x)dt =∞ or −∞, (1.2)

where α is a constant. In this article, instead of (1.2), we discuss the existence of pe-
riodic solutions of (1.1) under a weak condition that lim inf |x|→∞ |x|−2α

∫ T
0
F (t, x)dt

or lim sup|x|→∞ |x|−2α
∫ T
0
F (t, x)dt has appropriate lower or upper bound.

Our main results are as follows:

Theorem 1.1. Suppose that F (t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy
assumption (A) and the following conditions:

(F1) there exist f, g ∈ L 1(0, T ; R+) and γ ∈ [0, 1) such that

|∇F1(t, x)| ≤ f(t)|x|γ + g(t),

for all x ∈ RN and a.e. t ∈ [0, T ];
(F2) there exist constants r > 0 and α ∈ [0, 2) such that

(∇F2(x)−∇F2(y), x− y) ≥ −r|x− y|α,
for all x, y ∈ RN ;

item[(F3)]

lim inf
|x|→∞

|x|−2γ

∫ T

0

F (t, x) dt ≥ T 2

8π2

∫ T

0

f2(t) dt.

Then problem (1.1) has at least one periodic solution which minimizes ϕ on H1
T .

Theorem 1.2. Suppose that F (t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy
assumptions (A), (F1), (F2) and the following conditions:

(F4) there exist δ ∈ [0, 2) and C > 0 such that

(∇F2(x)−∇F2(y), x− y) ≤ C|x− y|δ,
for all x, y ∈ RN ;

(F5)

lim sup
|x|→∞

|x|−2γ

∫ T

0

F (t, x) dt ≤ −3T 2

8π2

∫ T

0

f2(t) dt.

Then problem (1.1) has at least one periodic solution which minimizes ϕ on H1
T .

Theorem 1.3. Suppose that F (t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy
assumptions (A), (F1), and the following conditions:

(F2’) there exists a constant 0 < r < 4π2/T 2, such that

(∇F2(x)−∇F2(y), x− y) ≥ −r|x− y|2;

for all x, y ∈ RN ;
(F3’)

lim inf
|x|→∞

|x|−2γ

∫ T

0

F (t, x) dt ≥ T 2

2(4π2 − rT 2)

∫ T

0

f2(t) dt.

Then problem (1.1) has at least one periodic solution which minimizes ϕ on H1
T .
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Theorem 1.4. Suppose that F = F1 + F2, where F1 and F2 satisfy assumptions
(A), (F1) and the following conditions:

(F6) there exist k ∈ L 1(0, T ; R+) and (λ, µ)-subconvex potential G : RN → R
with λ > 1/2 and 0 < µ < 2λ2, such that

(∇F2(t, x), y) ≥ −k(t)G(x− y),

for all x, y ∈ RN and a.e. t ∈ [0, T ];
(F7)

lim sup
|x|→∞

|x|−2γ

∫ T

0

F1(t, x) dt ≤ −3T 2

8π2

∫ T

0

f2(t) dt,

lim sup
|x|→∞

|x|−β
∫ T

0

F2(t, x) dt ≤ −8µmax
|s|≤1

G(s)
∫ T

0

k(t) dt,

where β = log2λ(2µ).

Then problem (1.1) has at least one periodic solution which minimizes ϕ on H1
T .

Remark 1.5. Theorems 1.1–1.3 extend some existing results. On the one hand,
we decomposed the potential F into F1 and F2. On the other hand, we weaken
the so-called Ahmad-Lazer-Paul type condition (1.2) as conditions (F3), (F5) and
(F3’). Note that [13, Theorem 2] and [3, Theorem 1] are the direct corollaries of
Theorem 1.1 and Theorem 1.3 respectively. If F2 = 0, [11, Theorems 1 and 2] are
special cases of Theorem 1.1 and Theorem 1.2 respectively. Some examples of F are
given in section 3, which are not covered in the references. Moreover, our Theorem
1.4 is a new result.

2. Proof of Theorems

For u ∈ H1
T , let

ū =
1
T

∫ T

0

u(t) dt, ũ(t) = u(t)− ū.

The following inequalities are well known (cf. [4]):

‖ũ‖2∞ ≤
T

12
‖u̇‖2L2 (Sobolev’s inequality),

‖ũ‖2L2 ≤
T 2

4π2
‖u̇‖2L2 (Wirtinger’s inequality)

For convenience, we denote

M1 =
(∫ T

0

f2(t) dt
)1/2

, M2 =
∫ T

0

f(t) dt, M3 =
∫ T

0

g(t) dt.

Now we give the proofs of the main results.

Proof of Theorem 1.1. By (F3), we can choose an a1 > T 2/(4π2) such that

lim inf
|x|→∞

|x|−2γ

∫ T

0

F (t, x) dt >
a1

2
M2

1 . (2.1)



4 Y. WU, T. AN EJDE-2013/77

By (F1) and the Sobolev’s inequality, for any u ∈ H1
T ,

∣∣ ∫ T

0

[F1(t, u(t))− F1(t, ū)] dt
∣∣

=
∣∣ ∫ T

0

∫ 1

0

(
∇F1

(
t, ū+ sũ(t)

)
, ũ(t)

)
ds dt

∣∣
≤
∫ T

0

∫ 1

0

f(t)|ū+ sũ(t)|γ |ũ(t)| ds dt+
∫ T

0

∫ 1

0

g(t)|ũ(t)| ds dt

≤ |ū|γ
(∫ T

0

f2(t) dt
)1/2(∫ T

0

|ũ(t)|2 dt
)1/2

+ ‖ũ‖γ+1
∞

∫ T

0

f(t) dt+ ‖ũ‖∞
∫ T

0

g(t) dt

≤ 1
2a1
‖ũ‖2L2 +

a1

2
M2

1 |ū|
2γ +M2‖ũ‖γ+1

∞ +M3‖ũ‖∞

≤ T 2

8π2a1
‖u̇‖2L2 +

a1

2
M2

1 |ū|
2γ +

( T
12
) γ+1

2

M2‖u̇‖γ+1
L2 +

( T
12
)1/2

M3‖u̇‖L2

(2.2)

Similarly, by (F2) and the Sobolev’s inequality, for any u ∈ H1
T ,∫ T

0

[F2(u(t))− F2(ū)]dt =
∫ T

0

∫ 1

0

1
s

(∇F2(ū+ sũ(t))−∇F2(ū), sũ(t)) ds dt

≥ −
∫ T

0

∫ 1

0

rsα−1|ũ(t)|α ds dt

≥ −rT
α
‖ũ‖α∞

≥ −rT
α

( T
12
)α/2
‖u̇‖αL2

(2.3)
It follows from (2.2) and (2.3) that

ϕ(u) =
1
2
‖u̇‖2L2 +

∫ T

0

[F1(t, u(t))− F1(t, ū)] dt

+
∫ T

0

[F2(u(t))− F2(ū)] dt+
∫ T

0

F (t, ū)dt

≥
(1

2
− T 2

8π2a1

)
‖u̇‖2L2 −

( T
12
) γ+1

2

M2‖u̇‖γ+1
L2 −

( T
12
)1/2

M3‖u̇‖L2

− rT

α

( T
12
)α/2
‖u̇‖αL2 + |ū|2γ

(
|ū|−2γ

∫ T

0

F (t, ū)dt− a1

2
M2

1

)
for all u ∈ H1

T , which implies that ϕ(u)→∞ as ‖u‖ → ∞, due to (2.1) and γ < 1.
By the least action principle (see [4, Theorem 1.1 and Corollary 1.1]), the proof

is complete. �

Proof of Theorem 1.2. Step 1. We firstly show that ϕ satisfies the (PS) condition.
Suppose that {un} is a (PS) sequence, that is, ϕ′(un) → 0 as n → 0 and {ϕ (un)}
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is bounded. By (F5), we can choose an a2 > T 2/(4π2) such that

lim sup
|x|→∞

|x|−2γ
∫ T

0

F (t, x) dt < −
(a2

2
+
√
a2T

2π

)
M2

1 . (2.4)

In a way similar to the proof of Theorem 1.1, one has∫ T

0

(∇F1(t, un(t)), ũn(t)) dt

≤ T 2

8π2a2
‖u̇n‖2L2 +

a2

2
M2

1 |ūn|
2γ +

( T
12
) (γ+1)

2

M2 ‖u̇n‖γ+1
L2 +

( T
12
)1/2

M3‖u̇n‖L2

(2.5)
and ∫ T

0

(∇F2(un(t)), ũn(t)) dt ≥ −rT
α

( T
12
)α/2

‖u̇n‖αL2

∫ T

0

r(t)dt

for all n. Hence one has
‖ũn‖ ≥ (ϕ′(un), ũn)

= ‖u̇n‖2L2 +
∫ T

0

(∇F (t, un(t)), ũn(t))dt

≥
(

1− T 2

8π2a2

)
‖u̇n‖2L2 −

a2

2
M2

1 |ūn|
2γ −

( T
12
) (γ+1)

2

M2 ‖u̇n‖γ+1
L2

−
( T

12
)1/2

M3‖u̇n‖L2 −
rT

α

( T
12
)α/2

‖u̇n‖αL2

(2.6)

for large n. It follows from Wirtinger’s inequality that

‖ũn‖ ≤
(
T 2 + 4π2

)1/2
2π

‖u̇n‖L2 . (2.7)

By (2.6) and (2.7),

a2

2
M2

1 |ūn|
2γ ≥

(
1− T 2

8π2a2

)
‖u̇n‖2L2 −

( T
12
) γ+1

2

M2 ‖u̇n‖γ+1
L2 −

( T
12
) 1

2

M3‖u̇n‖L2

− rT

α

( T
12
)α

2

‖u̇n‖αL2 −
(
T 2 + 4π2

)1/2
2π

‖u̇n‖L2

≥ 1
2
‖u̇n‖2L2 + C1,

(2.8)
where

C1 = min
s∈[0,+∞)

{4π2a2 − T 2

8π2a2
s2 −

( T
12
) γ+1

2

M2s
γ+1 −

[rT
α

( T
12
)α/2]

sα

−
[( T

12
)1/2

M3 +

(
T 2 + 4π2

)1/2
2π

]
s
}
.

Note that a2 > T 2/(4π2) implies −∞ < C1 < 0. Hence, it follows from (2.8) that

‖u̇n‖2L2 ≤ a2M
2
1 |ūn|

2γ − 2C1, (2.9)

and then
‖u̇n‖L2 ≤

√
a2M1|ūn|γ + C2, (2.10)
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where 0 < C2 < +∞. In a way similar to the proof of Theorem 1.1, we have∣∣ ∫ T

0

[F1(t, u(t))− F1(t, ū)]dt
∣∣

≤M1|ū|γ‖ũ‖L2 +M2‖ũ‖γ+1
∞ +M3‖ũ‖∞

≤ π
√
a2T
‖ũn‖2L2 +

√
a2T

4π
M2

1 |ūn|
2γ +M2 ‖ũn‖γ+1

∞ +M3‖ũn‖∞

≤ T

4π
√
a2
‖u̇n‖2L2 +

√
a2T

4π
M2

1 |ūn|
2γ +

( T
12
) γ+1

2

M2 ‖u̇n‖γ+1
L2

+
( T

12
)1/2

M3‖u̇n‖L2 .

(2.11)

By (F4), we obtain∫ T

0

[F2(un(t))− F2(ūn)] dt

=
∫ T

0

∫ 1

0

1
s

(∇F2(ūn + sũn(t))−∇F2(ūn), sũn(t)) ds dt

≤
∫ T

0

∫ 1

0

Csδ−1|ũn(t)|δ ds dt ≤ CT

δ
‖ũn‖δ∞

≤ CT

δ

( T
12
)δ/2
‖u̇n‖δL2 .

It follows from the boundedness of {ϕ(un)} and (2.9)-2.11 that

C3 ≤ ϕ(un)

=
1
2
‖u̇n‖2L2 +

∫ T

0

[F1 (t, un(t))− F1 (t, ūn)] dt+
∫ T

0

[F2 (un(t))− F2 (ūn)] dt

+
∫ T

0

F (t, ūn)dt

≤
(1

2
+

T

4π
√
a2

)
‖u̇n‖2L2 +

√
a2T

4π
M2

1 |ūn|
2γ +

( T
12
) γ+1

2

M2 ‖u̇n‖γ+1
L2

+
( T

12
)1/2

M3‖u̇n‖L2 +
CT

δ

( T
12
)δ/2
‖u̇n‖δL2 +

∫ T

0

F (t, ūn)dt

≤
(1

2
+

T

4π
√
a2

)(
a2M

2
1 |ūn|

2γ − 2C1

)
+
( T

12
) γ+1

2

M2(
√
a2M1|ūn|γ + C2)γ+1

+
( T

12
)1/2

M3 (
√
a2M1|ūn|γ + C2) +

CT

δ

( T
12
)δ/2

(
√
a2M1|ūn|γ + C2)δ

+
√
a2T

4π
M2

1 |ūn|
2γ +

∫ T

0

F (t, ūn)dt

≤
(a2

2
+
√
a2T

2π

)
M2

1 |ūn|
2γ +

( T
12
) γ+1

2

M2

(
2γ(
√
a2M1)γ+1|ūn|γ(γ+1) + 2γCγ+1

2

)
+
CT

δ

( T
12
)δ/2 (

2δ−1(
√
a2M1)δ|ūn|γδ + 2δ−1Cδ2

)



EJDE-2013/77 PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS 7

+
( T

12
)1/2

M3 (
√
a2M1|ūn|γ + C2)−

(
1 +

T

2π
√
a2

)
C1 +

∫ T

0

F (t, ūn) dt

= |ūn|2γ
[
|ūn|−2γ

∫ T

0

F (t, ūn)dt+
(a2

2
+
√
a2T

2π

)
M2

1

+
(a2T

12

) γ+1
2

2γMγ+1
1 M2|ūn|γ(γ−1) +

(a2T

12

)1/2

M1M3|ūn|−γ

+
CT

δ

(a2T

12

)δ/2
2δ−1Mδ

1 |ūn|
γ(δ−2)

]
+
( T

12
) γ+1

2

2γM2C
γ+1
2

+
CT

δ

( T
12
)δ/2

2δ−1Cδ2 +
( T

12
)1/2

M3C2 −
(

1 +
T

2π
√
a2

)
C1

for large n. The above inequality and (2.4) imply that {|ū|} is bounded. Hence
{un} is bounded by (2.9). Arguing as in the proof of Proposition 4.1 of [4], we
conclude that (PS) condition is satisfied.

Step 2. Let H̃1
T = {u ∈ H1

T : ū = 0}. We show that for u ∈ H̃1
T ,

ϕ(u)→ +∞ (‖u‖ → ∞). (2.12)

In fact, by (F1) and Sobolev’s inequality, one has∣∣ ∫ T

0

[F1 (t, u(t))− F1 (t, 0)]dt
∣∣ =

∣∣ ∫ T

0

∫ 1

0

(∇F1(t, su(t)), u(t)) ds dt
∣∣

≤
∫ T

0

f(t)|u(t)|γ+1
dt+

∫ T

0

g(t) |u(t)| dt

≤
( T

12
)α+1

2

M2‖u̇‖α+1
L2 +

( T
12
)1/2

M3‖u̇‖L2

for all u ∈ H̃1
T . It follows from (F2) that∫ T

0

[F2 (u(t))− F2 (0)]dt =
∫ T

0

∫ 1

0

(∇F2(su(t))−∇F2 (0) , u(t)) ds dt

≥ −
∫ T

0

∫ 1

0

rsα−1|u(t)|α ds dt

≥ −rT
α
‖u‖α∞

≥ −rT
α

(
T

12

)α/2
‖u‖αL2 .

Hence, we have

ϕ(u) =
1
2
‖u̇‖2L2 +

∫ T

0

[F (t, u(t))− F (t, 0)]dt+
∫ T

0

F (t, 0)dt

≥ 1
2
‖u̇‖2L2 −

( T
12
)α+1

2

M2‖u̇‖α+1
L2 −

( T
12
)1/2

M3‖u̇‖L2

− rT

α

( T
12
)α/2

‖u‖αL2 +
∫ T

0

F (t, 0)dt.

By Wirtinger’s inequality, ‖u‖ → ∞ if and only if ‖u̇‖L2 →∞ in H̃1
T . Hence (2.12)

is satisfied.
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Step 3. By (F5), we can easily see that
∫ T
0
F (t, x)dt → −∞ as |x| → ∞ for all

x ∈ RN . Thus, for all u ∈ (H̃1
T )⊥ = RN ,

ϕ(u) =
∫ T

0

F (t, u)dt→ −∞ as |u| → ∞.

Now, the proof is completed by saddle point theorem (cf. [7, Theorem 4.6]) �

Proof of Theorem 1.3. By (F3’), we can choose an a3 >
T 2

4π2−rT 2 such that

lim inf
|x|→∞

|x|−2γ

∫ T

0

F (t, x) dt >
a3

2
M2

1 . (2.13)

The condition (F2’) and the Sobolev’s inequality imply that∫ T

0

[F2(u(t)− F2(ū))] dt =
∫ T

0

∫ 1

0

1
s

(∇F2(ū+ sũ(t))−∇F2(ū), sũ(t)) ds dt

≥ −
∫ T

0

∫ 1

0

rs|ũ(t)|2 ds dt− rT 2

8π2
‖u̇‖2L2 .

It follows immediately from the similar method of the proof of Theorem 1.1 that

ϕ(u) =
1
2
‖u̇‖2L2 +

∫ T

0

F (t, u(t))dt

≥
(

1
2
− T 2

8π2a3
− rT 2

8π2

)
‖u̇‖2L2 −

( T
12
) γ+1

2

M2‖u̇‖γ+1
L2

−
( T

12
)1/2

M3‖u̇‖L2 + |ū|2γ
(
|ū|−2γ

∫ T

0

F (t, ū)dt− a3

2
M2

1

)
for all u ∈ H1

T , which implies that ϕ(u) → ∞ as ‖u‖ → ∞ by (2.13), due to the
facts that γ < 1, r < 4π2

T 2 and ‖u‖ → ∞ if and only if(
|ū|2 + ‖u̇‖2L2

)1/2
→∞.

By the least action principle, Theorem 1.3 holds. �

Proof of Theorem 1.4. We firstly show that ϕ satisfies the (PS) condition. Suppose
that {un} satisfies ϕ′(un)→ 0 as n→ 0 and {ϕ (un)} is bounded. By (F7), we can
choose an a4 > T 2/(4π2 such that

lim sup
|x|→∞

|x|−2γ
∫ T

0

F1 (t, x) dt < −
(a4

2
+
√
a4T

2π
)
M2

1 . (2.14)

By the (λ,µ)-subconvexity of G(x), we have

G(x) ≤
(

2µ|x|β + 1
)
G0 (2.15)

for all x ∈ RN , and a.e. t ∈ [0, T ], where G0 = max|s|≤1G(s), β = log2λ(2µ) < 2.
Then ∫ T

0

(∇F2 (t, un(t)) , ũn(t)) dt ≥ −
∫ T

0

k(t)G(ūn)dt

≥ −
∫ T

0

k(t)
(

2µ|ūn|β + 1
)
G0dt

= −2µM4|ūn|β −M4,

(2.16)
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where M4 = G0

∫ T
0
k(t)dt. It follows from (2.5) and (2.16) that for large n,

‖ũn‖ ≥ (ϕ(un), ũn)

= ‖u̇n‖2L2 +
∫ T

0

(∇F (t, un(t)), ũn(t))dt

≥
(

1− T 2

8π2a4

)
‖u̇n‖2L2 −

a4

2
M2

1 |ūn|
2γ −

( T
12
) γ+1

2

M2 ‖u̇n‖γ+1
L2

−
( T

12
)1/2

M3‖u̇n‖L2 − 2µM4|ūn|β −M4.

(2.17)

Then (2.7) and (2.17) imply that

a4

2
M2

1 |ūn|
2γ + 2µM4|ūn|β ≥

(
1− T 2

8π2a4

)
‖u̇n‖2L2 −

( T
12
) γ+1

2

M2 ‖u̇n‖γ+1
L2

−
(( T

12
)1/2

M3 +

(
T 2 + 4π2

)1/2
2π

)
‖u̇n‖L2 −M4

≥ 1
2
‖u̇n‖2L2 + C4,

(2.18)
where

C4 = min
s∈[0,+∞)

{8π2a4 − T 2

8π2a4
s2 −

( T
12
) γ+1

2

M2s
γ+1 −M4

−
[( T

12
)1/2

M3 +

(
T 2 + 4π2

)1/2
2π

]
s
}
.

Note that −∞ < C4 < 0 due to a4 >
T 2

4π2 . By (2.18), one has

‖u̇n‖2L2 ≤ a4M
2
1 |ūn|

2γ + 4µM4|ūn|β − 2C4, (2.19)

and then

‖u̇n‖L2 ≤
√

2a4

2
M1|ūn|γ +

√
2µM4|ūn|β/2 + C5, (2.20)

where C5 > 0. It follows from (F6) and (2.15) that∫ T

0

[F2 (t, u(t))− F2 (t, ū)] dt

= −
∫ T

0

∫ 1

0

(∇F2 (t, ūn + sũn(t)) ,−ũn(t)) ds dt

≤
∫ T

0

∫ 1

0

k(t)G (ūn + (s+ 1)ũn(t)) ds dt

≤
∫ T

0

∫ 1

0

k(t)
(

2µ|ūn + (s+ 1)ũn(t)|β + 1
)
G0 ds dt

≤ 4µ
∫ T

0

k(t)
(
|ūn|β + 2β |ũn(t)|β

)
G0dt+G0

∫ T

0

k(t)dt

≤ 2β+2µM4 ‖ũn‖β∞ + 4µM4|ūn|β +M4

≤
( T

12
)β/2

2β+2µM4 ‖u̇n‖βL2 + 4µM4|ūn|β +M4

(2.21)
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for all u ∈ H1
T . By the boundedness of {ϕ(un)} and the inequalities (2.11), (2.19)-

(2.21), one has

C6 ≤ ϕ(un)

=
1
2
‖u̇n‖2L2 +

∫ T

0

[F1 (t, un(t))− F1 (t, ūn)] dt

+
∫ T

0

[F2 (t, un(t))− F2 (t, ūn)] dt+
∫ T

0

F (t, ūn)dt

≤
(1

2
+

T

4π
√
a4

)
‖u̇n‖2L2 +

√
a4T

4π
M2

1 |ūn|
2γ +

( T
12
) γ+1

2

M2 ‖u̇n‖γ+1
L2

+
( T

12
)1/2

M3‖u̇n‖L2 +
( T

12
)β/2

2β+2µM4 ‖u̇n‖βL2 + 4µM4|ūn|β +M4

+
∫ T

0

F (t, ūn)dt

≤
(1

2
+

T

4π
√
a4

)(
a4M

2
1 |ūn|

2γ + 4µM4|ūn|β − 2C4

)
+
√
a4T

4π
M2

1 |ūn|
2γ

+
( T

12
) γ+1

2

M2

(√
a4M1|ūn|γ + 2

√
µM4|ūn|β/2 + C5

)γ+1

+
( T

12
)1/2

pM3

(√
a4M1|ūn|γ + 2

√
µM4|ūn|β/2 + C5

)
+
( T

12
)β/2

2β+2µM4

(√
a4M1|ūn|γ + 2

√
µM4|ūn|β/2 + C5

)β
+ µM4|ūn|β +M4 +

∫ T

0

F (t, ūn)dt

≤
(a4

2
+
√
a4T

2π

)
M2

1 |ūn|
2γ +

(
6 +

T

π
√
a4

)
µM4|ūn|β −

(
1 +

T

2π
√
a4

)
C4

+
( T

12
) γ+1

2

M2

(
2γa4

γ+1
2 M1

γ+1|ūn|γ(γ+1) + 23γ+1µ
γ+1
2 M

γ+1
2

4 |ūn|
β(γ+1)

2

+ 22γCγ+1
5

)
+
( T

12
) β

2

2β+2µM4

(
2β−1a4

β
2M1

β |ūn|γβ + 23β−2µ
β
2M4

β
2 |ūn|

β2

2

+ 22(β−1)Cβ5

)
+
(
T

12

)1/2

M3

(√
a4M1|ūn|γ + 2

√
µM4|ūn|β/2 + C5

)
+M4 +

∫ T

0

F (t, ūn)dt

= |ūn|2γ
[
|ūn|−2γ

∫ T

0

F1(t, ūn)dt+
(a4

2
+
√
a4T

2π

)
M2

1

+
( T

12
)1/2√

a4M1M3|ūn|−γ +
( T

12
) γ+1

2

2γ−
1
2
√
a4M1M2|ūn|γ(γ−1)

+
( T

12
)β/2

22β+1µa4

β
2M1

βM4|ūn|γ(β−2)
]
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+ |ūn|β
[
|ūn|−β

∫ T

0

F2(t, ūn)dt+
(

6 +
T

π
√
a4

)
µM4

+
( T

12
)β/2

24βµ
β+2
2 M4

β+2
2 |ūn|

1
2β

2−2

+
( T

12
) γ+1

2

M223γ+1µ
γ+1
2 M2M4

γ+1
2 |ūn|

β(γ−1)
2 +

( T
12
)1/2

2M3

√
µM4|ūn|−β/2

]
−
(

1 +
T

2π
√
a4

)
C4 +

( T
12
) γ+1

2

22γM2C
γ+1
5 +

( T
12
)1/2

M3C5

+
( T

12
)β/2

23βµM4C
β
5 +M4

for large n. The above inequality and (2.14) imply that {|ū|} is bounded. Hence
{un} is bounded by (2.19). By using the usual method, the (PS) condition holds.

Similar to the proof of Theorem 1.2, we can verify that functional satisfies the
other conditions of the saddle point theorem. We omit the details. �

3. Examples

In this section, we give some examples of F to illustrate that our results are new.

Example 3.1. Let F = F1 + F2, with

F1(t, x) = sin
(2πt
T

)
|x|7/4 + (0.6T − t)|x|3/2 + (h(t), x) ,

F2(x) = C(x)− 3r
4
|x|4/3,

where h ∈ L 1(0, T ; RN ), r > 0, C(x) = 3r
4 (|x1|4 + |x2|4/3 + · · ·+ |xN |4/3).

By Young’s inequality, it is easy to see that

|∇F1(t, x)| ≤ 7
4

∣∣∣ sin(2πt
T

)∣∣∣|x|3/4 +
3
2
|0.6T − t||x|1/2 + |h(t)|

≤ 7
4

(∣∣∣ sin(2πt
T

)∣∣∣+ ε
)
|x|3/4 +

T 3

ε2
+ |h(t)|

for all x ∈ RN and a.e. t ∈ [0, T ], where ε > 0. And

(∇F2(x)−∇F2(y), x− y) ≥ −r|x− y|4/3

for all x, y ∈ RN . Thus, (F1), (F2) hold with γ = 3/4, α = 4/3 and

f(t) =
7
4

(| sin(
2πt
T

)|+ ε), g(t) =
T 3

ε2
+ |h(t)|.

However, F does not satisfy (1.2). In fact

|x|−2γ

∫ T

0

F (t, x)dt

= |x|−3/2

∫ T

0

[
sin
(2πt
T

)
|x|7/4 + (0.6T − t)|x|3/2 +

(
C(x)− 3r

4
|x|4/3

)
+ (h(t), x)

]
dt

= 0.1T 2 +
T (C(x)− 3r

4 |x|
4/3)

|x|3/2
+
(∫ T

0

h(t)dt, |x|−3/2x
)
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On the other hand, we have

T 2

8π2

∫ T

0

f2(t)dt =
49T 3

128π2

(1
2

+
4ε
π

+ ε2
)

If T < 128π2

245 , we choose ε > 0 sufficient small such that

lim inf
|x|→∞

|x|−2γ

∫ T

0

F (t, x)dt = 0.1T 2 >
T 2

8π2

∫ T

0

f2(t)dt

which implies that (F3) holds. Then F = F1 +F2 is not convex, not γ-subadditive,
not periodic, not a.e. uniformly coercive, and ∇F is not sublinear. Thus, F is not
covered by results in the references.

Example 3.2. Let F = F1 + F2, with

F1(t, x) = (0.5T − t)|x|7/4 + (0.4T − t)|x|3/2 + (h(t), x) ,

F2(x) = −4r
5
|x|5/4,

where h ∈ L 1(0, T ; RN ), r > 0.

Similar to Example 3.1, we can see that all conditions of Theorem 1.2 hold but
F is not covered by results in the references.

Example 3.3. Let F = F1 + F2, with

F1(t, x) = (0.5T − t)|x|7/4 + (0.6T − t)|x|3/2 + (h(t), x) ,

F2(x) = C(x)− r

2
|x|2,

where h ∈ L 1(0, T ; RN ), C(x) = r
2 (|x1|4 + |x2|2 + · · ·+ |xN |2), 0 < r < 4π2

T 2 .

In a way similar to Example 3.1, it is easy to see that condition (F1) and (F2’)
are satisfied with γ = 3/4. However, F does not satisfies (1.2). In fact,

|x|−2γ

∫ T

0

F (t, x)dt

= |x|−2/3

∫ T

0

[
(0.5T − t)|x|7/4 + (0.6T − t)|x|3/2 +

(
C(x)− r

2
|x|2
)

+ (h(t), x)
]
dt

= 0.1T 2 +
T
(
C(x)− r

2 |x|
2
)

|x|3/2
+
(∫ T

0

h(t)dt, x|x|−3/2
)

= 0.1T 2 +
rT (|x1|4 − |x1|2)

2|x|3/2
+
(∫ T

0

h(t)dt, x|x|−3/2
)
.

We can choose ε > 0 small enough and some suitable T such that

lim inf
|x|→∞

|x|−2γ

∫ T

0

F (t, x)dt = 0.1T 2 >
T 2

2(4π2 − rT 2)

∫ T

0

f2(t, x)dt,

which implies that (F3’) holds. F is also not covered by results in the references.
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