
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 78, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

DELAY DIFFERENTIAL EQUATIONS WITH HOMOGENEOUS
INTEGRAL CONDITIONS

ABDUR RAHEEM, DHIRENDRA BAHUGUNA

Abstract. In this article we prove the existence and uniqueness of a strong

solution of a delay differential equation with homogenous integral conditions
using the method of semidiscretization in time. As an application, we include

an example that illustrates the main result.

1. Introduction

This article concerns the delay differential equation having homogeneous integral
conditions,

∂u

∂t
− ∂2u

∂x2
− λ ∂3u

∂x2∂t
= F (x, t, ut) on (0, 1)× (0, T ], (1.1)

u(x, t) = φ(x, t) on (0, 1)× [−T, 0], (1.2)

with integral conditions ∫ 1

0

u(x, t) dx = 0, t ∈ [0, T ], (1.3)∫ 1

0

xu(x, t) dx = 0, t ∈ [0, T ], (1.4)

where 0 < T < ∞, the unknown function u : [−T, T ] → L2(0, 1), the history
φ : [−T, 0]→ L2(0, 1) and the nonlinear map F : (0, T ]× C0 → B(0, 1), are defined
by u(t)(x) = u(x, t), φ(t)(x) = φ(x, t) and F (t, ut)(x) = F (x, t, ut), respectively.
Here L2(0, 1) is the real Hilbert of all square integrable real valued functions on
(0, 1) with the standard inner product, and B(0, 1) is the completion of C0(0, 1),
the space of all continuous functions on (0, 1) having compact support in (0, 1),
with the inner product defined by

(u, v)B =
∫ 1

0

=xu(x)=xv(x) dx,

where =xu(x) =
∫ x
0
u(ξ)dξ. We recall that, if ‖·‖B denote the corresponding norm;

that is,
‖ψ‖B =

√
(ψ,ψ)B ,
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then it follows that
‖ψ‖2B ≤

1
2
‖ψ‖2.

Also for t ∈ (0, T ], Ct := C([−T, t];B(0, 1)) is the Banach space of all continuous
functions from [−T, t] into B(0, 1) endowed with the supremum norm

‖ψ‖t = sup
−T≤θ≤t

‖ψ(θ)‖B .

For ψ ∈ CT , we denote ψt ∈ C0 given by ψt(θ) = ψ(t+ θ), θ ∈ [−T, 0].
For the consideration of integral conditions, we use the space V introduce by

Merazga and Bouziani [11],

V =
{
φ ∈ L2(0, 1) :

∫ 1

0

φ(x) dx =
∫ 1

0

xφ(x) dx = 0
}
.

Note that V is a Hilbert space with respect to the standard inner product.
Since 1930, various classical types of initial boundary value problems have been

investigated by many authors using the method of semidiscretization, see for in-
stance, [6, 13, 14, 15] and references therein.

In this paper our aim is to extend the application of the method of semidiscretiza-
tion in time to delay differential equations with homogeneous integral conditions
and to establish the existence and uniqueness of a strong solution for a delay dif-
ferential equation with homogeneous integral conditions given by (1.1)-(1.4).

The method of semidiscretization in time is a constructive method and has a
strong numerical aspect. For the application of the method of semidiscretization
to integrodifferential equations with nonclassical boundary conditions, we refer the
readers to [2, 3, 4, 8, 9] and references therein.

Dubey [5] established the existence and uniqueness of a strong solution for the
following nonlinear differential equation in a reflexive Banach space with a nonlocal
history condition using the method of semidiscretization in time

u′(t) +Au(t) = f(t, u(t), ut), t ∈ (0, T ],

h(u0) = φ on [−τ, 0],

where 0 < T < ∞, φ ∈ C0 := C([−τ, 0];X), τ > 0, the nonlinear operator A is
single-valued and m-accretive defined from the domain D(A) ⊂ X into X, the
nonlinear map f is defined from [0, T ] ×X × C0 := C([−τ, 0];X) into X, the map
h is defined from C0 and C0. Bahuguna, Abbas, and Dabas [1] applied the method
of semidiscretization to a semilinear functional partial differential equation with an
integral condition.

Our problem is motivated by the work of Lakoud and Belakroum [10] and Dubey
[5]. Lakoud and Balakroum [10] established the existence and uniqueness of a weak
solution for the integro-differential evolution with a memory term,

∂v

∂t
− ∂2v

∂x2
− λ ∂3v

∂x2∂t
= g(x, t) +

∫ t

0

a(t− s)k(s, v(x, s)) ds on (0, 1)× (0, T ],

subject to the initial conditions

v(x, 0) = V0(x),

and integral conditions ∫ 1

0

v(x, t) dx = E(t),
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0

xv(x, t) dx = G(t),

where f, V0, G,E are given functions and T, λ are positive constants.
The plan of the paper is as follows. In section 2, we state all the assumptions

and preliminaries. In section 3, we state the main result. In section 4, we state and
prove all the lemmas that are required to prove the main result and at the end of
this section, we prove the main result. In the last section, we give an application
of the main result.

Throughout the paper we denote a generic constant by C. This constant may
have different values in the same discussion.

2. Preliminaries

We will use the following assumptions:
(H1) The nonlinear map F : (0, T ] × C0 → B(0, 1) satisfies a local Lipschitz

condition

‖F (t1, ψ1)− F (t2, ψ2)‖B ≤ LF (r)[|t1 − t2|+ ‖ψ1 − ψ2‖0],

for all t1, t2 ∈ (0, T ] and ψ1, ψ2 ∈ C0 with ‖ψi − φ(0)‖0 ≤ r, i = 1, 2 and
LF (r) is a nondecreasing function of r > 0.

(H2) The history function φ : [−T, 0]→ L2(0, 1) is uniformly Lipschitz continu-
ous with Lipschitz constant K > 0; i.e., ‖φ(t)− φ(s)‖ ≤ K|t− s|.

(H3)
∫ 1

0
φ(x, 0) dx = 0,

∫ 1

0
xφ(x, 0) dx = 0.

Lemma 2.1. If −A is the infinitesimal generator of a C0-semigroup of contractions
in a Banach space X then A is m-accretive; i.e.,

(Au, J(u)) ≥ 0, for u ∈ D(A),

where J is the duality mapping and R(I + λA) = X for λ > 0, I is the identity
operator on X and R(·) is the range of an operator.

The proof of the above lemma follows from Lumer Phillips theorem [12, Thm.
1.4.3].

3. Main result

Theorem 3.1. Suppose that assumptions (H1)–(H3) are satisfied. Then problem
(1.1)-(1.4) has a unique strong solution on the interval [−T, T ].

4. Discretization and a priori estimates

To apply the method of semidiscretization we divide the interval [0, T ] into the
subintervals of length hn = T

n . We set un0 = φ(0) for all n ∈ N and define {unj }
successively as the unique solution of the problem

δunj −
∂2unj
∂x2

− λ
∂2δunj
∂x2

= F (tnj , ũ
n
j−1), (4.1)∫ 1

0

unj dx = 0, (4.2)∫ 1

0

xunj dx = 0, (4.3)
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where ũn0 = φ(t) for t ∈ [−T, 0] and 2 ≤ j ≤ n,

ũnj−1(t) =

{
φ(tnj−1 + t), if t ∈ [−T,−tnj−1]
uni−1 + (tnj−1 + t− tni−1)δuni , if t ∈ [−tnj−i,−tnj−i−1], 1 ≤ i ≤ j − 1,

and

δunj =
unj − unj−1

hn
.

Let wnj = unj + λδunj . This implies that δunj = 1
hn+λw

n
j − 1

hn+λu
n
j−1. So (4.1)-(4.3)

will reduce to

−
∂2wnj
∂x2

+
1

hn + λ
wnj = fnj , (4.4)∫ 1

0

wnj dx = 0, (4.5)∫ 1

0

xwnj dx = 0, (4.6)

where

fnj =
1

hn + λ
unj−1 + F (tnj , ũ

n
j−1).

Now we show the existence and uniqueness of functions wnj satisfying (4.4)-(4.6).
For this consider H = L2(0, 1), the Hilbert space of all real valued square integrable
functions on the interval (0, 1). Let the linear operator A be defined by

D(A) := {u ∈ H : u′′ ∈ H,
∫ 1

0

u(x) dx =
∫ 1

0

xu(x) dx = 0}, Au = −u′′.

Then we know that −A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0
of contractions in H.

The existence of unique wnj satisfying equations (4.4)-(4.6) is a consequence of
Lemma 2.1. As

unj =
hn

λ+ hn
wnj +

λ

λ+ hn
unj−1,

there exist unique unj ∈ D(A) satisfying (4.1)–(4.3). Now we define

Un(t) =

{
φ(t), if t ∈ [−T, 0]

unj−1 + (t− tnj−1)u
n
j −u

n
j−1

hn
, if t ∈ (tnj−1, t

n
j ].

(4.7)

Lemma 4.1. For n ∈ N and j = 1, 2, · · ·n,

‖unj − φ(0)‖ ≤ C,

where C is a generic constant independent of n, j, hn.

Proof. Now for any ψ ∈ V , from (4.1) we have

(δunj , ψ)B −
(∂2unj
∂x2

, ψ
)
B
− λ
(∂2δunj
∂x2

, ψ
)
B

= (Fnj , ψ)B , (4.8)

where Fnj = F (tnj , ũ
n
j−1). By the definition of the inner product (, )B , we have(∂2unj
∂x2

, ψ
)
B

= −
∫ 1

0

unj ψ dx = −(unj , ψ). (4.9)
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So (4.8) reduces to

(δunj , ψ)B + (unj , ψ) + λ(δunj , ψ) = (Fnj , ψ)B . (4.10)

Taking j = 1, ψ = un1 − un0 in (4.10),

(un1 − un0 , un1 − un0 )B + hn(un1 , u
n
1 − un0 ) + λ(un1 − un0 , un1 − un0 )

= hn(Fn1 , u
n
1 − un0 )B .

Now using (4.9), we obtain

(un1 − un0 , un1 − un0 )B + hn(un1 − un0 , un1 − un0 ) + λ(un1 − un0 , un1 − un0 )

= hn

(
Fn1 +

d2un0
dx2

, un1 − un0
)
B

.

Now, we obtain

‖un1 − un0‖2B + hn‖un1 − un0‖2 + λ‖un1 − un0‖2 ≤ hn
[
‖Fn1 ‖B + ‖d

2un0
dx2
‖B
]
‖un1 − un0‖B .

By ignoring first two terms on the left hand side, we obtain

λ‖un1 − un0‖2 ≤ hn
[
‖Fn1 ‖B + hn‖

d2un0
dx2
‖B
]
‖un1 − un0‖B .

As ‖un1 − un0‖B ≤ 1√
2
‖un1 − un0‖, we have

‖un1 − un0‖ ≤
hn

λ
√

2

[
‖Fn1 ‖B + ‖d

2un0
dx2
‖B
]
.

By using assumption (H1), and the inequality hn ≤ T , we obtain

‖un1 − un0‖ ≤
T

λ
√

2

[
LF (r)(T + r) + ‖F (0, φ(0))‖B + ‖d

2un0
dx2
‖B
]
≤ C.

By putting ψ = unj − un0 in (4.10), we obtain

(unj − unj−1, u
n
j − un0 )B + hn(unj , u

n
j − un0 ) + λ(unj − unj−1, u

n
j − un0 )

= hn(Fnj , u
n
j − un0 )B .

Using (4.9), we obtain(
unj − un0 , unj − un0

)
B

+ hn
(
unj − un0 , unj − un0

)
+ λ

(
unj − un0 , unj − un0

)
= hn

(
Fnj , u

n
j − un0

)
B

+
(
unj−1 − un0 , unj − un0

)
B

+ hn
(d2un0
dx2

, unj − un0
)
B

+ λ
(
unj−1 − un0 , unj − un0

)
.

By ignoring the first two terms on the left hand side, we obtain

λ‖unj − un0‖2 ≤ hn‖Fnj ‖B‖unj − un0‖B + ‖unj−1 − un0‖B‖unj − un0‖B

+ hn‖
d2un0
dx2
‖B‖unj − un0‖B + λ‖unj−1 − un0‖‖unj − un0‖.

As ‖unj − un0‖B ≤ 1√
2
‖unj − un0‖, we have

‖unj − un0‖ ≤
1
λ

[ hn√
2

(‖Fnj ‖B + ‖d
2un0
dx2
‖B) + (

1
2

+ λ)‖unj−1 − un0‖
]
. (4.11)
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By assumption (H1), we have

‖Fnj ‖B = ‖F (tnj , ũ
n
j−1)‖B

= ‖F (tnj , ũ
n
j−1)− F (0, φ(0))‖B + ‖F (0, φ(0))‖B

≤ LF (r)[|tnj |+ ‖ũnj−1 − φ(0)‖0] + ‖F (0, φ(0))‖B
≤ LF (r)[T + r] + ‖F (0, φ(0))‖B .

(4.12)

Using (4.12) in (4.11), we obtain

‖unj − un0‖ ≤
hn

λ
√

2

[
LF (r)(T + r) + ‖F (0, φ(0))‖B + ‖d

2un0
dx2
‖B
]

+
(

1 +
1

2λ

)
‖unj−1 − un0‖

‖unj − un0‖ ≤ hnK +
(

1 +
1

2λ

)
‖unj−1 − un0‖,

where K = 1
λ
√

2

[
LF (r)(T + r) + ‖F (0, φ(0))‖B + ‖d

2un
0

dx2 ‖B
]
. Repeating the above

procedure, we obtain
‖unj − un0‖ ≤ C.

This completes the proof. �

Lemma 4.2. For j = 1, 2, · · · , n,

‖
unj − unj−1

hn
‖ ≤ C.

Proof. By putting j = 1, ψ = unj − un0 in (4.10) and using (4.9), we obtain(un1 − un0
hn

, un1 − un0
)
B

+ (un1 − un0 , un1 − un0 ) + λ
(un1 − un0

hn
, un1 − un0

)
= (Fn1 , u

n
1 − un0 )B +

(d2un0
dx2

, un1 − un0
)
B
.

By ignoring the first two terms on the left hand sides, we obtain

λ

hn
‖un1 − un0‖2 ≤

(
Fn1 +

d2un0
dx2

, un1 − un0
)
B
. (4.13)

As ‖unj − un0‖B ≤ 1√
2
‖unj − un0‖, we have

‖u
n
1 − un0
hn

‖ ≤ 1
λ
√

2

[
‖Fn1 ‖B + ‖d

2un0
dx2
‖B
]
.

Using assumption (H1), we obtain

‖u
n
1 − un0
hn

‖ ≤ 1
λ
√

2

[
LF (r)(T + r) + ‖F (0, φ(0))‖B + ‖d

2un0
dx2
‖B
]
≤ C.

Subtracting (4.10) written for j, from the same identity for j − 1 and then putting
ψ = unj − unj−1, we obtain

(δunj , u
n
j − unj−1)B + (unj − unj−1, u

n
j − unj−1) + λ(δunj , u

n
j − unj−1)

= (Fnj − Fnj−1, u
n
j − unj−1)B + (δunj−1, u

n
j − unj−1)B + λ

(
δunj−1, u

n
j − unj−1

)
.

Ignoring the first two terms on the left hand side,
λ

hn
‖unj − unj−1‖2 ≤ ‖Fnj − Fnj−1‖B‖unj − unj−1‖B + ‖

unj−1 − unj−2

hn
‖B‖unj − unj−1‖B
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+ λ‖
unj−1 − unj−2

hn
‖‖unj − unj−1‖.

As ‖ψ‖B ≤ ‖ψ‖/
√

2, we have

‖
unj − unj−1

hn
‖ ≤ 1

λ
√

2
‖Fnj − Fnj−1‖B + (1 +

1
2λ

)‖
unj−1 − unj−2

hn
‖. (4.14)

Now using assumption (H1),

‖Fnj − Fnj−1‖B = ‖F (tnj , ũ
n
j−1)− F (tnj−1, ũ

n
j−2)‖B

≤ LF (r)[|tnj − tnj−1|+ ‖ũnj−1 − ũnj−2‖0]

≤ LF (r)[T + 2r].

Using the above inequality in (4.14), we obtain

‖
unj − unj−1

hn
‖ ≤ 1

λ
√

2
LF (r)[T + 2r] + (1 +

1
2λ

)‖
unj−1 − unj−2

hn
‖. (4.15)

Repeating the above procedure, we finally obtain

‖
unj − unj−1

hn
‖ ≤ C. (4.16)

This completes the proof. �

Now we introduce a sequence of step functions {Xn(t)} defined by

Xn(t) =

{
φ(0), if t = 0
unj , if t ∈ (tnj−i, t

n
j ].

(4.17)

Remark 4.3. From Lemma 4.2 it follows that the functions Un are uniformly
Lipschitz continuous on [−T, T ] and Un(t)−Xn(t)→ 0, as n→∞ on [0, T ].

Let Fn(t) = F (tnj , ũ
n
j−1). By assumption (H1) and remark 4.3, we see that

Fn(t)→ F (t, ut). Using (4.7) and (4.17), in (4.1), we obtain

d−

dt
Un(t)− ∂2

∂x2
Xn(t)− λ ∂3

∂x2∂t
Xn(t) = Fn(t). (4.18)

Integrating with respect to t, we obtain

−
∫ t

0

[ ∂2

∂x2
Xn(s) + λ

∂3

∂x2∂s
Xn(s)

]
ds = φ(0)− Un(t) +

∫ t

0

Fn(s) ds. (4.19)

Lemma 4.4. There exists u ∈ C([−T, T ];B(0, 1)) such that Un(t) → u(t) uni-
formly on [−T, T ]. Moreover u(t) is Lipschitz continuous on [−T, T ].

Proof. From (4.18), we have(d−
dt
Un(t)− d−

dt
Uk(t), Un(t)− Uk(t)

)
B

+ (Xn(t)−Xk(t), Un(t)− Uk(t))

+ λ
( ∂
∂t
Xn(t)− ∂

∂t
Xk(t), Un(t)− Uk(t)

)
= (Fn(t)− F k(t), Un(t)− Uk(t))B .

Now,
1
2
d−

dt
‖Un(t)− Uk(t)‖2B + ‖Xn(t)−Xk(t)‖2 +

λ

2
∂

∂t
‖Xn(t)−Xk(t)‖2

= (Xn(t)−Xk(t), Xn(t)−Xk(t)− Un(t) + Uk(t))
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+ λ
( ∂
∂t

(Xn(t)−Xk(t)), Xn(t)−Xk(t)− Un(t) + Uk(t)
)

+ (Fn(t)− F k(t), Un(t)− Uk(t))B .

By ignoring the last two terms on the left hand side, we obtain

1
2
d−

dt
‖Un(t)− Uk(t)‖2B ≤ δnk(t) + ‖Fn(t)− F k(t)‖B‖Un(t)− Uk(t)‖B .

where

δnk(t) = ‖Xn(t)−Xk(t)‖[‖Xn(t)− Un(t)‖+ ‖Xk(t)− Uk(t)‖]

+
λ

2
‖ ∂
∂t

(Xn(t)−Xk(t))‖
[
‖Xn(t)− Un(t)‖+ ‖Xk(t)− Uk(t)‖

]
.

By Remark 4.3, it is clear that δnk(t) → 0 as n, k → ∞ uniformly on the interval
[0, T ]. Now by assumption (H1), we have

‖Fn(t)− F k(t)‖B = ‖F (tnj , ũ
n
j−1)− F (tkl , ũ

k
l−1)‖B (4.20)

≤ δ′nk(t) + LF (r)‖Un(t)− Uk(t)‖B , (4.21)

where

δ′nk(t) = LF (r)[|tnj − tkl |+ ‖Un(t)− ũnj−1‖0 + ‖Uk(t)− ũkl−1‖0].

Clearly δ′nk(t) → 0 as n, k → ∞ uniformly on [0, T ]. This implies that for a.e.
t ∈ [0, T ],

1
2
d−

dt
‖Un(t)− Uk(t)‖2B ≤ δ′nk(t) + LF (r)‖Un(t)− Uk(t)‖2B , (4.22)

Integrating the above inequality over (0, t) with 0 ≤ t ≤ T , we obtain

‖Un(t)− Uk(t)‖2B ≤ 2δ′nkT + 2LF (r)
∫ t

0

‖Un(s)− Uk(s)‖2B ds.

Applying Gronwall’s inequality, we obtain that Un → u in C([−τ, T ], B(0, 1)). As
each Un is uniformly Lipschitz continuous, and by assumption (H2), u is Lipschitz
continuous. This completes the proof. �

Proof of Theorem 3.1. Taking limits as n→∞ in (4.19), we obtain

−
∫ t

0

[ ∂2

∂x2
u(t) + λ

∂3

∂x2∂s
u(t)

]
ds = φ(0)− u(t) +

∫ t

0

F (s, ut) ds.

This implies that

∂u(t)
∂t
− ∂2u(t)

∂x2
− λ∂

3u(t)
∂x2∂t

= F (t, ut), a.e. t ∈ [0, T ].

Clearly u(t) is differentiable with u(t) ∈ V a.e. on [0, T ] and u(t) = φ(t), t ∈ [−T, 0].
This implies that u(t)(x) = u(x, t) is a strong solution of (1.1)–(1.4). Now we show
the uniqueness of the strong solution. To do this, suppose that u1, u2 are two strong
solutions of (1.1)-(1.4).

Let u = u1 − u2, then for ψ ∈ V , we have(∂u
∂t
, ψ
)
B

+ (u, ψ) + λ
(∂u
∂t
, ψ
)

=
(
F (t, (u1)t)− F (t, (u2)t), ψ

)
B
.

Putting ψ = u and ignoring last two terms in the left hand side, we obtain(∂u
∂t
, u
)
B
≤
(
F (t, (u1)t)− F (t, (u2)t), u

)
B
.
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By using assumption (H1), we obtain
1
2
∂

∂t
‖u(t)‖2B ≤ LF (r)‖(u1)t − (u2)t‖B‖u(t)‖B

≤ LF (r) sup
−T≤t+θ≤t

‖ut(θ)‖B sup
−T≤θ≤t

‖u(θ)‖B .

Integrating between 0 and t, we obtain

sup
−T≤θ≤t

‖u(θ)‖2B ≤ 2LF (r)
∫ t

0

‖u‖2s ds

‖u‖2t ≤ 2LF (r)
∫ t

0

‖u‖2s ds.

Applying Gronwall’s inequality, we obtain u = 0 on [−T, T ]. Hence we obtain a
unique strong solution of problem (1.1)-(1.4) on the interval [−T, T ]. �

5. Application

Consider the partial differential equation

∂v

∂t
− ∂2v

∂x2
− λ ∂3v

∂x2∂t
= g(x, t) +

∫ t

0

a(t− s)k(s, v(x, s)) ds on (0, 1)× (0, T ],

v(x, t) = φ(x, t) on (0, 1)× [−T, 0],
(5.1)

with the integral conditions ∫ 1

0

v(x, t) dx = 0, (5.2)∫ 1

0

xv(x, t) dx = 0. (5.3)

In the above problem, we identify the unknown function v : (0, T ] → B(0, 1), by
v(t)(x) = v(x, t), g : (0, T ] → B(0, 1) by g(t)(x) = g(x, t), k : (0, T ] × R → B(0, 1)
by k(t, v(x, t)) = k(t, v(t))(x) and the history function φ : [−T, 0] → B(0, 1) by
φ(t)(x) = φ(x, t). Also we take

V =
{
φ ∈ L2(0, 1) :

∫ 1

0

φ(x) dx =
∫ 1

0

xφ(x) dx = 0
}
.

Putting t = s− η in the integral term, problem (5.1)-(5.3) reduces to

∂v

∂t
− ∂2v

∂x2
− λ ∂3v

∂x2∂t
= g(t) +

∫ 0

−t
a(−η)k(t+ η, v(t+ η))dη on (0, T ],

v(t) = φ(t), t ∈ [−T, 0].
(5.4)

Now we consider the following assumptions:
(i) There exists k1 > 0, such that for all t, s ∈ (0, T ]

‖g(t)− g(s)‖B ≤ k1|t− s|.
(ii) There exists k2 > 0, such that for all t, s ∈ (0, T ] and ψ1, ψ2 ∈ C0,

‖k(t, ψ1(t))− k(s, ψ2(s))‖B ≤ k2[|t− s|+ ‖ψ1 − ψ2‖0].

(iii) Also there exist M > 0, such that

‖a(t)‖B ≤M, t ∈ [−T, 0].
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Now we define G : (0, T ]× C0 → B(0, 1) by

G(t, ψ) = g(t) +
∫ 0

−t
a(−η)k(t+ η, ψ)dη.

Thus (5.4) reduces to

∂v

∂t
− ∂2v

∂x2
− λ ∂3v

∂x2∂t
= G(t, vt) on (0, T ],

v(t) = φ(t), t ∈ [−T, 0].
(5.5)

Now we show that G satisfies assumption (H1). For this take t, s ∈ (0, T ] and
ψ1, ψ2 ∈ C0
‖G(t, ψ1)−G(s, ψ2)‖B

≤ ‖g(t)− g(s)‖B +
∥∥∫ 0

−t
a(−η)k(t+ η, ψ1(η))dη −

∫ 0

−s
a(−η)k(s+ η, ψ2(η))dη

∥∥
B
.

Using the given conditions on g, a and k, we obtain

‖G(t, ψ1)−G(s, ψ2)‖B ≤ k1|t− s|+Mk2

∫ 0

−t
{|t− s|+ ‖ψ1 − ψ2‖0}dη

+M

∫ −t
−s
‖k(s+ η, ψ2(η))‖Bdη.

After some simplifications, we obtain

‖G(t, ψ1)−G(s, ψ2)‖B ≤ (k1 +Mk2T +MK)|t− s|+Mk2T‖ψ1 − ψ2‖0
≤ L[|t− s|+ ‖ψ1 − ψ2‖0],

where

L = max{(k1 +Mk2T +MK),Mk2T}, ‖k(s+ η, ψ2(η))‖B ≤ K.
As G satisfies a Lipschitz like condition, we apply the result of Theorem 3.1 to
ensure the existence and uniqueness of a strong solution of (5.1)-(5.3) .
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