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EXISTENCE, UNIQUENESS AND SMOOTHNESS OF A
SOLUTION FOR 3D NAVIER-STOKES EQUATIONS WITH ANY

SMOOTH INITIAL VELOCITY

ARKADIY TSIONSKIY, MIKHAIL TSIONSKIY

Abstract. Solutions of the Navier-Stokes and Euler equations with initial

conditions for 2D and 3D cases were obtained in the form of converging se-

ries, by an analytical iterative method using Fourier and Laplace transforms in
[28, 29]. There the solutions are infinitely differentiable functions, and for sev-

eral combinations of parameters numerical results are presented. This article

provides a detailed proof of the existence, uniqueness and smoothness of the
solution of the Cauchy problem for the 3D Navier-Stokes equations with any

smooth initial velocity. When the viscosity tends to zero, this proof applies

also to the Euler equations.

1. Introduction

Many authors have obtained results regarding the Euler and Navier-Stokes equa-
tions. Existence and smoothness of solution for the Navier-Stokes equations in two
dimensions have been known for a long time. Leray (1934) showed that the Navier-
Stokes equations in three dimensional space have a weak solution. Scheffer (1976,
1993) and Shnirelman (1997) obtained weak solution of the Euler equations with
compact support in space-time. Caffarelli, Kohn and Nirenberg (1982) improved
Scheffer’s results, and Lin (1998) simplified the proof of the results by Leray. Many
problems and conjectures about behavior of weak solutions of the Euler and Navier-
Stokes equations are described in the books by Ladyzhenskaya (1969), Temam
(1977), Constantin (2001), Bertozzi and Majda (2002) or Lemarié-Rieusset (2002).

The solution of the Cauchy problem for the 3D Navier-Stokes equations is de-
scribed in this article. We will consider an initial velocity that is infinitely differ-
entiable and decreasing rapidly to zero in infinity. The applied force is assumed to
be identically zero. A solution of the problem will be presented in the following
stages:

First stage (sections 2, 3). We move the non-linear parts of equations to the
right side. Then we solve the system of linear partial differential equations with
constant coefficients. We have obtained the solution of this system using Fourier
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transforms for the space coordinates and Laplace transform for time. From the-
orems about applications of Fourier and Laplace transforms, for system of linear
partial differential equations with constant coefficients, we see that in this case if
initial velocity and applied force are smooth enough functions decreasing in infin-
ity, then the solution of such system is also a smooth function. Corresponding
theorems are presented in Bochner [3], Palamodov [18], Shilov [23], Hormander [9],
Mizohata [17], Treves [27]. The result of this stage is an integral equation for the
vector-function of velocity.

Second stage (sections 4, 5). We introduce perfect spaces of functions and
vector-functions (Gel’fand, Chilov [7]), in which we look for the solution of the
problem. We demonstrate the equivalence of solving the Cauchy problem in differ-
ential form and in the form of an integral equation.

Third stage (section 6). We divide all parts of the integral equation by an
appropriate constant depending on value of initial fluid velocity, and obtain the
equivalent integral equation. We also replace the corresponding integration vari-
ables in the integral operators. This newly received equivalent integral equation
allowed us to analyze the Cauchy problem for the 3D Navier-Stokes equations for
any value of initial fluid velocity. According to a priori estimate of the solution
of the Cauchy problem for the 3D Navier-Stokes equations [13, 12], the described
constant is proportional to max of the norms of the initial velocity in the spaces
C2 and L2.

Fourth stage (section 6). We use the newly obtained equivalent integral equa-
tion to prove the existence and uniqueness of the solution of the Cauchy problem in
the time range [0,∞) based on the Caccioppoli-Banach fixed point theorem (Kan-
torovich, Akilov [10], Trenogin [26], Rudin [20], Kirk and Sims [11], Granas and
Dugundji [8], Ayerbe Toledano, Dominguez Benavides, Lopez Acedo [1]). For this
purpose the following three theorems are proven in this article: Theorem 6.1: the
integral operator of the problem is a contraction operator; Theorem 6.2: the ex-
istence and uniqueness of the solution of the problem is valid for any t ∈ [0,∞);
Theorem 6.3: the solution of the problem depends continuously on t.

Fifth stage (section 6). By using a priori estimate of the solution of the Cauchy
problem for the 3D Navier-Stokes equations [13, 12], we show that the energy of
the whole process has a finite value for any t in [0,∞).

2. Mathematical setup

The Navier-Stokes equations describe the motion of a fluid in RN (N = 3). We
look for a viscous incompressible fluid filling all of RN here. The Navier-Stokes
equations are then given by

∂uk
∂t

+
N∑
n=1

un
∂uk
∂xn

= ν∆uk −
∂p

∂xk
+ fk(x, t) x ∈ RN , t ≥ 0, 1 ≤ k ≤ N , (2.1)

div ~u =
N∑
n=1

∂un
∂xn

= 0 x ∈ RN , t ≥ 0 , (2.2)

with initial conditions
~u(x, 0) = ~u0(x) x ∈ RN . (2.3)

Here ~u(x, t) = (uk(x, t)) ∈ RN (1 ≤ k ≤ N) is an unknown velocity vector, N = 3;
p(x, t) is an unknown pressure; ~u0(x) is a given C∞ divergence-free vector field;
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fk(x, t) are components of a given, externally applied force ~f(x, t); ν is a positive
coefficient of the viscosity (if ν = 0 then (2.1)–(2.3) are the Euler equations); and
∆ =

∑N
n=1

∂2

∂x2
n

is the Laplacian in the space variables. Equation (2.1) is Newton’s
law for a fluid element. Equation (2.2) says that the fluid is incompressible. For
physically reasonable solutions, we accept

uk(x, t)→ 0,
∂uk
∂xn

→ 0 as |x| → ∞ 1 ≤ k ≤ N, 1 ≤ n ≤ N . (2.4)

Hence, we will restrict attention to initial conditions ~u0 and force ~f that satisfy

|∂αx ~u0(x)| ≤ CαK(1 + |x|)−K on RN for any α and any K. (2.5)

and

|∂αx ∂
β
t
~f(x, t)| ≤ CαβK(1 + |x|+ t)−K on RN × [0,∞) for any α, β and any K.

(2.6)
To start the process of solution let us add −

∑N
n=1 un

∂uk
∂xn

to both sides of the
equations (2.1). Then we have

∂uk
∂t

= ν∆uk −
∂p

∂xk
+ fk(x, t)−

N∑
n=1

un
∂uk
∂xn

x ∈ RN , t ≥ 0, 1 ≤ k ≤ N, (2.7)

div ~u =
N∑
n=1

∂un
∂xn

= 0 x ∈ RN , t ≥ 0, (2.8)

~u(x, 0) = ~u0(x) x ∈ RN , (2.9)

uk(x, t)→ 0
∂uk
∂xn

→ 0 as |x| → ∞ 1 ≤ k ≤ N, 1 ≤ n ≤ N, (2.10)

|∂αx ~u0(x)| ≤ CαK(1 + |x|)−K on RN for any α and any K, (2.11)

|∂αx ∂
β
t
~f(x, t)| ≤ CαβK(1 + |x|+ t)−K on RN × [0,∞) for any α, β and any K.

(2.12)

Let us denote

f̃k(x, t) = fk(x, t)−
N∑
n=1

un
∂uk
∂xn

1 ≤ k ≤ N . (2.13)

We can present it in the vector form as

~̃
f(x, t) = ~f(x, t)− (~u · ∇)~u . (2.14)

3. Solution of the system (2.7)–(2.14)

Let us assume that all operations below are valid. The validity of these operations
will be proved in the next sections. Taking into account our substitution (2.13) we
see that (2.7)–(2.9) are in fact system of linear partial differential equations with
constant coefficients.

The solution of this system will be presented by the following steps:
First step. We use Fourier transform (7.1) to solve equations (2.7)–(2.14). We

obtain:

Uk(γ1, γ2, γ3, t) = F [uk(x1, x2, x3, t)],
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−γ2
sUk(γ1, γ2, γ3, t) = F [

∂2uk(x1, x2, x3, t)
∂x2

s

] (use (2.10)),

U0
k (γ1, γ2, γ3) = F [u0

k(x1, x2, x3)],

P (γ1, γ2, γ3, t) = F [p(x1, x2, x3, t)],

F̃k(γ1, γ2, γ3, t) = F [f̃k(x1, x2, x3, t)],

for k, s = 1, 2, 3. Then

dU1(γ1, γ2, γ3, t)
dt

= −ν(γ2
1 + γ2

2 + γ2
3)U1(γ1, γ2, γ3, t) + iγ1P (γ1, γ2, γ3, t)

+ F̃1(γ1, γ2, γ3, t),
(3.1)

dU2(γ1, γ2, γ3, t)
dt

= −ν(γ2
1 + γ2

2 + γ2
3)U2(γ1, γ2, γ3, t) + iγ2P (γ1, γ2, γ3, t)

+ F̃2(γ1, γ2, γ3, t),
(3.2)

dU3(γ1, γ2, γ3, t)
dt

= −ν(γ2
1 + γ2

2 + γ2
3)U3(γ1, γ2, γ3, t) + iγ3P (γ1, γ2, γ3, t)

+ F̃3(γ1, γ2, γ3, t),
(3.3)

γ1U1(γ1, γ2, γ3, t) + γ2 U2(γ1, γ2, γ3, t) + γ3 U3(γ1, γ2, γ3, t) = 0, (3.4)

U1(γ1, γ2, γ3, 0) = U0
1 (γ1, γ2, γ3), (3.5)

U2(γ1, γ2, γ3, 0) = U0
2 (γ1, γ2, γ3), (3.6)

U3(γ1, γ2, γ3, 0) = U0
3 (γ1, γ2, γ3) . (3.7)

Hence, we have received a system of linear ordinary differential equations with
constant coefficients (3.1)-(3.7) according to Fourier transforms. At the same time
the initial conditions are set only for Fourier transforms of velocity components
U1(γ1, γ2, γ3, t), U2(γ1, γ2, γ3, t), U3(γ1, γ2, γ3, t). Because of that we can eliminate
Fourier transform for pressure P (γ1, γ2, γ3, t) from equations (3.1)–(3.3) on the next
step of the solution process.

Second step. From here assuming that γ1 6= 0, γ2 6= 0, γ3 6= 0, we eliminate
P (γ1, γ2, γ3, t) from equations (3.1)− (3.3) and find

d

dt
[U2(γ1, γ2, γ3, t)−

γ2

γ1
U1(γ1, γ2, γ3, t)]

= −ν(γ2
1 + γ2

2 + γ2
3)[U2(γ1, γ2, γ3, t)−

γ2

γ1
U1(γ1, γ2, γ3, t)]

+ [F̃2(γ1, γ2, γ3, t)−
γ2

γ1
F̃1(γ1, γ2, γ3, t)] ,

(3.8)

d

dt
[U3(γ1, γ2, γ3, t)−

γ3

γ1
U1(γ1, γ2, γ3, t)]

= −ν(γ2
1 + γ2

2 + γ2
3)[U3(γ1, γ2, γ3, t)−

γ3

γ1
U1(γ1, γ2, γ3, t)]

+ [F̃3(γ1, γ2, γ3, t)−
γ3

γ1
F̃1(γ1, γ2, γ3, t)] ,

(3.9)

γ1U1(γ1, γ2, γ3, t) + γ2 U2(γ1, γ2, γ3, t) + γ3 U3(γ1, γ2, γ3, t) = 0, (3.10)

U1(γ1, γ2, γ3, 0) = U0
1 (γ1, γ2, γ3), (3.11)

U2(γ1, γ2, γ3, 0) = U0
2 (γ1, γ2, γ3), (3.12)
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U3(γ1, γ2, γ3, 0) = U0
3 (γ1, γ2, γ3) . (3.13)

Third step. We use Laplace transform (7.2), (7.3) for a system of linear or-
dinary differential equations with constant coefficients (3.8)–(3.10) and have as a
result the system of linear algebraic equations with constant coefficients:

U⊗k (γ1, γ2, γ3, η) = L[Uk(γ1, γ2, γ3, t)] k = 1, 2, 3; (3.14)

F̃⊗k (γ1, γ2, γ3, η) = L[F̃k(γ1, γ2, γ3, t)] k = 1, 2, 3; (3.15)

η[U⊗2 (γ1, γ2, γ3, η)− γ2

γ1
U⊗1 (γ1, γ2, γ3, η)]

− [U2(γ1, γ2, γ3, 0)− γ2

γ1
U1(γ1, γ2, γ3, 0)]

= −ν(γ2
1 + γ2

2 + γ2
3)[U⊗2 (γ1, γ2, γ3, η)− γ2

γ1
U⊗1 (γ1, γ2, γ3, η)]

+ [F̃⊗2 (γ1, γ2, γ3, η)− γ2

γ1
F̃⊗1 (γ1, γ2, γ3, η)],

(3.16)

η[U⊗3 (γ1, γ2, γ3, η)− γ3

γ1
U⊗1 (γ1, γ2, γ3, η)]

− [U3(γ1, γ2, γ3, 0)− γ3

γ1
U1(γ1, γ2, γ3, 0)]

= −ν(γ2
1 + γ2

2 + γ2
3)[U⊗3 (γ1, γ2, γ3, η)− γ3

γ1
U⊗1 (γ1, γ2, γ3, η)]

+ [F̃⊗3 (γ1, γ2, γ3, η)− γ3

γ1
F̃⊗1 (γ1, γ2, γ3, η)],

(3.17)

γ1U
⊗
1 (γ1, γ2, γ3, η) + γ2 U

⊗
2 (γ1, γ2, γ3, η) + γ3 U

⊗
3 (γ1, γ2, γ3, η) = 0, (3.18)

U1(γ1, γ2, γ3, 0) = U0
1 (γ1, γ2, γ3), (3.19)

U2(γ1, γ2, γ3, 0) = U0
2 (γ1, γ2, γ3), (3.20)

U3(γ1, γ2, γ3, 0) = U0
3 (γ1, γ2, γ3) . (3.21)

Let us rewrite system of equations (3.16)–(3.18) in the form

[η + ν(γ2
1 + γ2

2 + γ2
3)]
γ2

γ1
U⊗1 (γ1, γ2, γ3, η)

− [η + ν(γ2
1 + γ2

2 + γ2
3)]U⊗2 (γ1, γ2, γ3, η)

= [
γ2

γ1
F̃⊗1 (γ1, γ2, γ3, η)− F̃⊗2 (γ1, γ2, γ3, η)]

+ [
γ2

γ1
U1(γ1, γ2, γ3, 0)− U2(γ1, γ2, γ3, 0)],

(3.22)

[η + ν(γ2
1 + γ2

2 + γ2
3)]
γ3

γ1
U⊗1 (γ1, γ2, γ3, η)

− [η + ν(γ2
1 + γ2

2 + γ2
3)]U⊗3 (γ1, γ2, γ3, η)

= [
γ3

γ1
F̃⊗1 (γ1, γ2, γ3, η)− F̃⊗3 (γ1, γ2, γ3, η)]

+ [
γ3

γ1
U1(γ1, γ2, γ3, 0)− U3(γ1, γ2, γ3, 0)],

(3.23)

γ1U
⊗
1 (γ1, γ2, γ3, η) + γ2 U

⊗
2 (γ1, γ2, γ3, η) + γ3 U

⊗
3 (γ1, γ2, γ3, η) = 0 (3.24)
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The determinant of this system is

∆ =

∣∣∣∣∣∣
[η + ν(γ2

1 + γ2
2 + γ2

3)]γ2γ1 −[η + ν(γ2
1 + γ2

2 + γ2
3)] 0

[η + ν(γ2
1 + γ2

2 + γ2
3)]γ3γ1 0 −[η + ν(γ2

1 + γ2
2 + γ2

3)]
γ1 γ2 γ3

∣∣∣∣∣∣
=

[η + ν(γ2
1 + γ2

2 + γ2
3)]2(γ2

1 + γ2
2 + γ2

3)
γ1

6= 0 .

(3.25)
Consequently the system of equations (3.16)–(3.18) and/or (3.22)–(3.24) has a
unique solution. Taking into account formulas (3.19)–(3.21) we can write this so-
lution in the form

U⊗1 (γ1, γ2, γ3, η)

=
[(γ2

2 + γ2
3)F̃⊗1 (γ1, γ2, γ3, η)− γ1γ2F̃

⊗
2 (γ1, γ2, γ3, η)− γ1γ3F̃

⊗
3 (γ1, γ2, γ3, η)]

(γ2
1 + γ2

2 + γ2
3)[η + ν(γ2

1 + γ2
2 + γ2

3)]

+
U0

1 (γ1, γ2, γ3)
[η + ν(γ2

1 + γ2
2 + γ2

3)]
,

(3.26)

U⊗2 (γ1, γ2, γ3, η)

=
[(γ2

3 + γ2
1)F̃⊗2 (γ1, γ2, γ3, η)− γ2γ3F̃

⊗
3 (γ1, γ2, γ3, η)− γ2γ1F̃

⊗
1 (γ1, γ2, γ3, η)]

(γ2
1 + γ2

2 + γ2
3)[η + ν(γ2

1 + γ2
2 + γ2

3)]

+
U0

2 (γ1, γ2, γ3)
[η + ν(γ2

1 + γ2
2 + γ2

3)]
,

(3.27)

U⊗3 (γ1, γ2, γ3, η)

=
[(γ2

1 + γ2
2)F̃⊗3 (γ1, γ2, γ3, η)− γ3γ1F̃

⊗
1 (γ1, γ2, γ3, η)− γ3γ2F̃

⊗
2 (γ1, γ2, γ3, η)]

(γ2
1 + γ2

2 + γ2
3)[η + ν(γ2

1 + γ2
2 + γ2

3)]

+
U0

3 (γ1, γ2, γ3)
[η + ν(γ2

1 + γ2
2 + γ2

3)]
.

(3.28)

Then we use the convolution theorem with the convolution formula (7.4) and inte-
gral (7.5) for (3.26)–(3.28) to obtain

U1(γ1, γ2, γ3, t)

=
∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

× [(γ2
2 + γ2

3)F̃1(γ1, γ2, γ3, τ)− γ1γ2F̃2(γ1, γ2, γ3, τ)− γ1γ3F̃3(γ1, γ2, γ3, τ)]
(γ2

1 + γ2
2 + γ2

3)
dτ

+ e−ν(γ
2
1+γ2

2+γ2
3)tU0

1 (γ1, γ2, γ3),
(3.29)
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U2(γ1, γ2, γ3, t)

=
∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

× [(γ2
3 + γ2

1)F̃2(γ1, γ2, γ3, τ)− γ2γ3F̃3(γ1, γ2, γ3, τ)− γ2γ1F̃1(γ1, γ2, γ3, τ)]
(γ2

1 + γ2
2 + γ2

3)
dτ

+ e−ν(γ
2
1+γ2

2+γ2
3)tU0

2 (γ1, γ2, γ3),
(3.30)

U3(γ1, γ2, γ3, t)

=
∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

× [(γ2
1 + γ2

2)F̃3(γ1, γ2, γ3, τ)− γ3γ1F̃1(γ1, γ2, γ3, τ)− γ3γ2F̃2(γ1, γ2, γ3, τ)]
(γ2

1 + γ2
2 + γ2

3)
dτ

+ e−ν(γ
2
1+γ2

2+γ2
3)tU0

3 (γ1, γ2, γ3) .
(3.31)

Using the Fourier inversion formula (7.1) we obtain

u1(x1, x2, x3, t)

=
1

(2π)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ) [(γ2

2 + γ2
3)F̃1(γ1, γ2, γ3, τ)]

(γ2
1 + γ2

2 + γ2
3)

dτ

−
∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ) [γ1γ2F̃2(γ1, γ2, γ3, τ) + γ1γ3F̃3(γ1, γ2, γ3, τ)]

(γ2
1 + γ2

2 + γ2
3)

dτ

+ e−ν(γ
2
1+γ2

2+γ2
3)tU0

1 (γ1, γ2, γ3)
]
e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

=
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(γ2
2 + γ2

3)
(γ2

1 + γ2
2 + γ2

3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃1(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

− 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ1γ2

(γ2
1 + γ2

2 + γ2
3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃2(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

− 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ1γ3

(γ2
1 + γ2

2 + γ2
3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃3(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

+
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−ν(γ
2
1+γ2

2+γ2
3)t
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×
[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)u0
1(x̃1, x̃2, x̃3) dx̃1dx̃2dx̃3

]
× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

= S11(f̃1) + S12(f̃2) + S13(f̃3) +B(u0
1) (3.32)

(see Remark 7.1);

u2(x1, x2, x3, t)

=
1

(2π)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ) [(γ2

3 + γ2
1)F̃2(γ1, γ2, γ3, τ)]

(γ2
1 + γ2

2 + γ2
3)

dτ

−
∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ) [γ2γ3F̃3(γ1, γ2, γ3, τ) + γ2γ1F̃1(γ1, γ2, γ3, τ)]

(γ2
1 + γ2

2 + γ2
3)

dτ

+ e−ν(γ
2
1+γ2

2+γ2
3)tU0

2 (γ1, γ2, γ3)
]
e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

= − 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ2γ1

(γ2
1 + γ2

2 + γ2
3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃1(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

+
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(γ2
3 + γ2

1)
(γ2

1 + γ2
2 + γ2

3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃2(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

− 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ2γ3

(γ2
1 + γ2

2 + γ2
3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃3(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

+
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−ν(γ
2
1+γ2

2+γ2
3)t

×
[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)u0
2(x̃1, x̃2, x̃3) dx̃1dx̃2dx̃3

]
× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

= S21(f̃1) + S22(f̃2) + S23(f̃3) +B(u0
2), (3.33)

(see Remark 7.1);

u3(x1, x2, x3, t)

=
1

(2π)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ) [(γ2

1 + γ2
2)F̃3(γ1, γ2, γ3, τ)]

(γ2
1 + γ2

2 + γ2
3)

dτ

−
∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ) [γ3γ1F̃1(γ1, γ2, γ3, τ) + γ3γ2F̃2(γ1, γ2, γ3, τ)]

(γ2
1 + γ2

2 + γ2
3)

dτ
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+ e−ν(γ
2
1+γ2

2+γ2
3)tU0

3 (γ1, γ2, γ3)
]
e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

= − 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ3γ1

(γ2
1 + γ2

2 + γ2
3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃1(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

− 1
8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

γ3γ2

(γ2
1 + γ2

2 + γ2
3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃2(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

+
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(γ2
1 + γ2

2)
(γ2

1 + γ2
2 + γ2

3)

[ ∫ t

0

e−ν(γ
2
1+γ2

2+γ2
3)(t−τ)

×
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)f̃3(x̃1, x̃2, x̃3, τ) dx̃1dx̃2dx̃3dτ
]

× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

+
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−ν(γ
2
1+γ2

2+γ2
3)t

×
[ ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(x̃1γ1+x̃2γ2+x̃3γ3)u0
3(x̃1, x̃2, x̃3) dx̃1dx̃2dx̃3

]
× e−i(x1γ1+x2γ2+x3γ3) dγ1dγ2dγ3

= S31(f̃1) + S32(f̃2) + S33(f̃3) +B(u0
3), (3.34)

(see Remark 7.1).
Here S11(), S12(), S13(), S21(), S22(), S23(), S31(), S32(), S33(), B() are integral

operators, and satisfy

S12() = S21(), S13() = S31(), S23() = S32() .

From the three expressions above for u1, u2, u3, it follows that the vector ~u can be
represented as:

~u = ¯̄S · ~̃f + ¯̄B · ~u0 = ¯̄S · ~f − ¯̄S · (~u · ∇)~u+ ¯̄B · ~u0 , (3.35)

where ~̃
f is determined by formula (2.14).

Here ¯̄S and ¯̄B are the matrix integral operators:S11 S12 S13

S21 S22 S23

S31 S32 S33

 ,

B 0 0
0 B 0
0 0 B

 .

4. Spaces S and ~TS

As in [7, 19], we consider the space S of all infinitely differentiable functions ϕ(x)
defined in N -dimensional space RN (N = 3), such that these functions tend to 0
as |x| → ∞, as well as their derivatives of any order, more rapidly than any power
of 1/|x|.
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To define a topology in the space S let us introduce countable system of norms

‖ϕ‖p = sup
x

{
|xkDqϕ(x)|, |k| ≤ p, |q| ≤ p

}
p = 0, 1, 2, . . . , (4.1)

where

|xkDqϕ(x)| = |xk11 . . . xkNN
∂q1+···+qNϕ(x)
∂xq11 . . . ∂xqNN

|,

k = (k1, . . . , kN ), q = (q1, . . . , qN ), xk = xk11 . . . xkNN ,

Dq =
∂q1+···+qN

∂xq11 . . . ∂xqNN
, q1, . . . , qN = 0, 1, 2, . . . .

Note that S is a perfect space (complete countably normed space, in which the
bounded sets are compact). The space ~TS of vector-functions ~ϕ is a direct sum of
N perfect spaces S (N = 3) [26]:

~TS = S ⊕ S ⊕ S.
To define a topology in the space ~TS let us introduce countable system of norms

‖~ϕ‖p =
N∑
i=1

‖ϕi‖p =
N∑
i=1

sup
x

{
|xkDqϕi(x)|, |k| ≤ p, |q| ≤ p

}
, (4.2)

N = 3, p = 0, 1, 2, . . . . The Fourier transform maps the space S onto the whole
space S, and maps the space ~TS onto the whole space ~TS [23, 7].

5. Equivalence of the Cauchy problem in differential form (2.1)–(2.3)
and in integral form

Let us denote solution of (2.1)–(2.3) as {~u(x1, x2, x3, t), p(x1, x2, x3, t)}; in other
words let us consider the infinitely differentiable by t ∈ [0,∞) vector-function
~u(x1, x2, x3, t) ∈ ~TS, and infinitely differentiable function p(x1, x2, x3, t) ∈ S, that
turn equations (2.1) and (2.2) into identities. Vector-function ~u(x1, x2, x3, t) also
satisfies the initial condition (2.3) (~u0(x1, x2, x3) ∈ ~TS):

~u(x1, x2, x3, t)|t=0 = ~u0(x1, x2, x3) (5.1)

Let us put {~u(x1, x2, x3, t), p(x1, x2, x3, t)} into equations (2.1), (2.2) and apply
Fourier and Laplace transforms to the result identities considering initial condition
(2.3). After all required operations (as in sections 2 and 3) we receive that vector-
function ~u(x1, x2, x3, t) satisfies integral equation

~u = ¯̄S · ~f − ¯̄S · (~u · ∇)~u+ ¯̄B · ~u0 = ¯̄S∇ · ~u (5.2)

Then the vector-function grad p ∈ ~TS is defined by equations (2.1) where vector-
function ~u is defined by (5.2).

Here ~f ∈ ~TS, ~u0 ∈ ~TS and ¯̄S, ¯̄B, ¯̄S∇ are matrix integral operators. Vector-
functions ¯̄S · ~f , ¯̄B · ~u0, ¯̄S · (~u · ∇)~u also belong ~TS since Fourier transform maps
perfect space ~TS onto ~TS.

Going from the other side, let us assume that ~u(x1, x2, x3, t) ∈ ~TS is continuous
in t ∈ [0,∞) solution of integral equation (5.2). Integral-operators Sij · (~u ·∇)~u are
continuous in t ∈ [0,∞) [see (3.32)–(3.34)]. From here we obtain that according to
(5.2),

~u(x1, x2, x3, 0) = ~u0(x1, x2, x3)
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also that ~u(x1, x2, x3, t) is differentiable by t ∈ [0,∞). As described before, the
Fourier transform maps the perfect space ~TS on itself. Hence, {~u(x1, x2, x3, t) and
p(x1, x2, x3, t)} is the solution of the Cauchy problem (2.1)–(2.3). From here we
see that solving the Cauchy problem (2.1)–(2.3) is equivalent to finding continuous
in t ∈ [0,∞) solution of integral equation (5.2).

6. The Caccioppoli-Banach fixed point principle

See [10, 26, 20, 11, 8, 1]. Further we have ~f ≡ 0. Let us rewrite integral equation
(5.2) with this condition as

~u = − ¯̄S · (~u · ∇)~u+ ¯̄B · ~u0 (6.1)

Let us divide all parts of the integral equation (6.1) by some constant V , that we will
define appropriately below. Then we receive modified integral equation equivalent
to equation (6.1):

~uV = − ¯̄SV · (~uV · ∇V )~uV + ¯̄BV · ~u0
V = ¯̄S∇V (~uV ) (6.2)

here

~uV =
~u

V

, ~u0
V =

~u0

V

, ∇V = V · ∇,

xkV =
xk
V
, γkV = V · γk, νV =

ν

V 2
, 1 ≤ k ≤ N .

(6.3)

The selection of the constant V is based on a priori estimate of the solution of the
Cauchy problem for the Navier-Stokes equations [13, 12]:

‖~u‖L2 ≤ ‖ ~u0‖L2 (6.4)

where

‖~u‖L2 =
(∫

R3
|~u|2dx

)1/2

.

The space of vector-functions ~TS is divided into two subsets. First subset consists
of the vector-functions “rapidly rapidly”decreasing to zero for |x| → ∞. This subset
is defined by the inequality

‖~u‖L2 ≤ B‖~u‖C2 , (6.5)
where B is a fixed constant. Second subset consists of the vector-functions “rapidly”
decreasing to zero for |x| → ∞. This subset is defined by the inequality

‖~u‖C2 ≤ B′‖~u‖L2 , (6.6)

where B′ is a fixed constant.

‖~u‖C2 =
N∑
i=1

‖ui‖C2 =
N∑
i=1

2∑
q=0

max
x
|Dqui(x)|, N = 3.

For the first subset by using appropriate sequence of inequalities [7], (6.4), (6.5),

‖~u‖L2 ≤ B‖~u‖C2 ≤ K‖~u‖L2 ≤ K‖ ~u0‖L2 ≤ KB‖ ~u0‖C2 (6.7)

we obtain
‖~u‖C2 ≤ K‖ ~u0‖C2 , (6.8)

where K is a constant.
For the second subset by using appropriate sequence of inequalities [7], (6.4),

(6.6),
‖~u‖C2 ≤ B′‖~u‖L2 ≤ B′‖ ~u0‖L2 (6.9)
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we obtain
‖~u‖C2 ≤ B′ · ‖ ~u0‖L2 . (6.10)

Let us choose the constant V as:

max{K‖ ~u0‖C2 , B′‖ ~u0‖L2} < V (6.11)

Then we have
‖~uV ‖C2 < 1 (6.12)

We can use the fixed point principle to prove existence and uniqueness of the
solution of integral equation (6.2).

For this purpose we will operate with the following properties of matrix integral
operator ¯̄S∇V :

1. The matrix integral operator ¯̄S∇V depends continuously on its parameter
t ∈ [0,∞) (based on formulas (3.32)–(3.34)).

2. The matrix integral operator ¯̄S∇V maps vector-functions ~uV from perfect space
~TS onto perfect space ~TS. This property directly follows from the properties of

Fourier transform [7], and the form of integrands of integral operators Sij , B (based
on formulas (3.32)–(3.34)). Hence in this case we can consider the convergence of
functions from ~TS not only in countable system of norms (4.2), but also in norm
C2.

3. Matrix integral operator ¯̄SV is “quadratic”.
4. ‖ ¯̄S∇V · ~uV − ¯̄S∇V · ~u′V ‖C2 < ‖~uV − ~u′V ‖C2 for any ~uV , ~u′V ∈ ~TS (~uV 6= ~u′V ) and

any t ∈ [0,∞) (based on properties 1, 2, 3 and formulas (3.32)–(3.34), (6.12)). The
properties mentioned above allow us to prove that matrix integral operator ¯̄S∇V is
a contraction operator.

Theorem 6.1 ([10]). The matrix integral operator ¯̄S∇V maps the perfect space ~TS

onto the perfect space ~TS, and for any ~uV , ~u
′
V ∈ ~TS (~uV 6= ~u′V ) the condition 4

is valid. Then the matrix integral operator ¯̄S∇V is a contraction operator; i.e., the
following condition is true

‖ ¯̄S∇V (~uV )− ¯̄S∇V (~u′V )‖C2 ≤ α · ‖~uV − ~u′V ‖C2 (6.13)

where α < 1 and is independent from ~uV , ~u
′
V ∈ ~TS for any t ∈ [0,∞).

Proof. By contradiction, let us assume that the opposite is true. Then there exist
such ~uVn, ~u′Vn ∈ ~TS (n = 1, 2, . . . ) and

lim
n→∞

~uVn, lim
n→∞

~u′Vn ∈ ~TS

that

‖ ¯̄S∇V (~uVn)− ¯̄S∇V (~u′Vn)‖C2 = αn · ‖~uVn − ~u′Vn‖C2 n = 1, 2, . . . ; αn → 1 (6.14)

Then the limiting result in (6.14) would lead to equality

‖ ¯̄S∇V (~uV )− ¯̄S∇V (~u′V )‖C2 = ‖~uV − ~u′V ‖C2 ,

which contradicts condition 4. Hence, ¯̄S∇V is a contraction operator. �

Next, we have the existence and uniqueness of a solution [10].
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Theorem 6.2. Let us consider a contraction operator ¯̄S∇V . Then there exists the
unique solution ~u∗V of equation (6.2) in space ~TS for any t ∈ [0,∞). Also in this
case it is possible to obtain ~u∗V as a limit of sequence {~uVn}, where

~uV ,n+1 = ¯̄S∇V (~uVn) n = 0, 1, . . . ,

and ~uV 0 = 0.
The rate of conversion of the sequence {~uVn} to the solution can be defined from

the inequality

‖~uVn − ~u∗V ‖C2 ≤ αn

(1− α)
‖~uV 1 − ~uV 0‖C2 n = 0, 1, . . . . (6.15)

Proof. It is clear that

~uV ,n+1 = ¯̄S∇V (~uVn), ~uVn = ¯̄S∇V (~uV ,n−1).

It follows from (6.13) that

‖~uV ,n+1 − ~uVn‖C2 ≤ α · ‖~uVn − ~uV ,n−1‖C2 .

Using similar inequalities one after another while decreasing n we will obtain

‖~uV ,n+1 − ~uVn‖C2 ≤ αn · ‖~uV 1 − ~uV 0‖C2 .

From this result it follows that
‖~uV ,n+l − ~uVn‖C2 ≤ ‖~uV ,n+l − ~uV ,n+l−1‖C2 + · · ·+ ‖~uV ,n+1 − ~uVn‖C2

≤ (αn+l−1 + · · ·+ αn)‖~uV 1 − ~uV 0‖C2

≤ αn

(1− α)
‖~uV 1 − ~uV 0‖C2 .

(6.16)

Because of αn → 0 for n → ∞, the obtained estimate (6.16) shows that sequence
{~uVn} is a Cauchy sequence. Since the space ~TS is a perfect space, this sequence
converges to an element ~u∗V ∈ ~TS, such that ¯̄S∇V (~u∗V ) has sense. We use inequality
(6.13) again and have:

‖~uV ,n+1− ¯̄S∇V (~u∗V )‖C2 = ‖ ¯̄S∇V (~uVn)− ¯̄S∇V (~u∗V )‖C2 ≤ α‖~uVn−~u∗V ‖C2 n = 0, 1, 2, . . .

The right part of the above inequality tends to 0 as n → ∞ and it means that
~uV ,n+1 → ¯̄S∇V (~u∗V ) and ~u∗V = ¯̄S∇V (~u∗V ). In other words, ~u∗V is the solution of equation
(6.2).

Uniqueness of the solution also follows from (6.13). In fact, if there would exist
another solution ~̃uV ∈ ~TS, then

‖~̃uV − ~u∗V ‖C2 = ‖ ¯̄S∇V (~̃uV )− ¯̄S∇V (~u∗V )‖C2 ≤ α · ‖~̃uV − ~u∗V ‖C2 .

Such situation could happen only if ‖~̃uV − ~u∗V ‖C2 = 0, or ~̃uV = ~u∗V .
We can also obtain the estimate (6.15) from estimate (6.16) as a limiting result

as l→∞.
Now let us show that continuous dependence of operator ¯̄S∇V on t leads to con-

tinuous dependence of the solution of the problem on t.
We will say that matrix integral operator ¯̄S∇V is continuous in t at a point t0 ∈

[0,∞), if for any sequence {tn} ∈ [0,∞) with tn → t0 for n → ∞, the following is
true:

¯̄S∇V tn(~uV )→ ¯̄S∇V t0(~uV ) for any ~uV ∈ ~TS. (6.17)
�
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From Theorem 6.2 it follows that for any t ∈ [0,∞), equation (6.2) has the
unique solution, which depends on t. Let us denote it as ~u∗V t. We will say that
solution of equation (6.2) depends continuously on t at t = t0, if for any sequence
{tn} ∈ [0∞) with tn → t0 for n→∞, the following is true:

~u∗V tn → ~u∗V t0 .

Next, we have the continuous dependence of the solution on t.

Theorem 6.3 ([10]). Let us consider operator ¯̄S∇V t that satisfies condition (6.13) for
any t ∈ [0,∞), where α is independent from t and that operator ¯̄S∇V t is continuous in
t at a point t0 ∈ [0,∞). Then for t = t0 the solution of (6.2) depends continuously
on t.

Proof. Let us consider any t ∈ [0,∞). We will construct the solution ~u∗V t of equation
(6.2) as a limit of sequence {~uVn}:

~uV ,n+1 = ¯̄S∇V t(~uVn) n = 0, 1, . . . ; ~uV 0 = ~u∗V t0 (6.18)

Let us rewrite inequality (6.15) for n = 0:

‖~u∗V − ~uV 0‖C2 ≤ 1
(1− α)

‖~uV 1 − ~uV 0‖C2 (6.19)

Since ~u∗V t0 = ¯̄S∇V t0(~u∗V t0), because of (6.18) and (6.19) we have

‖~u∗V t − ~u∗V t0‖C2 ≤ 1
(1− α)

‖~uV 1 − ~uV 0‖C2 =
1

(1− α)
‖ ¯̄S∇V t(~u

∗
V t0)− ¯̄S∇V t0(~u∗V t0)‖C2

(6.20)
Now with the help of (6.17) we obtain the required continuity of ~uV t for t = t0. �

Following (6.3) and (6.11) we obtain the result:

~u = ~uV · V, ν = νV · V 2. (6.21)

Then vector-function ∇p ∈ ~TS is defined by (2.1) where vector-function ~u is re-
ceived from equation (6.21). Function p is defined up to an arbitrary constant.

Remark 6.4. From the above statements, it follows that there exists the unique
set of smooth functions u∞i(x, t), p∞(x, t) (i = 1, 2, 3) R3 × [0,∞) that satisfies
(2.1), (2.2), (2.3) and

u∞i, p∞ ∈ C∞(R3 × [0,∞)), (6.22)

Then, using the inequality ‖~u‖L2 ≤ ‖ ~u0‖L2 from (6.4), [13], [12], we have∫
R3
|~u∞(x, t)|2dx < C, ∀t ≥ 0. (6.23)

Let us consider ν → 0 in integral operator ¯̄S∇V . Then we see that Theorems 6.1–6.3
are correct also in case of Euler equations; i.e., there exists unique smooth solution
in all time range for this case.
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7. Appendix

The Fourier integral can be stated in the forms:
U(γ1, γ2, γ3) = F [u(x1, x2, x3)]

=
1

(2π)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

u(x1, x2, x3)ei(γ1x1+γ2x2+γ3x3)dx1dx2dx3

u(x1, x2, x3) =
1

(2π)3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

U(γ1, γ2, γ3) e−i(γ1x1+γ2x2+γ3x3)dγ1dγ2dγ3

(7.1)
The Laplace integral is usually stated in the form

U⊗(η) = L[u(t)] =
∫ ∞

0

u(t)e−ηtdt u(t) =
1

2πi

∫ c+i∞

c−i∞
U⊗(η)eηtdη c > c0.

(7.2)
Then

L[u′(t)] = ηU⊗(η)− u(0). (7.3)
The convolution theorem [6, 30] is stated as: If integrals

U⊗1 (η) =
∫ ∞

0

u1(t)e−ηtd t U⊗2 (η) =
∫ ∞

0

u2(t)e−ηtd t

converge absolutely for Re η > σd, then U⊗(η) = U⊗1 (η)U⊗2 (η) is Laplace transform
of

u(t) =
∫ t

0

u1(t− τ)u2(τ) d τ (7.4)

A useful Laplace integral is

L[eηkt] =
∫ ∞

0

e−(η−ηk) td t =
1

(η − ηk)
Re η > ηk (7.5)

Remark 7.1. In the calculations of integrals (3.32)–(3.34) for components of veloc-
ity u1, u2, u3 for the inverse Fourier transforms, we have each integrand f̃(γ1, γ2, γ3)
as a product of functions χ(γ1, γ2, γ3) and ϕ(γ1, γ2, γ3),

f̃(γ1, γ2, γ3) = χ(γ1, γ2, γ3) · ϕ(γ1, γ2, γ3),

where ϕ(γ1, γ2, γ3) belongs to space S (functions of γ1, γ2, γ3) [7] and χ(γ1, γ2, γ3)
is one of the fractions:

(γ2
2 + γ2

3)
(γ2

1 + γ2
2 + γ2

3)
,

(γ1 · γ2)
(γ2

1 + γ2
2 + γ2

3)
,

(γ1 · γ3)
(γ2

1 + γ2
2 + γ2

3)
,

(γ2
3 + γ2

1)
(γ2

1 + γ2
2 + γ2

3)
,

(γ2 · γ3)
(γ2

1 + γ2
2 + γ2

3)
,

(γ2
1 + γ2

2)
(γ2

1 + γ2
2 + γ2

3)
These fractions are infinitely differentiable functions for γ1 6= 0, γ2 6= 0, γ3 6= 0
with one point of discontinuity γ1 = 0, γ2 = 0, γ3 = 0 (The discontinuities have
finite values at this point).

For these calculations the inverse Fourier transforms are defined as Lebesgue
integrals with Cauchy principal values.

Theorem 7.2. : The inverse Fourier transform of f̃(γ1, γ2, γ3) = χ(γ1, γ2, γ3) ·
ϕ(γ1, γ2, γ3),

F [f̃ ] ≡ ψ(σ) ≡
∫ ∞
−∞

ei(γ,σ)χ(γ) · ϕ(γ)dγ (7.6)
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as function of σ belongs to space S (functions of σ); i.e., ψ(σ) has two criteria:
(1) ψ(σ) is infinitely differentiable function,
(2) when |σ| → ∞, ψ(σ) tends to 0, as well as its derivatives of any order,

more rapidly than any power of 1/|σ|.

Integral in (7.6) admits of differentiation with respect to the parameter σj , since
the integral obtained after formal differentiation remains absolutely convergent:

∂ψ(σ)
∂σj

≡
∫ ∞
−∞

iγje
i(γ,σ)χ(γ)ϕ(γ)dγ (7.7)

The properties of function ϕ(γ) permit this differentiation to be continued without
limit. This means that the function ψ(σ) is infinitely differentiable (see criterion
1).

To prove criterion 2 we create a function with parameter n:

fn(γ1, γ2, γ3) = ne
− 1
n2(γ21+γ22+γ23)χ(γ1, γ2, γ3) · ϕ(γ1, γ2, γ3)

n = 1, 2, 3 . . . . Then fn(γ1, γ2, γ3) belongs to space S (functions of γ1, γ2, γ3).
Then we estimate the integral in formula (7.6) using the inverse Fourier transform
of fn(γ) for |σ| >> 0, |σ| → ∞:

|ψ(σ)| ≡
∣∣ ∫ ∞
−∞

ei(γ,σ)χ(γ)ϕ(γ)dγ
∣∣ ≤ ∣∣n∫ ∞

−∞
ei(γ,σ)e

− 1
n2γ2 χ(γ)ϕ(γ)dγ

∣∣, (7.8)

n >> 1, · · · < ∞. Since fn(γ1, γ2, γ3) belongs to space S (functions of γ1, γ2, γ3)
then the inverse Fourier transform of fn(γ1, γ2, γ3) belongs to space S (functions
of σ1, σ2, σ3). Hence F [fn] is the function, such that when |σ| → ∞ this function
tends to 0, as well as its derivatives of any order, more rapidly than any power of
1/|σ|.

So from formula (7.8), we have that ψ(σ) is a function, such that when |σ| → ∞
this function tends to 0, more rapidly than any power of 1/|σ|.

Then we estimate the integral in formula (7.7). Using formula like (7.8) for
∂ψ(σ)
∂σj

, we obtain that ∂ψ(σ)
∂σj

tends to 0 more rapidly than any power of 1/|σ|. The
properties of function ϕ(γ) permit this differentiation to be continued without limit
and further using of formulas like (7.8) to derivatives leads to the conclusion that
all derivatives of function ψ(σ) tend to 0 more rapidly than any power of 1/|σ|.

We have proved that ψ(σ) belongs to space S (functions of σ).
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Addendum posted by the editor on December 31, 2013

Two anonymous readers informed us that the results in this article are incorrect.
I sent the questions to the authors who answer them, and posted a new version
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of their article in arXiv in September 2013; see reference [2] below. However, the
answers seem to be still erroneous. Here is an extract of our correspondence.

Question 1. The proof of Point 4 page 12 (which is the core of the paper) does
not make sense. I doubt that in the book by Gelfand one find the “appropriate
sequence of inequalities” allowing to control a C2 norm by a L2 norm.
Answer 1. To improve the estimate of the constant V we have applied an approach
that avoids the sequence of inequalities. Let us choose the constant V as:

max{‖~u0‖C2 , ‖~u0‖L2 , (‖~u‖C2 + ‖~u‖L2)} � V

Then we have
|~uV | < 1, |~u0

V | < 1

In property 4 of the matrix integral operator ¯̄S∇V , and in Theorems 6.1–6.3, where
two vector-functions ~uV and ~u′V are presented, constant V is selected as maximum
between V (~u) and V ′(~u′). In other words we do not use “appropriate sequence of
inequalities” in the new version, see reference [2] below.
Reader’s reply: As V is constant and as ~u is time-varying, does the inequality
holds on [0; 1)? Moreover, the role of V is still more dubious. Indeed, the aim seems
to ensure that ~u is bounded by 1. But the role of this boundedness is unclear. It
seems that the author want to use the fact that S is a perfect set (bounded subsets
are relatively compact); but boundedness in S means being bounded for a whole
countable family of semi-norms involving polynomial weights and higher derivatives,
so that the mere boundedness of the modulus of ~u does not bear any compactness
property in S.

Question 2. The proof of Theorem 6.1 is false, since u could be equal to u′, leading
to no contradiction with point 4.
Answer 2. Below you can see the condition (~uV 6= ~u′V ) in Theorem 6.1.

The matrix integral operator ¯̄
VS
∇ maps the perfect space ~TS onto the perfect

space ~TS, and for any ~uV , ~u
′
V ∈ ~TS (~uV 6= ~u′V ) the condition 4 is valid. Then the

matrix integral operator ¯̄
VS
∇ is a contraction operator, i.e. the following condition

is true:
‖ ¯̄S∇V · ~uV − ¯̄S∇V · ~u′V ‖p ≤ α · ‖~uV − ~u′V ‖p (6.13)

where α < 1 and is independent from ~uV , ~u
′
V ∈ ~TS for any t ∈ [0,∞).

Reader’s reply: The condition ~u 6= ~u′ is stated in the assumption of Theorem
6.1. However, the proof uses two limit points of sequences ~un and ~u′n with ~u 6= ~u′

and those two limit points may satisfy ~u = ~u′ and thus the alleged contradiction
is not proved. As a matter of fact, there are a lot of examples of contraction on
compacts spaces that are not strictly contractive: for instance t 7→ sin t on [0, π/2]:
we have | sin t − sin t′| < |t − t′| when t 6= t′, however there is no α < 1 such that
| sin t − sin t′| ≤ α|t − t′| for all t, t′ ∈ [0, π/2] (as the derivative of sin t at t = 0
equals 1).

Question 3. The proof of Theorem 6.2 is false: convergence in C2 norm of a
sequence of Schwartz functions does not imply that the limit is a Schwartz function
Answer 3. We use ‖ · ‖p countable system of norms (4.2) for the property 4 of
the matrix integral operator ¯̄

VS
∇, and in Theorems 6.1-6.3 now. The limit of a

sequence of Schwartz functions is also a Schwartz function by ‖·‖p-countable system
of norms (4.2).
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Reader’s reply: The convergence in C2 norm has been replaced by convergence
in the countable family of norms that define the topology of S. This is better than
in the published version, except that the convergence in those norms is not proved.
The new Theorem 6.1 is false: the assertion that ‖S∇V ~uV − S∇V ~u′V ‖p < ‖~uV − ~u′V ‖p
(condition 4) follows from formulas (3.30)-(3.31)-(3.32) and (6.5) is purely an act
of faith, but not a plausible proof. There is absolutely no scientific reason that this
infinite family of inequalities holds for a providential choice of V .

Question 4. Remark 6.4 is strange. How can we deal the case of the vanishing
viscosity?
Answer 4. Let us consider ν → 0. We see that integral operator ¯̄S∇V and Theorems
6.1-6.3 are correct also in case of Euler equations, i.e. there exists unique smooth
solution in all time range for this case too.
Reader’s reply: The answer that “we see that theorems 6.1, 6.2 and 6.3 are
correct in case of Euler equations” without any further explanations on how we can
see it is meaningless.

Question 5. Theorem 7.2 is incorrect, as a discontinuous function cannot belong
to the Schwartz class
Answer 5. ϕ(γ) as function of γ belongs to space S (functions of γ). I.e., ϕ(γ)
has two properties:
(1) ϕ(γ) is infinitely differentiable function,
(2) when |γ| → ∞, ϕ(γ) tends to 0, as well as its derivatives of any order, more
rapidly than any power of 1/|γ|. Function

f̃(γ1, γ2, γ3) = χ(γ1, γ2, γ3) · ϕ(γ1, γ2, γ3),

does not belong to space S (functions of γ) then

χ(γ1, γ2, γ3)

is the discontinuous function for γ = 0. But the inverse Fourier transform of
function f̃(γ1, γ2, γ3)

F [f̃ ] ≡ ψ(σ) ≡
∫ ∞
−∞

ei(γ,σ)χ(γ) · ϕ(γ)dγ

ψ(σ) as function of σ belongs to space S (functions of σ). I.e., ψ(σ) has two
properties:
(1) ψ(σ) is infinitely differentiable function,
(2) when |σ| → ∞ ψ(σ) tends to 0, as well as its derivatives of any order, more
rapidly than any power of 1/|σ|. We can see the correct proof of two properties (1)
and (2) for ψ(σ) in Theorem 7.2.
Reader’s reply: Theorem 7.2 is incorrect. It is a basic fact of the theory of
distributions that the Fourier transform is a bijection of the Schwartz class onto
itself, so that obviously a non-smooth function cannot have an inverse Fourier
transform in the Schwartz class. The author still argues that his proof is correct.
The proof is based on the inequality∣∣ ∫ ei(γ,σ)χ(γ) dγ

∣∣ ≤ n∣∣ ∫ ei(γ,σ)e−1/(n2γ2)χ(γ)ϕ(γ) dγ
∣∣

which is not proved (and false). As a matter of fact, the inequality is valid for large
n when σ is fixed, but is false for large σ when n is fixed.

Question 6. What are the main properties of the solution?
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Answer 6. Solution ~u ∈ ~TS and p ∈ S In other words there exists the unique
set of smooth functions u∞i(x, t), p∞(x, t) (i = 1, 2, 3) on R3× [0,∞) that satisfies
(2.1), (2.2), (2.3), and

u∞i, p∞ ∈ C∞(R3 × [0,∞)),
Then, using the inequality ‖~u‖L2 ≤ ‖~u0‖L2 , we have∫

R3
|~u∞(x, t)|2dx < C

for all t ≥ 0, see Fefferman [1], below.

Question 7. I think that (6.7) and (6.9) are wrong (L2 never controls C2 with
universal constants). After that, the authors get (6.8). From there using Beale-
Kato-Majda they may conclude the global existence. Without (6.7) and (6.9), their
definition of V makes no sense, as the new V will depend on time.
Answer 7. Instead inequalities (6.5)–(6.12) we choose the constant V as:

max{‖~u0‖C2 , ‖~u0‖L2 , (‖~u‖C2 + ‖~u‖L2)} � V

Then we have that |~uV | < 1, |~u0
V | < 1. (Please see Answer 1.) V is a constant, and

hence is not dependent on time.
Reader’s reply: I do not understand how V can be constant and control the
varying values of ~u.

Thus, the revised version is still totally incorrect. As a matter of fact, it is
well known that generically one cannot have a better decay than O(|x|−4) for the
solutions, so that any attempt to prove a fixed-point theorem in the Schwartz class
for the Navier-Stokes equations can be but a disastrous failure.

Additional references:
[1] C. L. Fefferman; Existence and smoothness of the Novier-Stokes equation,

The Clay Mathematics Institute, Official Problem Description.
[2] A. Tsionskiy, M. Tsionskiy; Existence, uniqueness and smoothness of solu-

tion for 3D Navier-Stokes equations with any smooth initial velocity,
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