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SINGULAR PERTURBATION METHOD FOR GLOBAL
STABILITY OF RATIO-DEPENDENT PREDATOR-PREY
MODELS WITH STAGE STRUCTURE FOR THE PREY

LINFEI NIE, ZHIDONG TENG

Abstract. In this article, a singular perturbation is introduced to analyze the

global asymptotic stability of positive equilibria of ratio-dependent predator-

prey models with stage structure for the prey. We prove theoretical results
and show numerically that the proposed approach is feasible and efficient.

1. Introduction

One of the most important and interesting topics in both ecology and mathe-
matical ecology is the analysis between predators and their preys. This has long
been and will continue to be one of the dominant themes due to its universal im-
portance. There are many mathematical models for predator-prey behavior. The
ratio-dependent type systems are very basic and important in the models of multi-
species population dynamics. This can be roughly stated as that the per capita
predator growth rate should be a function of the ratio of prey to predator abun-
dance, and so should be the so-called predator functional responses. This is strongly
supported by numerous field and laboratory experiments and observations; see for
example Arditi and Ginzburg [1], Arditi et al. [2], Hanski [10]. Generally, a ratio-
dependent predator-prey model takes the form

dx
dt

= xf(x)− yp(x
y

),

dy
dt

= cyq(
x

y
)− dy.

(1.1)

In previous decades, the dynamics of the ratio-dependent predator-prey system
(1.1) has been systematically studied by Kuang and Beretta [12], Hsu el at. [11],
Berezovskaya el at. [5], Xiao and Ruan [24], Li and Kuang [13] and Ginzburg el at.
[8]. These authors have shown that system (1.1) has very rich dynamics.

In the natural world, there are many species whose individual members have a life
history that take them through two stages: immature and mature. Stage-structured
models have been received much attention in recent years; see for example [6, 22,
7, 21]. Recently, Wang and Chen [23], Magnusson [16], Zhang el at. [26] proposed
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and investigated predator-prey models with stage structure for prey or predator
to analyze the influence of a stage structure for the prey or the predator on the
dynamics of predator-prey models. In particular, Xu el at. [25] studied a ratio-
dependent predator-prey model with stage structure for the prey. Their model
appears as

dx1

dt
= ax2 − r1x1 − bx1,

dx2

dt
= bx1 − b1x2

2 −
a1x2x3

mx3 + x2
,

dx3

dt
= x3

(
− r +

a2x2

mx3 + x2

)
,

(1.2)

where x1 represents the density of immature individual preys at time t, and X2

denotes the density of mature individual preys at time t, y represents the density of
the predator at time t. By constructing Lyapunov functions, sufficient conditions
are derived for the global asymptotic stability of nonnegative equilibria of the model.

On the other hand, in a wide class of large-scale interconnected systems such
as in power systems, large economies or even in networks one encounters dynamics
with different speeds or multiple time scales. Singular perturbation technique is an
adequate tool to describe such systems. Singular perturbation problems are of com-
mon occurrence in many branches of applied mathematics such as fluid dynamics,
elasticity, chemical reactor theory, neural networks, etc.. In particular, by singular
perturbation methods, [17, 18, 15, 19] analyzed the exponential stability of the com-
petitive neural networks, [20, 27] discussed the dynamic behavior of the epidemic
models, [3] considered a general linear population model with both a continuous
age structure and a finite spatial structure.

Motivated by the literature survey, in this paper, we use singular perturbation
theory to simplify the study of system (1.2) and analysis the global asymptotic
stability of positive equilibria of system (1.2).

The paper is organized as follows. In the next section, a singular perturbed
system is introduced. We state and prove a general criterion for the global asymp-
totically stability of positive equilibrium of system (1.2) in Section 3. In Section 4,
specific examples are given to illustrate our results.

2. Model description

Obviously, system (1.2) always has equilibria E0(0, 0, 0), E1(x̃1, x̃2, 0), where

x̃1 =
a2b

b1(r1 + b)2
, x̃2 =

ab

b1(r1 + b)

and has a positive equilibrium E2(x∗1, x
∗
2, x

∗
3) if and only if ab/(r1 + b) > a1(a2 −

r)/(ma2) > 0, where

x∗1 =
ax∗2
r1 + b

, x∗2 =
ab

b1(r1 + b)
− a1(a2 − r)

ma2b1
, x∗3 =

x∗2(a2 − r)
mr

. (2.1)

On the global asymptotic stability of equilibria E0, E1 and E2 of system (1.2),
we have the following result.

Theorem 2.1 ([25]). If a2 < r, E1 is locally asymptotically stable, if a2 > r, which
is locally unstable; the positive equilibrium E2 is global asymptotically stable if

ab/(r1 + b) > a1(a2 − r)/(ma2) > 0, ab/(r1 + b) > 2a1/m. (2.2)
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According to above discussion, to obtain the global asymptotically stability of
positive equilibrium E∗

2 of system (1.2), it is necessary to construct the Lyapunov
functions. However, it is usually difficult for nonlinear systems. In the present
paper, by choosing a reasonable transformation, we transform system (1.2) into the
standard singular perturbation system.

It is well know that the survival of individual eggs may be very low, so millions
of eggs must be produced in order for the species to successfully survive the larval
stage and then to persist for a long time. The fish species provides an exact example
of this phenomenon. So, we suppose r/a is small enough and re-scale time by rt = τ .
Further, let x = x1−x∗1, y = x2−x∗2, z = x3−x∗3, then the equilibria E2(x∗1, x

∗
2, x

∗
3)

of system (1.2) has been shift to the origin O(0, 0, 0). Thus, we note that system
(1.2) can be rewritten as the following singular perturbation form

dθ
dτ

= f(x, θ),

ε
dx
dτ

= g(x, θ),
(2.3)

where ε = r/a, θ = (y, z) ∈ Dθ = {(y, z) : y > −x∗2, z > −x∗3} and x ∈ Dx = {x :
x > −x∗1} and

g(x, θ) = y − r1
a
x− b

a
x,

f(x, θ) =

(
1
r

[
b(x+ x∗1)− b1(y + x∗2)2 − a1(y+x

∗
2)(z+x∗3)

m(z+x∗3)+(y+x∗2)

]
(z + x∗3)

[
− 1 + a2y(y+x

∗
2)

r(m(z+x∗3)+(y+x∗2))

] )
.

3. Main results

In this section, we are concerned with the global asymptotically stable of non-
negative equilibria of system (1.2) by using the singular perturbation.

Now, we proceed to the discussion on the stability of the origin O(0, 0, 0) by
examining the reduced and boundary-layer models. Let ε tend to zero in system
(2.3), we can get the first equation of system (2.3) has a unique real function root

x = h(θ) =
ay

r1 + b
. (3.1)

It is more convenient to work in the (ϑ, y, z) coordinates, where

ϑ = x− h(θ)

because this change of variables shifts the equilibrium of the boundary layer model
to the origin. In the new coordinates, the singularly perturbed system (2.3) can be
rewritten as

dθ
dτ

= f(ϑ+ h(θ), θ),

ε
dϑ
dτ

= g(ϑ+ h(θ), θ)− ε∂h
∂θ
f(ϑ+ h(θ), θ).

(3.2)

Then, the reduced system
dθ
dτ

= f(h(θ), θ) (3.3)

has equilibrium at (0, 0) and boundary-layer system
dϑ
ds

= g(ϑ+ h(θ), θ) = −r1 + b

a
ϑ, (3.4)
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where s = τ/ε, has equilibrium at ϑ = 0.
To discuss the globally asymptotically stable of equilibrium O(0, 0, 0) of system

(2.3), we first derive certain upper bound and lower bound estimates for solution
of reduced system (3.3).

Theorem 3.1. Let (y(τ), z(τ)) denote any solutions of system (3.3) corresponding
to initial conditions y(0) > 0 and z(0) > 0. If a2 > r and mab > a1(r1 + b), then
there is a constant T > 0 such that if t ≥ T ,

m1 − x∗2 ≤ y(τ) ≤M1 + x∗2, m2 < z(τ) ≤M2,

where

m1 =
mab− a1(r1 + b)
mb1(r1 + b)

, M1 =
ab

b1(r1 + b)
, m2 = 0, M2 =

a2M1

mr
. (3.5)

The proof of the above theorem is similar to that of [25, Theorem 2.1]; therefore
we omit it here. Now, we state and prove our result on the globally asymptotically
stable of system (1.2).

Theorem 3.2. Let ε∗ be defined by (3.24). If

ab

r1 + b
+

ra1

ma2
− 2a1

ma2
> 0,

ab

r1 + b
− a1

m
> 0 (3.6)

hold, then the equilibrium O(0, 0, 0) of system (2.3) is globally asymptotically stable
for all ε ∈ (0, ε∗), that is, the equilibrium E2(x∗1, x

∗
2, x

∗
3) of system (1.2) is globally

asymptotically stable for all ε ∈ (0, ε∗).

Proof. Let (y(t), z(t)) be any positive solution of system (3.3) with initial conditions
y(0) > 0 and z(0) > 0. In view of the E2(x∗1, x

∗
2, x

∗
3) is positive equilibrium of system

(1.2), we note that system (3.3) can be rewritten as

dy
dτ

=
y + x∗2
r

[
− b1y +

a1x
∗
3y − a1x

∗
2z

(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]
]
,

dz
dτ

=
ma2(z + x∗3)

r

[ x∗3y − x∗2z
(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]

]
.

(3.7)

Define a Lyapunov function candidate

V1(θ) = c1
[
y − x∗2 ln(y + x∗2)− x∗2 lnx∗2

]
+ c2

[
z − x∗3 ln(z + x∗3)− x∗3 lnx∗3

]
(3.8)

and calculating the derivative of V1(θ) along solutions of system (3.7), it follows
that

dV1

dτ
=

c1y

y + x∗2

dy
dτ

+
c2z

z + x∗3

dz
dτ

= −c1
[
− b1

r
y2 +

a1x
∗
3y

2 − a1x
∗
2yz

r(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]
]

+ c2
[ −ma2x

∗
2z

2 −ma2x
∗
2yz

r(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]
]
.

(3.9)

Let c2 = 1 and c1 = ma2x
∗
3/a1x

∗
2. We derive from (3.9) that

dV1

dτ
= −c1

r

[
b1 −

a1x
∗
3

(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]
]
y2

− ma2c2x
∗
2

r(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]
z2.

(3.10)
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From (3.6), we can choose a positive constant ε such that

ab

r1 + b
+

ra1

ma2
− 2a1

ma2
− ε > 0.

Further, from Theorem (3.1), there is a τ1 ≥ 0 such that y(τ) > m1 − ε for all
τ ≥ τ1. Therefore, from Theorem (3.1) and (3.10), we obtain

∂V1

∂θ
f(h(θ), θ) = −

[
b1 −

a1(a2 − r)
ma2(m1 − ε)

]
y2 − m

mM2 +M1
z2

≤ −α1φ
2
1(θ)

(3.11)

for all τ ≥ τ1, where φ1(θ) =
√
y2 + z2 and

α1 = min
{
b1 −

a1(a2 − r)
ma2(m1 − ε)

,
m

mM2 +M1

}
. (3.12)

On the other hand, Let ϑ(s) be any positive solution of the boundary-layer sys-
tem (3.4) with initial condition ϑ(0) > 0. We define a Lyapunov function candidate

V2(ϑ) =
1
2
ϑ2 (3.13)

and calculating the derivative of V2(ϑ) along solutions of system (3.4), it follows
that

∂V2

∂ϑ
g(ϑ+ h(θ), θ) = −α2φ

2
2(ϑ), (3.14)

where φ2(ϑ) = |ϑ| and

α2 =
r1 + b

a
. (3.15)

Now, for the singularly perturbed system (3.2), we consider the composite Lya-
punov function candidate

V (θ, ϑ) = (1− δ)V1(θ) + δV2(ϑ), (3.16)

where 0 < θ < 1 is to be chosen. Calculating the derivative of V (θ, ϑ) along the
solutions of the full system (3.2), we obtain

dV
dτ

= (1− δ)∂V1

∂θ
f(ϑ+ h(θ), θ) +

δ

ε

∂V2

∂ϑ
g(ϑ+ h(θ), θ)− δ ∂V2

∂ϑ

∂h

∂θ
f(ϑ+ h(θ), θ)

= (1− δ)∂V1

∂θ
f(h(θ), θ) +

δ

ε

∂V2

∂ϑ
g(ϑ+ h(θ), θ)

+ (1− δ)∂V1

∂θ
[f(ϑ+ h(θ), θ)− f(h(θ), θ)] + δ

[∂V2

∂θ
− ∂V2

∂ϑ

∂h

∂θ

]
f(ϑ+ h(θ), θ).

(3.17)
Further, from (3.8), systems (3.2) and (3.3) we have

∂V1

∂θ
[f(ϑ+ h(θ), θ)− f(h(θ), θ)] = (

y

y + x∗2
,

z

z + x∗3
)
(
bϑ
r
0

)
≤ β1φ1(θ)φ2(ϑ) (3.18)

for all τ ≥ τ1, where

β1 =
b1
m1r

. (3.19)
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By (3.1), (3.13) and system (3.2), we obtain[∂V2

∂θ
− ∂V2

∂ϑ

∂h

∂θ

]
f(ϑ+ h(θ), θ)

=
−aϑ

r(r1 + b)
{
bϑ− (y + x∗2)

[
− b1y +

a1x
∗
3y − a1x

∗
2z

(mx∗3 + x∗2)[m(z + x∗3) + y + x∗2]
]}

≤ −α3φ
2
2(ϑ) + β2φ1(θ)φ2(ϑ)

(3.20)

for all τ ≥ τ1, where

α3 =
ab

r(r1 + b)
, β2 =

a

r(r1 + b)
[a1(a2 − r +mr)

ma2
+

ab

r1 + b

]
(3.21)

Using (3.14), (3.17), inequalities (3.18) and (3.20), we obtain

dV
dτ
≤ −(1− δ)α1φ

2
1(θ)− δ[α2

ε
+ α3]φ2

2(ϑ) + (1− δ)β1φ1(θ)φ2(ϑ) + δβ2φ1(θ)φ2(ϑ)

= −φT (θ, ϑ)Λφ(θ, ϑ)
(3.22)

for all τ ≥ τ1, where
φT (θ, ϑ) = (φ1(θ), φ2(θ))

and

Λ =

[
(1− δ)α1 − (1−δ)β1+δβ2

2

− (1−δ)β1+δβ2
2 δ[α2

ε + α3]

]
.

The right-hand side of inequality (3.22) is a quadratic form in φ. The quadratic
form is negative definite when

α1[
α2

ε
+ α3] >

[(1− δ)β1 + δβ2]2

4δ(1− δ)
. (3.23)

It can be easily seen that the minimum value of inequality (3.23) at δ∗ = β1/(β1+β2)
and is given by β1β2. So, the inequality (3.23) is equivalent to

α1[
α2

ε
+ α3] > β1β1.

Therefore, The quadratic form is negative definite for all ε < ε∗, where

ε∗ =

{
+∞, if α1α3 ≥ β1β2;

α1α2
β1β2−α1α3

, if α1α3 < β1β2,
(3.24)

and α1, α2, α3, β1 and β2 be defined by (3.12), (3.15), (3.19) and (3.21), respec-
tively. It follows that the origin of system (3.2) is global asymptotically stable
for all ε < ε∗. That is the equilibrium E2(x∗1, x

∗
2, x

∗
3) of system (1.2) is globally

asymptotically stable for all ε < ε∗. This completes the proof of this theorem. �

Remark 3.3. Xu et al [25] studied the globally asymptotically stable of the positive
equilibrium of system (1.2) by using the technique of directly constructing Lyapunov
function. Obviously, their method is different from our method, and our result
improve theirs, in Theorem 2.1 for ε = a/r small enough. So our results are more
general.

From the proof of Theorem (3.2), we have the following corollary.
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Corollary 3.4. Suppose that
ab

r1 + b
+

ra1

ma2
− 2a1

ma2
> 0,

ab

r1 + b
− a1

m
> 0.

If α1α3 ≥ β1β2 holds, then the positive equilibrium E2(x∗1, x
∗
2, x

∗
3) of system (1.2)

is globally asymptotically stable, where α1, α2, α3, β1 and β2 be defined by (3.12),
(3.15), (3.19) and (3.21), respectively.

4. Example and numerical simulation

To check the validity of our results we consider the ratio-dependent predator-prey
model with stage structure for the prey,

dx1

dt
= 25x2 − 22x1 − 1.9x1,

dx2

dt
= 1.9x1 − 2.8x2

2 −
2.2x2x3

2.2x3 + x2
,

dx3

dt
= x3

(
− 1 +

1.5x2

2.2x3 + x2

)
.

(4.1)

It is easy to compute that
ab

r1 + b
− 2a1

m
=

25× 1.9
22 + 1.9

− 2× 2.2
2.2

≈ −0.0126 < 0.

So, conditions (2.2) of Theorem 2.1 do not hold. Thus, we cannot guarantee the
global asymptotically stability of positive equilibrium of system (4.1) from Theorem
2.1. However, it is also easy to verify that

ab

r1 + b
+

ra1

ma2
− 2a1

ma2
=

25× 1.9
22 + 1.9

+
1× 2.2

2.2× 1.5
− 2× 2.2

2.2
≈ 0.6541 > 0

and
ε =

r

a
= 0.0400 < ε∗ =

α1α2

β1β2 − α1α3
≈ 0.0409.

Therefore, from Theorem 3.2, the positive equilibrium E2 of system (1.2) is globally
asymptotically stable. Which is shown in Figure 1.
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Figure 1. Trajectory of system (4.1) with a = 25, r1 = 22, b =
1.9, b1 = 2.8, a1 = m = 2.2, a2 = 1.5, r = 1 and ε = 0.04
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Figure 2. Trajectory of system (4.1) and its reduced system with
a = 25, r1 = 22, b = 1.9, b1 = 2.8, a1 = m = 2.2, a2 = 1.5, r = 1
and ε = 0.04

Further, to show how the reduced system (3.3) approximates to the full system
(1.2) and how the small parameter ε affects the stability of zero solution of system
(1.2). By the equivalence of systems (1.2) and (2.3), we only focus on the numerical
analysis of system (2.3) and its reduced system (3.3). Let (x(t, ε), y(t, ε), z(t, ε))
be solution of system (2.3), (y(t), z(t)) be the solution of system (3.3). If ε is
small enough, the solutions of the reduced system (3.3) closely approximate to the
solutions of the full system (2.3) and the errors (i.e. x(t, ε) − h(y), y(t, ε) − y(t),
z(t, ε)− z(t)) quickly converge to zero after oscillation, and all solutions of system
(2.3) approach to zero solution. Which are shown in Figure 2(a)-(d).
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