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CHARACTERIZATION OF POSITIVE SOLUTION TO
STOCHASTIC COMPETITOR-COMPETITOR-COOPERATIVE

MODEL

PARTHA SARATHI MANDAL

Abstract. In this article we study a randomized three-dimensional Lotka-

Volterra model with competitor-competitor-mutualist interaction. We show
the existence, uniqueness, moment boundedness, stochastic boundedness and

global asymptotic stability of positive global solutions for this stochastic model.

Analytical results are validated by numerical examples.

1. Introduction

Gyllenberg et al [10] investigated the following Lotka-Volterra system describing
a competitor-competitor-mutualist interaction:

dx1(t)
dt

= x1(t)(r1 − a11x1(t)− a12x2(t) + a13x3(t)), (1.1)

dx2(t)
dt

= x2(t)(r2 − a21x1(t)− a22x2(t) + a23x3(t)), (1.2)

dx3(t)
dt

= x3(t)(r3 + a31x1(t) + a32x2(t)− a33x3(t)), (1.3)

subjected to the biologically feasible initial condition x1(0) ≡ x10 > 0, x2(0) ≡
x20 > 0, x3(0) ≡ x30 > 0. x1(t), x2(t) are the population densities of two
competitive species and x3(t) denotes the population density of the cooperative
species. Intrinsic growth rates of the three species are denoted by ri, (i = 1, 2, 3)
and intra-specific competition coefficients for the limited resources are denoted by
aii, (i = 1, 2, 3). The strengths of inter-specific interactions are denoted by aij ’s
(i, j = 1, 2, 3, ; i 6= j). All the parameters involved with the model are positive.
Competitive and cooperative interactions are characterized by the negative and
positive signs before the inter-specific interaction terms. Gyllenberg et al gave the
detailed mathematical analysis of the above system. However, to the best of my
knowledge, the deterministic model (1.1)-(1.3) is not studied so far by anyone, in
presence of environmental fluctuation. In this paper, We will study the stochastic
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model corresponding to the model (1.1)-(1.3). The stochastic model takes into ac-
count the environmental fluctuation. Therefore the main contribution of this paper
is clear.

The rest of this article is organized as follows: In section 2, we formulate the
stochastic model perturbing the growth rate terms of (1.1)-(1.3) by white noise
terms, which governs a system of stochastic differential equations(SDEs). Then
section 2 is divided into three subsections. In subsection (2.1), we show the existence
of unique positive global solution to the given SDE system. In subsection (2.2), we
establish the stochastic boundedness of the solution to the formulated SDE system.
Global asymptotic stability results are derived in subsection (2.3). In section 3, we
validated the analytical findings with the help of numerical example. Finally, we
closed this paper with a detail discussion in section 4. The key method used in this
paper is the analysis of Lyapunov functions.

Throughout this paper, we will use the following notation:

R3
+ =

{
(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

}
,

Int(R3
+) =

{
(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0

}
.

2. Stochastic model

In this section, we study the effect of environmental driving forces on the dy-
namics of the model system (1.1)-(1.3) after introducing the multiplicative white
noise terms into the growth equations of each species. To formulate the stochastic
model, we introduce randomness into the deterministic model system (1.1)-(1.3)
by perturbing r1, r2, r3 by σ1ξ1(t), σ2ξ2(t) and σ3ξ3(t) respectively. Therefore, we
obtain the following modified version:

dx1(t)
dt

= x1(t)(r1 − a11x1(t)− a12x2(t) + a13x3(t)) + σ1x1(t)ξ1(t), (2.1)

dx2(t)
dt

= x2(t)(r2 − a21x1(t)− a22x2(t) + a23x3(t)) + σ2x2(t)ξ2(t), (2.2)

dx3(t)
dt

= x3(t)(r3 + a31x1(t) + a32x2(t)− a33x3(t)) + σ3x3(t)ξ3(t), (2.3)

subjected to the initial conditions x1(0), x2(0), x3(0) > 0. ξ1(t), ξ2(t) and ξ3(t)
are three mutually independent white noise terms [11] characterized by 〈ξ1(t)〉 =
〈ξ2(t)〉 = 〈ξ3(t)〉 = 0 and 〈ξi(t)ξj(t1)〉 = δijδ(t − t1) where δij is Kronecker delta
and δ(.) is the ‘Dirac-δ’ function [13, 14]. Here parameters σ1, σ2 and σ3 denote the
intensities of white noise. Now we can write the stochastic model system (2.1)-(2.3)
into the following system of SDEs:

dx1(t) = x1(t)(r1 − a11x1(t)− a12x2(t) + a13x3(t)) + σ1x1(t)dB1(t), (2.4)

dx2(t) = x2(t)(r2 − a21x1(t)− a22x2(t) + a23x3(t)) + σ2x2(t)dB2(t), (2.5)

dx3(t) = x3(t)(r3 + a31x1(t) + a32x2(t)− a33x3(t)) + σ3x3(t)dB3(t), (2.6)

where B1(t), B2(t) and B3(t) are three standard one-dimensional independent
Wiener processes defined over the complete probability space (Ω,F , P ) with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right
continuous while F0 contains all P -null sets [16]). The relations between the white
noise terms and Wiener processes are defined by dBr = ξr(t)dt, r = 1, 2, 3 [15].
Since the main objective of this paper is to study the effect of environmental noise
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on the dynamics of the system, we assume that the noise intensities are positive.
As each xi(t) denote the population density, it should be nonnegative. Now we
show that the system (2.4)-(2.6) has a unique positive global solution

2.1. Existence, uniqueness and stochastic boundedness solutions.

Theorem 2.1. For any initial value x0 ≡ (x10, x20, x30) ∈ Int(R3
+), there is a

unique solution x(t) ≡ (x1(t), x2(t), x3(t)) of system(2.4)-(2.6) for t ≥ 0 and the
solution will remain in Int(R3

+) with probability 1, namely x(t) ∈ Int(R3
+) for all

t ≥ 0 a.s.

The proof of the above theorem is similar to the one of [9, Theorem 2.1]; Hence
it is omitted here.

Stochastic boundedness is one of the most important properties for stochastically
perturbed population system, because boundedness of a system guarantees its eco-
logical validity. Now we are interested to discuss the stochastic boundedness of
the solution to the system (2.4)-(2.6). We use the following definition of stochastic
boundedness from [18].

Definition 2.2. The solution of (2.4)-(2.6) is said to be stochastically bounded if
for any ε1 > 0, there is a constant Z ≡ Z(ε1) such that for any x0 ∈ Int(R3

+), we
have

lim sup
t→∞

P
{
|x(t)| :=

√
(x2

1(t) + x2
2(t) + x2

3(t)) ≤ Z
}
≥ 1− ε1. (2.7)

As a deterministic system, we can not find the uniform bound of the solution
to the stochastic system. Instead, we can find the uniform bound of the higher
order moments of the solution for the stochastic system. The nice property about
the solution of system (2.4)-(2.6), discussed in the previous theorem provides with
a great opportunity to discuss about the boundedness of p th order moment of
the solution, which will be required to prove the stochastic boundedness of the
solution. Before going to prove the next theorem, we will state a lemma which will
be required to prove the theorem.

Lemma 2.3. If a > 0, b > 0 and dx
dt ≥ (≤)x (b− axα), where α is a positive

constant, when t ≥ 0 and x(0) > 0, we have

x(t) ≥ (≤)
( b
a

)1/α[1 +
(bx−α(0)

a
− 1
)
e−bαt

]−1/α

Remark 2.4. From Lemma 2.3, we have

(a) lim inft→+∞ x(t) ≥ ( ba )1/α
(

lim supt→+∞ x(t) ≤ ( ba )1/α
)
,

(b) x(t) ≥ min
{
x(0), ( ba )1/α

}(
x(t) ≤ max{x(0), ( ba )1/α}

)
, for all t ≥ 0.

For a detailed proof of the above lemma and of the remark, one can see [21].

Theorem 2.5. Assume that a11−a13 > 0, a22−a23 > 0, a33−(a31+a32) > 0. Then
there exists a positive constant K∗(p) such that for any initial value x0 ∈ Int(R3

+),
the solution x(t) of system (2.4)-(2.6) has the following property:

E
[ 3∑
i=1

xpi (t)
]
≤ K∗(p) <∞, ∀t ∈ [0,∞), p ≥ 1.
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Proof. Calculating the differential of the function 1
p

∑3
i=1 cix

p
i , p ≥ 1, (where cj , j =

1, 2, 3 are three positive constants to be defined later) along the solution trajectories
of the system (2.4)-(2.6), with the help of Itô’s formula, we obtain

d
(1
p

3∑
i=1

cix
p
i

)
=
[ 3∑
i=1

ci

(
ri +

p− 1
2

σ2
i

)
xpi − c1

(
a11x

p+1
1 + a12x2x

p
1 − a13x3x

p
1

)
− c2

(
a21x1x

p
2 − a22x

p+1
2 − a23x3x

p
2

)
+ c3

(
a31x1x

p
3 + a32x2x

p
3 − a33x

p+1
3

)]
dt

+
3∑
i=1

ciσix
p
i dBi(t).

Now integrating above result from 0 to t and then taking expectation of both sides,
we find

1
p
E
[ 3∑
i=1

cix
p
i

]
= E

∫ T

0

[ 3∑
i=1

(
ri +

p− 1
2

σ2
i

)
cix

p
i − c1

(
a11x

p+1
1 + a12x2x

p
1 − a13x3x

p
1

)
− c2

(
a21x1x

p
2 + a22x

p+1
2 − a23x3x

p
2

)
+ c3

(
a31x1x

p
3 + a32x2x

p
3 − a33x

p+1
3

)]
ds,

with the help of mean zero property of Itô’s integral [12]. Next applying Fubini’s
theorem [19, 20] and differentiating both sides with respect to t, we obtain,

1
p

d

dt
E
[ 3∑
i=1

cix
p
i (t)

]
= E

[ 3∑
i=1

(
ri +

p− 1
2

σ2
i

)
cix

p
i (t)

]
− c1E

[
a11x

p+1
1 (t) + a12x2(t)xp1(t)− a13x3(t)xp1(t)

]
− c2E

[
a21x1(t)xp2(t) + a22x

p+1
2 (t)− a23x3(t)xp2(t)

]
+ c3E

[
a31x1(t)xp3(t) + a32x2(t)xp3(t)− a33x

p+1
3 (t)

]
.

Applying Young’s inequality on the terms xi(t)x
p
j (t), 1 ≤ i, j ≤ 3, i 6= j and with

the help of the positivity of solution, we obtain

d

dt
E
[ 3∑
i=1

cix
p
i (t)

]
≤ E

[
p

3∑
i=1

(
ri +

p− 1
2

σ2
i

)
cix

p
i (t)

]
−
(
c1a11p− c1a13

p2

p+ 1
− c3a31

p

p+ 1

)
E
(
xp+1

1 (t)
)

−
(
c2a22p− c2a23

p2

p+ 1
− c3a32

p

p+ 1

)
E
(
xp+1

2 (t)
)
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−
(
c3a33p− c3(a31 + a32)

p2

p+ 1
− (c1a13 + c2a23)

p

p+ 1

)
E
(
xp+1

3 (t)
)
. (2.8)

Now we establish the existence of three positive constants ci’s, i = 1, 2, 3, such that

c1a11p− c1a13
p2

p+ 1
− c3a31

p

p+ 1
> 0,

c2a22p− c2a23
p2

p+ 1
− c3a32

p

p+ 1
> 0,

c3a33p− c3(a31 + a32)
p2

p+ 1
− (c1a13 + c2a23)

p

p+ 1
> 0.

One can easily verify that the restrictions on the parameters, defined by a11 > a13,
a22 > a23 and a33 > a31 + a32 ensure that we can find three positive ci’s which
satisfy above mentioned three inequalities. Let us define six quantities as follows:

Ai = p
(
ri +

p− 1
2

σ2
i

)
, i = 1, 2, 3,

β1 = c
−(p+1)

p

1

(
c1a11p− c1a13

p2

p+ 1
− c3a31

p

p+ 1

)
,

β2 = c
−(p+1)

p

2

(
c2a22p− c2a23

p2

p+ 1
− c3a32

p

p+ 1

)
,

β3 = c
−(p+1)

p

3

(
c3a33p− c3(a31 + a32)

p2

p+ 1
− (c1a13 + c2a23)

p

p+ 1

)
,

where Ai > 0 as ri, σi > 0 and p ≥ 1 and positivity of βi’s depend upon the
satisfaction of the inequalities and the choices of ci’s. Hence from (2.8), we can
write

d

dt
E
[ 3∑
i=1

cix
p
i (t)

]
≤ E

[ 3∑
i=1

Aicix
p
i (t)

]
−

3∑
i=1

c
(p+1)

p

i βiE
(
xp+1
i (t)

)
.

Defining M1 = max{A1, A2, A3} and M2 = min{β1, β2, β3}, we obtain

d

dt
E
[ 3∑
i=1

cix
p
i (t)

]
≤M1E(c1x

p
1 + c2x

p
2 + c3x

p
3)−M2E

(
c

(p+1)
p

1 xp+1
1 + c

(p+1)
p

2 xp+1
2 + c

(p+1)
p

3 xp+1
3

)
≤M1E

(
c1x

p
1 + c2x

p
2 + c3x

p
3

)
− M2

3p
E
(
c
1/p
1 x1 + c

1/p
2 x2 + c

1/p
3 x3

)p+1
.

By Hölder’s inequality,

E(c1/p1 x1 + c
1/p
2 x2 + c

1/p
3 x3)p+1 ≥

[
E(c1/p1 x1 + c

1/p
2 x2 + c

1/p
3 x3)p

] p+1
p

.

Therefore using above inequality ,

d

dt
E
[ 3∑
i=1

cix
p
i (t)

]
≤M1E (c1x

p
1 + c2x

p
2 + c3x

p
3)− M2

3p
[
E(c1/p1 x1 + c

1/p
1 x2 + c

1/p
1 x3)p

] p+1
p

≤M1E (c1x
p
1 + c2x

p
2 + c3x

p
3)− M2

3p
[E(c1x

p
1 + c2x

p
2 + c3x

p
3)]

p+1
p .

(2.9)
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Using the result (b) of Remark 2.4, we obtain

E[c1x
p
1 + c2x

p
2 + c3x

p
3] ≤ max

{
c1x

p
1(0) + c2x

p
2(0) + c3x

p
3(0),

(M13p

M2

)p}
Hence

E[xp1 + xp2 + xp3] ≤
[M13p

M∗2

]p
:= K∗(p) <∞, for all t ≥ 0 (2.10)

where M∗2 = min(β∗1 , β
∗
2 , β
∗
3) and β∗1 , β∗2 , β∗3 are obtained from expressions of β1,

β2, β3 by putting c1 = c2 = c3 = 1. Hence the result follows. �

Theorem 2.6. Assume conditions of Theorem 2.5. Then the solution of (2.4)-
(2.6) is stochastically bounded starting from x0 ∈ Int(R3

+).

Proof. Observe that |x(t)|p ≤ 3p/2
∑3
i=1 xi(t)

p. Thus it follows from Theorem 2.5
that for any t ≥ 0,

E[|x(t)|p] ≤ 3p/2E
[ 3∑
i=1

xpi (t)
]
≤ K1(p) <∞,

where K1(p) = 3p/2K∗(p). Applying Tchebychev’s inequality[16], for Z > 0, we
have

P{|x(t)| > Z} ≤
E
[
|x(t)|2

]
Z2

≤ K1(2)
Z2

.

Therefore, by choosing Z sufficiently large, (2.7) follows. �

2.2. Global asymptotic stability and global asymptotic stability in mean.
In this section, we discuss the global asymptotic stability of the solution to the
system (2.4)-(2.6). We will use the following definitions from [6, 22].

Definition 2.7. Let (x11(t), x21(t), x31(t)) denote the positive solution of (2.4)-
(2.6) with initial value (x11(0), x21(0), x31(0)) ∈ Int(R3

+). This solution is said to be
globally asymptotically stable if for any other positive solution (x12(t), x22(t), x32(t))
with initial value (x12(0), x22(0), x32(0)) ∈ Int(R3

+), we have

lim
t→∞

|x11(t)− x12(t)| = lim
t→∞

|x21(t)− x22(t)| = lim
t→∞

|x31(t)− x32(t)| = 0, a.s.

(2.11)
System (2.4)-(2.6) is said to be globally asymptotically stable if (2.11) holds for
any two positive solutions.

Definition 2.8. Let (x11(t), x21(t), x31(t)) denote the positive solution of (2.4)-
(2.6) with initial value (x11(0), x21(0), x31(0)) ∈ Int(R3

+). This solution is said
to be globally asymptotically stable in mean if for any other positive solution
(x12(t), x22(t), x32(t)) with initial value (x12(0), x22(0), x32(0)) ∈ Int(R3

+), we have

P
{

lim
t→+∞

E (| (x11(t), x21(t), x31(t))− (x12(t), x22(t), x32(t)) |) = 0
}

= 1.

Now we state a lemma which will be useful for proving the main theorem of this
subsection.

Lemma 2.9. Suppose that an n-dimensional stochastic process X(t) on t ≥ 0
satisfies the condition

E|X(t)−X(s)|ν1 ≤ m|t− s|1+ν2 , 0 ≤ s, t <∞,
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for some positive constants ν1, ν2 and m. Then there exists a continuous modifi-
cation X̄(t) of X(t) which has the property that for every γ ∈

(
0, ν2ν1

)
there is a

positive random variable h(ω) such that

P
{
ω : sup

0<|t−s|<h(ω),0≤s,t<∞

|X̄(t, ω)− X̄(t, ω)|
|t− s|γ

≤ 2
1− 2−γ

}
= 1.

In other words, almost every sample path of X̄(t) is locally but uniformly Hölder
continuous with exponent γ.

The proof of the above lemma can be found in [3].

Lemma 2.10. Under the assumptions of Theorem 2.5, let (x1(t), x2(t), x3(t)) be
a solution of (2.4)-(2.6) with initial condition (x1(0), x2(0), x3(0)) ∈ Int(R3

+) for
t ≥ 0. Then almost every sample path of (x1(t), x2(t), x3(t)) is uniformly continuous
on t ≥ 0.

Proof. Consider the following stochastic integral equation which is equivalent to
(2.4),

x1(t) = x1(0)+
∫ T

0

f (s, x1(s), x2(s), x3(s)) ds+
∫ T

0

g (s, x1(s), x2(s), x3(s)) dB1(s),

where

f (s, x1(s), x2(s), x3(s)) = x1(s)
(
r1 − a11x1(s)− a12x2(s) + a13x3(s)

)
,

g (s, x1(s), x2(s), x3(s)) = σ1x1(s).

Then

E
(∣∣f (s, x1(s), x2(s), x3(s))

∣∣p)
= E

(
xp1(s)

∣∣r1 − a11x1(s)− a12x2(s) + a13x3(s)
∣∣p)

≤ 1
2
E
(
x2p

1 (s)
)

+
1
2
E
(∣∣r1 − a11x1(s)− a12x2(s) + a13x3(s)

∣∣2p)
≤ 1

2
E
(
x2p

1 (s)
)

+
22p−1

2
E
(
|r1 + a13x3|2p

)
+

22p−1

2
E
(
|a11x1 + a12x2|2p

)
≤ 24p−2

2
(r1)2p +

(1
2

+ a2p
11

24p−2

2

)
E
(
x2p

1

)
+ (a12)2p

24p−2

2
E
(
x2p

2

)
+ (a13)2p

24p−2

2
E
(
x2p

3

)
≤ 24p−2

2
(r1)2p + UbE

(
x2p

1 + x2p
2 + x2p

3

)
≤ 24p−2

2
(r1)2p + UbK

∗(2p) ≡ F (p),

(2.12)

where Ub = max
{

1
2 + (a11)2p 24p−2

2 , (a12)2p 24p−2

2 , (a13)2p 24p−2

2

}
and

E (|g (s, x1(s), x2(s), x3(s)) |p) = E (|σ1|p|x1(s)|p)
= σp1E (|x1(s)|p)
< σp1K

∗(p) ≡ G(p).
(2.13)
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Assume that p > 2. Now applying moment inequality [2] for stochastic integral, for
0 ≤ t1 < t2 <∞ and p > 2, we have

E
∣∣∣ ∫ t2

t1

g (s, x1(s), x2(s), x3(s)) dB1(s)
∣∣∣p

≤
[p(p− 1)

2
]p/2(t2 − t1)

p−2
2

∫ t2

t1

E|g (s, x1(s), x2(s), x3(s)) |pds.
(2.14)

Let 0 < t1 < t2 < ∞, t2 − t1 ≤ 1 and 1
p + 1

q = 1. Then from (2.12)-(2.14), by
applying Hölder’s inequality, we obtain

E|x1(t2)− x1(t1)|p

≤ 2p−1E
(∫ t2

t1

|f (s, x1(s), x2(s), x3(s)) |ds
)p

+ 2p−1E
∣∣∣ ∫ t2

t1

g (s, x1(s), x2(s), x3(s)) dB1(s)
∣∣∣p

≤ 2p−1E
(∫ t2

t1

|f (s, x1(s), x2(s), x3(s)) |pds
)(∫ t2

t1

1qds
)p/q

+ 2p−1
[p(p− 1)

2
]p/2(t2 − t1)

p−2
2

∫ t2

t1

E|g (s, x1(s), x2(s), x3(s)) |pds

≤ 2p−1(t2 − t1)pF (p) + 2p−1
[p(p− 1)

2
]p/2(t2 − t1)p/2G(p)

≤ 2p−1(t2 − t1)p/2
{

(t2 − t1)p/2 +
[p(p− 1)

2
]p/2}

M(p)

≤ 2p−1(t2 − t1)p/2
{

1 +
[p(p− 1)

2
]p/2}

M(p),

where M(p) = max{F (p), G(p)}.
Therefore, it follows from Lemma 2.9 that almost every sample path x1(t) is

locally but uniformly Hölder continuous with exponent γ for every γ ∈
(

0, p−2
2p

)
and hence almost every sample path of x1(t) is uniformly continuous on t ≥ 0.
In a similar manner, one can easily show that almost every sample path of x2(t)
and x3(t) are also uniformly continuous. A property of an uniformly continuous
function defined over R+ is recalled in the following lemma, its proof can be found
in [1]. �

Lemma 2.11. Let h(t) be a non-negative function defined on R+ such that h(t) is
integrable and uniformly continuous on R+, then limt→+∞ h(t) = 0.

Theorem 2.12. Assume that the conditions of Theorem 2.5 hold. Further if,

a11 < a21 + a31, a22 < a12 + a32, a33 < a13 + a23 (2.15)

then system (2.4)-(2.6) is globally asymptotically stable.

Proof. Consider the Lyapunov function V (t) defined by

V (t) = | log (x11(t))− log (x12(t)) |+ | log (x21(t))− log (x22(t)) |
+ | log (x31(t))− log (x32(t)) |,

(2.16)
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for t ≥ 0. Calculating the right differential d+V (t) of V (t) along the solutions of
(2.4)-(2.6) and using Itô’s formula, we obtain

d+V (t) = sign(x11(t)− x12(t))
{
− a11(x11(t)− x12(t))− a12 (x21(t)− x22(t))

+ a13(x31(t)− x32(t))
}
dt

+ sign(x21(t)− x22(t))
{
− a21 (x11(t)− x12(t))− a22 (x21(t)− x22(t))

+ a23(x31(t)− x32(t))
}
dt

+ sign(x31(t)− x32(t))
{
a31 (x11(t)− x12(t)) + a32 (x21(t)− x22(t))

− a33(x31(t)− x32(t))
}
dt

≤
{
− (a11 − a21 − a31)|x11(t)− x12(t)| − (a22 − a12 − a32)|x21(t)− x22(t)|
− (a33 − a13 − a23)|x31(t)− x32(t)|

}
dt

Integrating from 0 to t, we obtain

V (t) ≤ V (0)−
∫ T

0

(a11 − a21 − a31)|x11(s)− x12(s)|ds

−
∫ T

0

(a22 − a12 − a32)|x21(s)− x22(s)|ds

−
∫ T

0

(a33 − a13 − a23)|x31(s)− x32(s)|ds

Consequently,

V (t) +
∫ T

0

(a11 − a21 − a31)|x11(s)− x12(s)|ds

+
∫ T

0

(a22 − a12 − a32)|x21(s)− x22(s)|ds

+
∫ T

0

(a33 − a13 − a23)|x31(s)− x32(s)|ds

≤ V (0) <∞.

(2.17)

Since V (t) ≥ 0, a11 > a21 + a31, a22 > a12 + a32 and a33 > a13 + a23, we
have |x11(t) − x12(t)| ∈ L1[0,∞), |x21(t) − x22(t)| ∈ L1[0,∞), |x31(t) − x32(t)| ∈
L1[0,∞). Now using Lemmas 2.10 and 2.11, we obtain limt→∞ |x11(t)−x12(t)| = 0,
limt→∞ |x21(t)− x22(t)| = 0 and limt→∞ |x31(t)− x32(t)| = 0, a.s. This completes
the proof of the theorem. �

Corollary 2.13. System (2.4)-(2.6) is globally asymptotically stable in mean under
the same parametric restrictions as Theorem 2.12.

Proof. Taking expectation of both sides of (2.17) and applying Fubini’s theorem,

E (V (t)) +
∫ T

0

(a11 − a21 − a31)E|x11(s)− x12(s)|ds

+
∫ T

0

(a22 − a12 − a32)E|x21(s)− x22(s)|ds

+
∫ T

0

(a33 − a13 − a23)E|x31(s)− x32(s)|ds
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≤ V (0) <∞.

Using the conditions of Theorem 2.12 and V (t) ≥ 0, it follows that E|x11(t) −
x12(t)| ∈ L1[0,∞), E|x21(t) − x22(t)| ∈ L1[0,∞), E|x31(t) − x32(t)| ∈ L1[0,∞).
Also

E
(
|(x11(t), x21(t), x31(t))− (x12(t), x22(t), x32(t))|

)
= E

{
[|x11(t)− x12(t)|2 + |x21(t)− x22(t)|2 + |x31(t)− x32(t)|2]

1
2
}

≤ E
(
|x11(t)− x12(t)|

)
+ E

(
|x21(t)− x22(t)|

)
+ E

(
|x31(t)− x32(t)|

)
∈ L1[0,∞).

Therefore, using Lemmas 2.10 and 2.11, one obtains

lim
t→+∞

E (| (x11(t), x21(t), x31(t))− (x12(t), x22(t), x32(t)) |) = 0, a.s.

Hence under the same parametric conditions like Theorem 2.12, system (2.4)-(2.6)
is globally asymptotically stable in mean. �

3. Numerical simulation

To confirm the analytical findings, we simulate the solution of system (2.4)-
(2.6) using Milstein’s method having strong order of convergence γ = 1 [15]. The
discretized scheme for the stochastic system (2.4)-(2.6), following the Milstein’s
method is

x1,j+1 = x1,j + x1,j

[
(r1 − a11x1,j − a12x2,j + a13x3,j) ∆t+ σ1ε1j

√
∆t

+
1
2
σ2

1∆t(ε21j − 1)
]
,

x2,j+1 = x2,j + x2,j

[
(r2 − a21x1,j − a22x2,j + a23x3,j) ∆t+ σ2ε2j

√
∆t

+
1
2
σ2

2∆t(ε22j − 1)
]
,

x3,j+1 = x3,j + x3,j

[
(r3 + a31x1,j + a32x2,j − a33x3,j) ∆t+ σ3ε3j

√
∆t

+
1
2
σ2

3∆t(ε23j − 1)
]
,

where ε1j , ε2j and ε3j are three independent Gaussian random variables N(0, 1) for
j = 1, 2, . . . , n and ∆t is the time step.

Now consider the numerical example

dx1(t) = x1(t)(0.9− 3x1(t)− x2(t) + 1.2x3(t)) + 0.01x1(t)dB1(t), (3.1)

dx2(t) = x2(t)(2257/850− 2257/850x1(t)− 2.2x2(t) + x3(t)) + 0.01x2(t)dB2(t),
(3.2)

dx3(t) = x3(t)(0.1 + 0.1x1(t) + x2(t)− 2.4x3(t)) + 0.01x3(t)dB3(t), (3.3)

Some of the parameter values of the above example are chosen from [10] and others
are chosen hypothetically. For simulation purpose, we choose the time step ∆t =
0.01. Comparing the above example with (2.4)-(2.6), we obtain r1 = 0.9, r2 =
2257/850, r3 = 0.1, a11 = 3, a12 = 1.4, a13 = 1.2, a21 = 2257/850, a22 = 2.2,
a23 = 1, a31 = 0.5, a32 = 1, a33 = 2 and σ1 = σ2 = σ3 = 0.01. Therefore,
a11−a13 = 1.8 > 0, a22−a23 = 1.2 > 0, a33−a31−a32 = 0.5 > 0, a21 +a31−a11 =
0.1553 > 0, a12+a32−a22 = 0.2 > 0 and a13+a23−a33 = 0.2 > 0. Therefore, all the
conditions of the Theorem 2.12 are satisfied. Hence system (3.1)-(3.3) is globally
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asymptotically stable (see Figure 1) as well as globally asymptotically stable in
mean (see Figure 2).
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Figure 1. Trajectories for the SDE system (3.1)-(3.3) with two
sets of initial conditions (x11(0), x21(0), x31(0)) = (0.1, 0.1, 0.1) and
(x12(0), x22(0), x32(0)) = (0.5, 0.5, 0.5)
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Figure 2. Global asymptotic stability in mean of the SDE system
(3.1)-(3.3)

Discussion. In this work, we have studied a competitor-competitor-mutualist Lotka-
Volterra model in presence of environmental noise. First, we have proved that the
given SDE system has a unique positive global solution which ensures that the so-
lution will not go to explosion at a finite time. Second, we have shown that the sum
of higher order moments of each component to the solution of the concerned SDE
system is uniformly bounded under some parametric conditions though it is impos-
sible to find out the uniform bound of the moments of each component separately.
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Uniform bound of the moments ensures that the solution of the given SDE system is
stochastically bounded. It is interesting to observe that due to the presence of both
the competitive and cooperative terms in the working model, moment boundedness
depends on the parametric conditions as this is not the case always (see [6, 22]).
Finally, I have shown that the given SDE system is globally asymptotically stable
and as well as it globally asymptotically stable in mean under the same parametric
restrictions. There are several literatures dealing with global asymptotic stability
results [4, 5, 6, 8]. In[4] Jiang et al derived the sufficient conditions for global as-
ymptotic stability of unique positive solution for one dimensional non-autonomous
model of population growth with logistic growth law. This analysis is extended
for a single species stochastic logistic model with impulsive perturbation term by
Liu and Wang in[8]. Sufficient conditions for global attractivity (global asymptotic
stability) for a non-autonomous Lotka-Volterra type competitive model with mul-
tiplicative noise terms are derived by Li and Mao in[5]. In [22], Ji et al proved that
the positive solution of a stochastic logistic model is globally asymptotically stable
in mean. In[6], Liu and Wang also showed that the positive solution of a stochastic
non-autonomous predator-prey model is globally asymptotically stable. Recently,
Liu and Wang [7] obtained the sufficient condition for global asymptotic stability of
the classical n-species mutualism system and hence it would be interesting to study
the global asymptotic stability for a n-dimensional model having m-competitors
and p-mutualists such that m+ p = n.
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