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A GRADIENT ESTIMATE FOR SOLUTIONS TO PARABOLIC
EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

JISHAN FAN, KYOUNGSUN KIM, SEI NAGAYASU, GEN NAKAMURA

Abstract. Li-Vogelius and Li-Nirenberg gave a gradient estimate for solu-

tions of strongly elliptic equations and systems of divergence forms with piece-

wise smooth coefficients, respectively. The discontinuities of the coefficients
are assumed to be given by manifolds of codimension 1, which we called them

manifolds of discontinuities. Their gradient estimate is independent of the

distances between manifolds of discontinuities. In this paper, we gave a para-
bolic version of their results. That is, we gave a gradient estimate for parabolic

equations of divergence forms with piecewise smooth coefficients. The coef-

ficients are assumed to be independent of time and their discontinuities are
likewise the previous elliptic equations. As an application of this estimate, we

also gave a pointwise gradient estimate for the fundamental solution of a para-

bolic operator with piecewise smooth coefficients. Both gradient estimates are
independent of the distances between manifolds of discontinuities.

1. Introduction

For strongly elliptic, second order scalar equations with real coefficients, it is
well known that their solutions have the Hölder continuity even in the case that
the coefficients are only bounded measurable functions. However, the solutions do
not have the Lipschitz continuity in general. For example, Piccinini-Spagnolo [17,
p. 396, Example 1] and Meyers [14, p. 204] gave the following case:

Example 1.1 ([14, 17]). Let B1 := {x ∈ Rn : |x| < 1} and each aij ∈ L∞(B1) be
defined as

a11 =
Mx2

1 + x2
2

|x|2
, a22 =

x2
1 +Mx2

2

|x|2
, a12 = a21 =

(M − 1)x1x2

|x|2

with a constant M > 1. Then, if we define u as

u(x) =

{
|x|1/

√
M x1
|x| if x 6= 0,

0 if x = 0,
(1.1)
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it is easy to see that the Hölder exponent of u is at least less than or equal to 1/
√
M

(indeed, for x = (x1, 0) we have |u(x)− u(0)| = |x|1/
√
M . Hence we have

|u(x)− u(0)|
|x|(1/

√
M)+ε

= |x|−ε → +∞ as x→ 0

for any ε > 0.) and u satisfies the strongly elliptic scalar equation with real coeffi-
cients

2∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= 0. (1.2)

The same thing can be said also to the parabolic equation

∂u

∂t
−

2∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= 0, (1.3)

because u given by (1.1) satisfies this equation.

This example shows that we cannot expect gradient estimates of solutions to
equations (1.2) and (1.3) in the case aij ∈ L∞(B1), but we may have the estimates
in the case of piecewise Cµ (see (1.5) below) coefficients.

The fact that the gradient estimate of solutions is independent of the distances
between manifolds of discontinuities was first observed by Babuška-Andersson-
Smith-Levin [2] numerically for certain homogeneous isotropic linear systems of
elasticity, that is |∇u| is bounded independently of the distances between mani-
folds of discontinuities. They considered that this numerical property of solutions
is mathematically true. This is the so-called Babuška’s conjecture. Recently, proofs
for this conjecture appeared in [13] and [12]. In elasticity, a small static deformation
of an elastic medium with inclusions can be described by an elliptic system of di-
vergence form with piecewise smooth coefficients. The discontinuities of coefficients
form the boundaries of inclusions. Similar physical interpretation is also possible
for heat conductors. Our main theorem 1.5 given below ensures that this property
also holds for parabolic equations of the form (1.3). The details of result given in
[13] and [12] for scalar equations will be given below as Theorem 1.2.

To state our main theorem, we begin with introducing several notations which
will be used throughout this paper. Let D ⊂ Rn be a bounded domain with a
C1,α boundary for some 0 < α < 1, which means that the domain D contains L
disjoint subdomains D1, . . . , DL with C1,α boundaries, i.e. D = (

⋃L
m=1Dm) \ ∂D,

and we also assume that Dm ⊂ D for 1 ≤ m ≤ L − 1. Physically, D is a material
and Dm (1 ≤ m ≤ L − 1) are considered as inclusions in D. We define the C1,α

norm (resp. C1,α seminorm) of C1,α domain Dm in the same way as in [12], that
is, as the largest positive number a such that in the a-neighborhood of every point
of ∂Dm, identified as 0 after a possible translation and rotation of the coordinates
so that xn = 0 is the tangent to ∂Dm at 0, ∂Dm is given by the graph of a C1,α

function ψm, defined in |x′| < 2a (x′ = (x1, . . . , xn−1)), the 2a-neighborhood of 0
in the tangent plane, and it satisfies the estimate ‖ψm‖C1,α(|x′|<2a) ≤ 1/a (resp.
[ψm]C1,α(|x′|<2a) ≤ 1/a), where

[ψ]C1,α(|x′|<2a) := sup
|x′|,|ξ′|<2a

|∇′ψ(x′)−∇′ψ(ξ′)|
|x′ − ξ′|α

,

‖ψ‖C1,α(|x′|<2a) := ‖ψ‖C1(|x′|<2a) + [ψ]C1,α(|x′|<2a).
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Further, let (aij) be a symmetric, positive definite matrix-valued function defined
on D satisfying

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2. (1.4)

Here each aij is piecewise Cµ in D, 0 < µ < 1; that is,

aij(x) = a
(m)
ij (x) for x ∈ Dm, 1 ≤ m ≤ L (1.5)

with a
(m)
ij ∈ Cµ(Dm).

As we have already mentioned above, we will discuss in this paper a gradient
estimate for solutions to parabolic equations with piecewise smooth coefficients.
Our result is a parabolic version for the results of Li-Vogelius [13] and the scalar
equations version of Li-Nirenberg [12]. They showed that solutions u ∈ H1(D) to
the elliptic equation

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= h+

n∑
i=1

∂gi
∂xi

, (1.6)

where h ∈ L∞(D) and each gi is defined in D such that gi|Dm (1 ≤ m ≤ L) have
continuous extensions ∈ Cµ(Dm), 0 < µ < 1 up to ∂Dm have global W 1,∞ and
piecewise C1,α′ estimates (see (1.7) below). These estimates are independent of the
distances between inclusions when a material has inclusions.

We first give the result of Li-Nirenberg [12] for scalar equations.

Theorem 1.2 ([12, Theorem 1.1]). For any ε > 0, there exists a constant C] > 0
such that for any α′ satisfying

0 < α′ < min
{
µ,

α

2(α+ 1)
}
,

we have
L∑

m=1

‖u‖C1,α′ (Dm∩Dε) ≤ C]
(
‖u‖L2(D) + ‖h‖L∞(D) +

L∑
m=1

n∑
i=1

‖gi‖Cα′ (Dm)

)
, (1.7)

where we denote
Dε := {x ∈ D : dist(x, ∂D) > ε}

and a positive constant C] depends only on n,L, µ, α, ε, λ,Λ, ‖aij‖Cα′ (Dm) and the
C1,α′ norms of Dm.

Remark 1.3. The constant C] > 0 is independent of the distances between in-
clusions Dm. Therefore, the estimate (1.7) holds even in the case that some of
inclusions touch another inclusions as in Figure 1.

Now, we consider the parabolic equation

∂u

∂t
−

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= f −

n∑
i=1

∂fi
∂xi

in Q, (1.8)

where

f ∈ L∞(Q),
∂f

∂t
∈ Lκ(Q),

fi ∈ Lp(Q),
∂fi
∂t
∈ Lp(Q) and fi = f

(m)
i on Dm × (0, T ],



4 J. FAN, K. KIM, S. NAGAYASU, G. NAKAMURA EJDE-2013/93

D1
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D7

Figure 1. The case that an inclusion touches another inclusion.
(L = 7)

with p > n+2, κ = p(n+2)/(n+2+p), Q := D×(0, T ], f (m)
i ∈ L∞(0, T ;Cµ(Dm)).

Now we define a weak solution to the equation (1.8).

Definition 1.4. We call u ∈ V 1,0
2 (Q) := L2(0, T ;H1(D))∩C([0, T ];L2(D)) a weak

solution to the equation (1.8) when∫
D

u(x, t′)ϕ(x, t′) dx−
∫ t′

0

∫
D

u(x, t)
∂ϕ

∂t
(x, t) dx dt (1.9)

+
∫ t′

0

∫
D

n∑
i,j=1

aij(x)
∂u

∂xj
(x, t)

∂ϕ

∂xi
(x, t) dx dt (1.10)

=
∫ t′

0

∫
D

f(x, t)ϕ(x, t) dx dt+
∫ t′

0

∫
D

n∑
i=1

fi(x, t)
∂ϕ

∂xi
(x, t) dx dt (1.11)

for any ϕ ∈ L2(0, T ;H1
0 (D)) ∩ H1(0, T ;L2(D)) with ϕ(·, 0) = 0 and 0 < t′ ≤ T ,

where H1
0 (D) is the usual L2-Sobolev space with supports in D.

Our main result is as follows.

Theorem 1.5 (Main theorem). Any weak solutions u ∈ V 1,0
2 (Q) to (1.8) have the

following up to the inclusion boundary regularity estimate: For any ε > 0, there
exists a constant C ′] > 0 such that for any α′ satisfying

0 < α′ < min
{
µ,

α

2(α+ 1)
}
, (1.12)

we have
L∑

m=1

sup
ε2<t≤T

‖u(·, t)‖C1,α′ (Dm∩Dε) ≤ C
′
]

(
‖u‖L2(Q) + F∗ + F∗∗

)
,

where

F∗ := ‖f‖Lκ(Q) + ‖f‖Lmax{2,κ}(Q) + ‖f‖L∞(Q) + ‖∂f
∂t
‖Lκ(Q),

F∗∗ :=
n∑
i=1

(
‖fi‖Lp(Q) + ‖∂fi

∂t
‖L2(Q) + ‖∂fi

∂t
‖Lp(Q) +

L∑
m=1

sup
0<t≤T

‖fi(·, t)‖Cα′ (Dm)

)
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and C ′] depends only on n,L, µ, α, ε, λ,Λ, p, ‖aij‖Cα′ (Dm) and the C1,α′ norms of
Dm.

Remark 1.6. (i) Again, the constant C ′] > 0 is independent of the distances
between inclusions Dm. Then Theorem 1.5 holds even in the case that an inclusion
touches another inclusion as Figure 1.

(ii) It is easy to obtain

F∗ ≤ C∗
(
‖f‖L∞(Q) + ‖∂f

∂t
‖Lκ(Q)

)
,

F∗∗ ≤ C∗
n∑
i=1

( L∑
m=1

sup
0<t≤T

‖fi(·, t)‖Cα′ (Dm) + ‖∂fi
∂t
‖Lp(Q)

)
.

However, a constant C∗ > 0 depends on T and D, unfortunately.

For heat conductive materials with inclusions, the solution u of the initial bound-
ary value problem for (1.8) with heat flux given on ∂D × (0, T ] and zero initial
temperature at t = 0 in D describes the temperature distribution in D. Inject-
ing the heat flux and measuring the temperature distribution on ∂D × (0, T ] is
the measurement of the so called active thermography. This is an non-destructive
testing to identify unknown cracks, cavities and inclusions inside a heat conductor
from the measurement. As a mathematical study of the active thermography, a
method called the dynamical probe method has been given ([7]). It can approx-
imately identify for instance inclusions by one measurement. For identifying the
inclusions precisely, it needs infinitely many measurements. Further, it uses the gra-
dient estimate of the fundamental solution of the heat equation with discontinuous
conductivities.

The dynamical probe method has been developed only for the case that the
inclusions do not touch another inclusions. So, it is interesting to consider the case
when some of them touch. For the first task to handle this case, we need to have
the gradient estimate of the fundamental solution. Our main result has given an
answer to this. Similar situation can be considered for active thermography and
non-destructive testing using acoustic waves. For example, [16] and [18] effectively
used a result of Li-Vogelius [13] to give a procedure of enclosing the inclusions by the
enclosure method (see [6], for example). What is interested about their arguments
is that, by adding further arguments, we can even enclose the inclusions in the
case that they can touch another inclusions [15]. More precisely for an increasing
sets of inclusions, these inclusions can touch at a point of the boundary of the
largest inclusion. Therefore, we believe that our gradient estimates will be useful
for inverse problems identifying unknown inclusions.

This kind of gradient estimates stated in Theorem 1.5 for solutions of parabolic
equations was initiated by Li [10] in his doctor thesis written in Chinese and was
completed recently in Li-Li [11]. In [11], they even discussed the interior gradient
estimates of solutions of a second order parabolic system of divergence form with
inclusions which can touch another inclusions. They also allowed that the coeffi-
cients can depend on the time. However, it should be noted that they could not
allow the inclusions to depend on the time. Hence, showing the interior gradient
estimate for this case is still opened.

We have to emphasize the following two things. The one is that we independently
obtained our results. After we finished our paper and posted our paper in the
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preprint server arXiv, Li sent the paper [11] to one of us. But we still did not know
the paper [10] until very recently by a chance. The results of [11] was also posted
in arXiv after us.

The another is that our proof of Theorem 1.5 is totally different from the
proofs given in [10] and [11]. We first reduce the problem of the interior gradi-
ent estimates for solutions of parabolic equations to that of elliptic parts of the
equations using by the idea in [8], and directly apply the result [12] for elliptic
equations. By this method, we estimate not only the L∞-norm of ∇u but also
supε2<t≤T ‖u(·, t)‖C1,α′ (Dm∩Dε) more easily. We also remark that the constant C ′]
in Theorem 1.5 is independent of T . In [10], this property is not obvious at least
even for the case when the right-hand side f and fi on (1.8) are identically equal
zero.

The rest of this paper is organized as follows. In Section 2, we prove our main
theorem, i.e. Theorem 1.5 by applying Lemma 2.1. We prove Lemma 2.1 in Sec-
tion 3. In Section 4, we consider a pointwise gradient estimate for the fundamental
solution of parabolic operators with piecewise smooth coefficients by applying The-
orem 1.5.

2. Proof of main result

In this section, we prove our main theorem. We first state some estimates in
Lemma 2.1 which we need to prove our main theorem. We prove Lemma 2.1 in
Section 3.

Lemma 2.1. Let (aij) be a matrix-valued function defined on D. Assume that (aij)
is symmetric, positive definite, and satisfies the condition (1.4). Let Q as before
and Q̂ε := Dε × (ε2, T ]. Then for p > n+ 2, a weak solution u ∈ V 1,0

2 (Q) to (1.8)
satisfies the following estimates:

sup
ε2<t≤T

‖u(·, t)‖L2(Dε) ≤ C
(
‖u‖L2(Q) + F0

)
, (2.1)

‖u‖L∞( bQε) ≤ C (‖u‖L2(Q) + F0

)
, (2.2)

‖∂u
∂t
‖L2( bQε) ≤ C (‖u‖L2(Q) + F1

)
, (2.3)

where we set

F0 := ‖f‖
L
p(n+2)
n+2+p (Q)

+
n∑
i=1

‖fi‖Lp(Q), (2.4)

F1 := ‖f‖
L

max{2, p(n+2)
n+2+p }(Q)

+
n∑
i=1

(
‖fi‖Lp(Q) + ‖∂fi

∂t
‖L2(Q)

)
, (2.5)

and C > 0 depends only on n, λ,Λ, p and ε.

Now we prove our main theorem by applying Lemma 2.1. This proof is inspired
by [8].

Proof of Theorem 1.5. Before going into the proof, we remark that a general con-
stant C which we used below in our estimates depends only on n, λ,Λ, p and εj
(j = 1, 2, 3). To begin with the proof, let 0 < ε1 < ε2 < ε3. Then we have

sup
ε22<t≤T

‖u(·, t)‖L2(Dε2 ) ≤ C
(
‖u‖L2(Q) + F0

)
(2.6)



EJDE-2013/93 A GRADIENT ESTIMATE FOR SOLUTIONS 7

and

‖∂u
∂t
‖L2( bQε1 ) ≤ C

(
‖u‖L2(Q) + F1

)
(2.7)

by (2.1) and (2.3) in Lemma 2.1, where F0, F1 are defined by (2.4) and (2.5). On
the other hand, ut = ∂u/∂t satisfies the equation

∂ut
∂t
−

n∑
i,j=1

∂

∂xi

(
aij(x)

∂ut
∂xj

)
=
∂f

∂t
−

n∑
i=1

∂

∂xi

(∂fi
∂t

)
by applying ∂/∂t to (1.8) (also see Remark 2.2). Hence we have

‖ut‖L∞( bQε2 ) ≤ C
(
‖ut‖L2( bQε1 ) + F ′0

)
(2.8)

by Lemma 2.1 (2.2), where we define

F ′0 := ‖∂f
∂t
‖
L
p(n+2)
n+2+p (Q)

+
n∑
i=1

‖∂fi
∂t
‖Lp(Q).

In particular, ut(·, t) ∈ L∞(Dε2) holds for a.e. t ∈ (ε22, T ]. Now we regard the
equation (1.8) as the elliptic equation

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
=
∂u

∂t
− f +

n∑
i=1

∂fi
∂xi

(2.9)

by fixing t ∈ (ε22, T ]. We remark that ∂u/∂t− f ∈ L∞(Dε2). Then, for any α′ with
the condition (1.12), we have the estimate

L∑
m=1

‖u(·, t)‖C1,α′ (Dm∩Dε3 ) ≤ C]
(
‖u(·, t)‖L2(Dε2 ) + ‖∂u

∂t
(·, t)‖L∞(Dε2 )

+ ‖f(·, t)‖L∞(Dε2 ) +
L∑

m=1

n∑
i=1

‖fi(·, t)‖Cα′ (Dm)

)
(2.10)

by Theorem 1.2, where C] > 0 depends only on n,L, µ, α, ε, λ,Λ, ‖aij‖Cα′ (Dm) and
the C1,α′ norms of Dm. Taking the supremum of the inequality (2.10) over (ε22, T ]
with respect to t, and using (2.6), (2.7) and (2.8), we have

L∑
m=1

sup
ε22<t≤T

‖u(·, t)‖C1,α′ (Dm∩Dε3 )

≤ C]
(

sup
ε22<t≤T

‖u(·, t)‖L2(Dε2 ) + ‖∂u
∂t
‖L∞( bQε2 ) + ‖f‖L∞( bQε2 )

+
L∑

m=1

n∑
i=1

sup
ε22<t≤T

‖fi(·, t)‖Cα′ (Dm)

)
≤ C]C

(
‖u‖L2(Q) + F0 + F1 + F ′0 + ‖f‖L∞( bQε2 )

+
L∑

m=1

n∑
i=1

sup
ε22<t≤T

‖fi(·, t)‖Cα′ (Dm)

)
,

which is the estimate we want to obtain. �
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Remark 2.2. Since we assume that u belongs only in V 1,0
2 (Q) with respect to the

regularity of a weak solution, one may think that we cannot apply ∂/∂t directly.
However, it is enough to consider the Steklov mean function and to make h tend
to 0, where we define the Steklov mean function vh of v by

vh(x, t) =
1
h

∫ t+h

t

v(x, τ) dτ.

Hereafter we omit the detail with respect to this remark although we often apply
this argument. Also see [9, III §2 p. 141] and (62) in [8, p. 152], for example.

3. Some estimates

In this section, we prove Lemma 2.1. The estimates (2.1) and (2.2) are well
known, but we give these proofs in Appendix for readers’ convenience. To show the
estimate (2.3), we prepare some necessary lemmas for its proof.

Throughout this section, C > 0 denotes a general constant depending only on
n, λ,Λ. Also, we assume that the coefficient (aij) is a matrix-value function defined
on D, symmetric, positive definite, and satisfies the condition (1.4). Moreover, we
set Qr := Br(x0)× (t0 − r2, t0], and assume that Q2ρ ⊂ D× (0, T ] with 0 < ρ ≤ 1.

The following two lemmas are essentially shown in [8]. We give their proofs here
for the sake of completeness.

Lemma 3.1 ([8, Lemma 3]). Let 1 < r <∞ and 1/r + 1/r′ = 1. Then a solution
u to (1.8) satisfies the estimate

‖∇u‖L2(Qρ) ≤ C
[
(ρn/2 + ρ(n+2)/r′) oscQ2ρ u+ ‖f‖Lr(Q2ρ) +

n∑
i=1

‖fi‖L2(Q2ρ)

]
. (3.1)

Proof. Let ζ be a smooth cut-off function on Q2ρ satisfying ζ ≡ 1 on Qρ, ζ ≡ 0 on
Q2ρ \Q3ρ/2, 0 ≤ ζ ≤ 1 on Q2ρ, and |∂ζ/∂t|+ |∇ζ|2 ≤ Cρ−2 on Q2ρ. Let u0 be the
average value of u in Q2ρ:

u0 :=
1
|Q2ρ|

∫∫
Q2ρ

u(x, t) dx dt,

where |Q2ρ| denotes the measure of Q2ρ. Testing (1.8) by (u−u0)ζ2 and integrating
by parts (i.e. taking ϕ = (u− u0)ζ2 for (1.11). Also see Remark 2.2), we have

1
2

∫
B2ρ(x0)

(
(u− u0)2ζ2

)
(x, t0) dx−

∫∫
Q2ρ

(u− u0)2ζ
∂ζ

∂t
dx dt

+
∫∫

Q2ρ

n∑
i,j=1

aij
∂u

∂xj

∂u

∂xi
ζ2 dx dt+ 2

∫∫
Q2ρ

n∑
i,j=1

aij
∂u

∂xj
(u− u0)ζ

∂ζ

∂xi
dx dt

=
∫∫

Q2ρ

f(u− u0)ζ2 dx dt+
n∑
i=1

∫∫
Q2ρ

[
fi
∂u

∂xi
ζ2 + 2fi(u− u0)ζ

∂ζ

∂xi

]
dx dt.

Hence we have
1
2

∫
B2ρ(x0)

(
(u− u0)2ζ2

)
(x, t0) dx+ λ

∫∫
Q2ρ

|∇u|2ζ2 dx dt

≤ 1
2

∫
B2ρ(x0)

(
(u− u0)2ζ2

)
(x, t0) dx+

∫∫
Q2ρ

n∑
i,j=1

aij
∂u

∂xj

∂u

∂xi
ζ2 dx dt
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=
∫∫

Q2ρ

(u− u0)2ζ
∂ζ

∂t
dx dt− 2

∫∫
Q2ρ

n∑
i,j=1

aij
∂u

∂xj
(u− u0)ζ

∂ζ

∂xi
dx dt

+
∫∫

Q2ρ

f(u− u0)ζ2 dx dt

+
n∑
i=1

∫∫
Q2ρ

[
fi
∂u

∂xi
ζ2 + 2fi(u− u0)ζ

∂ζ

∂xi

]
dx dt

≤
∫∫

Q2ρ

(u− u0)2ζ
∣∣∂ζ
∂t

∣∣dx dt+ ε1

∫∫
Q2ρ

|∇u|2ζ2 dx dt

+
C

ε1

∫∫
Q2ρ

|u− u0|2|∇ζ|2 dx dt+
1
2

(∫∫
Q2ρ

|fζ|r dx dt
)2/r

+
1
2

(∫∫
Q2ρ

|(u− u0)ζ|r
′
dx dt

)2/r′

+ ε1

∫∫
Q2ρ

|∇u|2ζ2 dx dt

+
( 1
ε1

+ 1
) ∫∫

Q2ρ

n∑
i=1

|fi|2ζ2 dx dt+
∫∫

Q2ρ

|u− u0|2|∇ζ|2 dx dt.

We now take ε1 > 0 small enough. Then, we have∫∫
Qρ

|∇u|2 dx dt

≤
∫∫

Q2ρ

|∇u|2ζ2 dx dt

≤ C
∫∫

Q2ρ

(u− u0)2
[
ζ|∂ζ
∂t
|+ |∇ζ|2

]
dx dt+ C

(∫∫
Q2ρ

|(u− u0)ζ|r
′
dx dt

)2/r′

+ C
(∫∫

Q2ρ

|fζ|r dx dt
)2/r

+ C

∫∫
Q2ρ

n∑
i=1

|fi|2ζ2 dx dt

≤ C
[(
ρn + ρ2(n+2)/r′

)(
oscQ2ρ u

)2 + ‖f‖2Lr(Q2ρ)
+

n∑
i=1

‖fi‖2L2(Q2ρ)

]
,

because |u(x, t) − u0| ≤ oscQ2ρ u holds for any (x, t) ∈ Q2ρ. This completes the
proof. �

Lemma 3.2 ([8, Lemma 5]). A solution u to (1.8) satisfies the estimate

‖∂u
∂t
‖L2(Qρ) ≤ C

[
ρ−1‖∇u‖L2(Q2ρ) + ‖f‖L2(Q2ρ)

+
n∑
i=1

(
ρ−1‖fi‖L2(Q2ρ) + ‖∂fi

∂t
‖L2(Q2ρ)

)] (3.2)

Proof. We first take the same smooth cut-off function ζ as in the proof of Lemma 3.1.
Testing (1.8) by (∂u/∂t)ζ2 and integrating by parts (also see Remark 2.2), we have

1
2

∫
B2ρ(x0)

n∑
i,j=1

(
aij

∂u

∂xi

∂u

∂xj
ζ2
)

(x, t0) dx

+
∫∫

Q2ρ

[
|∂u
∂t
|2ζ2 −

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
ζ
∂ζ

∂t
+ 2

n∑
i,j=1

aij
∂u

∂xj

∂u

∂t
ζ
∂ζ

∂xi

]
dx dt
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=
∫∫

Q2ρ

f
∂u

∂t
ζ2 dx dt+

n∑
i=1

[∫
B2ρ(x0)

(
fi
∂u

∂xi
ζ2
)

(x, t0) dx

+
∫∫

Q2ρ

(
− ∂fi

∂t

∂u

∂xi
ζ2 − 2fi

∂u

∂xi
ζ
∂ζ

∂t
+ 2fi

∂u

∂t
ζ
∂ζ

∂xi

)]
dx dt

due to
n∑

i,j=1

aij
∂2u

∂t∂xi

∂u

∂xj
ζ2 =

1
2
∂

∂t

( n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
ζ2
)
−

n∑
i.j=1

aij
∂u

∂xi

∂u

∂xj
ζ
∂ζ

∂t

and

fi
∂2u

∂t∂xi
ζ2 =

∂

∂t

(
fi
∂u

∂xi
ζ2

)
− ∂u

∂xi

∂

∂t
(fiζ2).

Hence we have
λ

2

∫
B2ρ(x0)

(
|∇u|2ζ2

)
(x, t0) dx+

∫∫
Q2ρ

|∂u
∂t
|2ζ2 dx dt

≤ 1
2

∫
B2ρ(x0)

( n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
ζ2
)

(x, t0) dx+
∫∫

Q2ρ

|∂u
∂t
|2ζ2 dx dt

=
∫∫

Q2ρ

[ n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
ζ
∂ζ

∂t
− 2

n∑
i,j=1

aij
∂u

∂xj

∂u

∂t
ζ
∂ζ

∂xi

]
dx dt

+
∫∫

Q2ρ

f
∂u

∂t
ζ2 dx dt+

n∑
i=1

[∫
B2ρ(x0)

(
fi
∂u

∂xi
ζ2

)
(x, t0) dx

+
∫∫

Q2ρ

(
− ∂fi

∂t

∂u

∂xi
ζ2 − 2fi

∂u

∂xi
ζ
∂ζ

∂t
+ 2fi

∂u

∂t
ζ
∂ζ

∂xi

)]
dx dt

≤ C
∫∫

Q2ρ

|∇u|2ζ|∂ζ
∂t
|dx dt+ ε2

∫∫
Q2ρ

|∂u
∂t
|2ζ2 dx dt

+
C

ε2

∫∫
Q2ρ

|∇u|2|∇ζ|2 dx dt+ ε2

∫∫
Q2ρ

|∂u
∂t
|2ζ2 dx dt

+
C

ε2

∫∫
Q2ρ

|f |2ζ2 dx dt+ ε2

∫
B2ρ(x0)

(
|∇u|2ζ2

)
(x, t0) dx

+
C

ε2

∫
B2ρ(x0)

( n∑
i=1

|fi|2ζ2
)

(x, t0) dx

+ C

∫∫
Q2ρ

|∇u|2ζ2 dx dt+ C

∫∫
Q2ρ

n∑
i=1

∣∣∂fi
∂t

∣∣2ζ2 dx dt

+ C

∫∫
Q2ρ

|∇u|2ζ|∂ζ
∂t
|dx dt+ C

∫∫
Q2ρ

n∑
i=1

|fi|2ζ|
∂ζ

∂t
|dx dt

+ ε2

∫∫
Q2ρ

|∂u
∂t
|2ζ2 dx dt+

C

ε2

∫∫
Q2ρ

n∑
i=1

|fi|2|∇ζ|2 dx dt.

We remark that∫
B2ρ(x0)

(fiζ)2(x, t0) dx =
∫
B2ρ(x0)

∫ t0

t0−(2ρ)2

∂

∂t

(
(fiζ)2

)
(x, t) dt dx
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≤ C
∫∫

Q2ρ

[
|fi|2

(
ζ2 + ζ|∂ζ

∂t
|
)

+ |∂fi
∂t
|2ζ2

]
dx dt.

Therefore, by taking ε2 > 0 small enough, we have∫∫
Qρ

|∂u
∂t
|2dx dt ≤

∫
B2ρ(x0)

(
|∇u|2ζ2

)
(x, t0) dx+

∫∫
Q2ρ

|∂u
∂t
|2ζ2 dx dt

≤ C
∫∫

Q2ρ

|∇u|2
(
ζ2 + ζ|∂ζ

∂t
|+ |∇ζ|2

)
dx dt+ C

∫∫
Q2ρ

|f |2ζ2 dx dt

+ C

∫∫
Q2ρ

n∑
i=1

[
|fi|2

(
ζ2 + ζ|∂ζ

∂t
|+ |∇ζ|2

)
+ |∂fi

∂t
|2ζ2

]
dx dt

≤ Cρ−2‖∇u‖2L2(Q2ρ)
+ C‖f‖2L2(Q2ρ)

+ Cρ−2
n∑
i=1

‖fi‖2L2(Q2ρ)

+ C

n∑
i=1

‖∂fi
∂t
‖2L2(Q2ρ)

.

�

We obtain the estimate (2.3) from Lemmas 5.6 (given in Appendix), 3.1 and 3.2.

4. A gradient estimate of the fundamental solution

In this section, we consider a gradient estimate of the fundametal solution of
parabolic operators. We first state some facts. It is known that if coefficient (aij)
is a symmetric and positive definite matrix-value L∞(Rn) function satisfying (1.4),
then there exists a fundamental solution Γ(x, t; y, s) of the parabolic operator

∂

∂t
−

n∑
i,j=1

∂

∂xi

(
aij

∂

∂xj

)
(4.1)

with the estimate

|Γ(x, t; y, s)| ≤ C∗
(t− s)n/2

exp
(
− c∗|x− y|2

t− s

)
χ[s,∞)(t) (4.2)

for all t, s ∈ R, and a.e. x, y ∈ Rn, where C∗, c∗ > 0 depend only on n, λ,Λ (see [1]
or [4], for example). In particular, the constants C∗ and c∗ are independent of the
distance between inclusions. If the coefficients (aij) is not piecewise smooth but
Hölder continuous in the whole space Rn, then the pointwise gradient estimate

|∇xΓ(x, t; y, s)| ≤ C∗
(t− s)(n+1)/2

exp
(
− c∗|x− y|2

t− s

)
χ[s,∞)(t)

holds for t, s ∈ R, a.e. x, y ∈ Rn (see [9, Chapter IV §11–13], for example).
Now, the aim of this section is to show the gradient estimate (4.8) in Theorem 4.3

even if the coefficients are piecewise Cµ in D. We assume that (aij) defined in D
satisfies the conditions (1.4) and (1.5), and extend it to the whole Rn by defining
(aij) ≡ ΛI in Rn \D, where I is the identity matrix. We remark that this extension
does not destroy the conditions (1.4) and (1.5). Then there exists a fundamental
solution Γ(x, t; y, s) of the parabolic operator (4.1) with the estimate (4.2) as we
stated above.

To prove our gradient estimate of the fundamental solution, we apply the fol-
lowing corollary from Theorem 1.5.
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Corollary 4.1. Let 0 < ρ ≤ 1. Then a solution u to the parabolic equation

∂u

∂t
−

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= 0 in Bρ(x0)× (t0 − ρ2, t0] (4.3)

has the estimate

‖∇u‖L∞(Bρ/2(x0)×(t0−(ρ/2)2, t0])) ≤
C ′]

ρn/2+2
‖u‖L2(Bρ(x0)×(t0−ρ2, t0]), (4.4)

where C ′] > 0 depends only on n,L, µ, α, λ,Λ, and ‖aij‖Cα′ (Dm) and the C1,α′ norms
of Dm for some α′ with (1.12).

Proof. It is sufficient to apply the scaling argument. Let ρy = x− x0, ρ2(s− 1) =
t− t0 and

ũ(y, s) := u(x, t) = u
(
ρy + x0, ρ

2(s− 1) + t0
)
,

ãij(y) := aij(x) = aij(ρy + x0),

D̃m :=
{1
ρ

(x− x0) : x ∈ Dm

}
.

(4.5)

Then we have

∂ũ

∂s
−

n∑
i,j=1

∂

∂yi

(
ãij

∂ũ

∂yj

)
= 0 in B1(0)× (0, 1]. (4.6)

Therefore, by noting Remark 4.2, we have

‖∇ũ‖L∞(B1/2(0)×(3/4,1]) ≤ C ′]‖ũ‖L2(B1(0)×(0,1))

by Theorem 1.5, where C ′] depends only on n,L, µ, α, λ,Λ, ‖aij‖Cα′ (Dm), and the
C1,α′ seminorms of Dm. By this estimate and the definition (4.5), we obtain the
estimate (4.4). �

Remark 4.2. One may think that C ′] depends also on ρ since ‖ãij‖
Cα′ ( eDm)

and

the C1,α′ norms of D̃m depend on ρ. However, we can take C ′] independent of ρ by
taking the following into consideration.

First we consider

‖ãij‖
Cα′ ( eDm)

= ‖ãij‖
C0( eDm)

+ [ãij ]
Cα′ ( eDm)

:= sup
y∈ eDm

|ãij(y)|+ sup
y,η∈ eDm

|ãij(y)− ãij(η)|
|y − η|α′

.

It is easy to show
‖ãij‖

C0( eDm)
= ‖aij‖C0(Dm)

and
[ãij ]

Cα′ ( eDm)
= ρα

′
[aij ]Cα′ (Dm) ≤ [aij ]Cα′ (Dm).

Then we have
‖ãij‖

Cα′ ( eDm)
≤ ‖aij‖Cα′ (Dm).

Next we consider the C1,α′ norms of D̃m. We need to recall the proofs of the
results of [12] and [13] more carefully. In the case when we consider the L∞-norm
of ∇ũ for a solution ũ to the equation (4.6), the influence of the C1,α′ norms of
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subdomains D̃m appears only in the following constant C in (4.7): We estimate
O
(
|x′|1+α

)
in the equation (49) in [13, p. 118], i.e.

fm(x′) = fm(0′) +∇fm(0′)x′ +O
(
|x′|1+α

)
(49)

as ∣∣O(|x′|1+α)∣∣ ≤ C|x|1+α (4.7)

(See also [12, Lemma 4.3]). Here C1,α functions fm are defined in the cube (−1, 1)n,
and the graphs of fm describe ∂Dm. Now we remark that the constant C in
(4.7) depends only on the C1,α seminorms of fm. We consider the variable change
ρy = x. Then the graph xn = fm(x′) is changed to yn = f̃m(y′), where f̃m(y′) :=
ρ−1fm(ρy′), and we have

[f̃m]C1,α((−1,1)n) ≤ [f̃m]C1,α((−1/ρ,1/ρ)n)

= ρα[fm]C1,α((−1,1)n) ≤ [fm]C1,α((−1,1)n).

Hence, even when we consider the variable change ρy = x, we can take the constant
C in (4.7) independent of ρ.

Considering the circumstances mentioned above, we can take C ′] > 0 independent
of ρ.

Now we state the estimate of ∇xΓ(x, t; y, s).

Theorem 4.3. We have

|∇xΓ(x, t; y, s)| ≤ C

(t− s)(n+1)/2
exp

(
− c|x− y|2

t− s

)
(4.8)

for a.e. x, y ∈ Rn and t > s with |x− y|2 + t− s ≤ 16, where C, c > 0 depend only
on n,L, µ, α, λ,Λ, ‖aij‖Cα′ (Dm) and the C1,α′ seminorms of Dm for some α′ with
(1.12).

We prove Theorem 4.3 in the same way as the proof of [3, Proposition 3.6]. We
first show the following lemmas.

Lemma 4.4. Let ρ := (|x0 − ξ|2 + t0 − τ)1/2/4. Then∫ t0

t0−ρ2

∫
Bρ(x0)

|Γ(x, t; ξ, τ)|2 dx dt ≤ (C ′∗)
2ρn

(t0 − τ)n−1
exp

(
− 2c′∗|x0 − ξ|2

t0 − τ

)
for t0 > τ , where C ′∗, c

′
∗ > 0 depend only on n, λ,Λ.

Proof. By (4.2), it is sufficient to obtain the estimate

I0 :=
∫ t0

t0−ρ2

∫
Bρ(x0)

1
(t− τ)n

exp
(
− 2c∗|x− ξ|2

t− τ

)
χ[τ,∞)(t) dx dt

≤ (C ′∗)
2ρn

(t0 − τ)n−1
exp

(
− 2c′∗|x0 − ξ|2

t0 − τ

)
.

(4.9)

We consider the following three cases:

(i) t0 − ρ2 ≤ τ < t0,
(i) t0 − 2ρ2 ≤ τ ≤ t0 − ρ2,
(i) τ ≤ t0 − 2ρ2.
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Now we consider the case (i). Then we have (
√

15−1)ρ ≤ |x−ξ| for any x ∈ Bρ(x0),
because |x0 − ξ| ≥

√
15 ρ. Hence we have

I0 ≤
∫ t0

τ

∫
Bρ(x0)

1
(t− τ)n

exp
(
− c1ρ

2

t− τ

)
dx dt = |B1(0)|ρn

∫ t0−τ

0

ϕ1(s) ds,

where ϕ1(s) := s−n exp(−c1ρ2/s) and c1 := 2(
√

15− 1)2c∗. If 0 < t0 − τ ≤ c1ρ2/n,
then we have∫ t0−τ

0

ϕ1(s) ds ≤
∫ t0−τ

0

ϕ1(t0 − τ) ds = (t0 − τ)−n+1 exp
(
− c1ρ

2

t0 − τ

)
,

because ϕ1(s) ≤ ϕ1(t0 − τ) holds for any s ∈ [0, t0 − τ ]. On the other hand, if
c1ρ

2/n ≤ t0 − τ ≤ ρ2, then we have∫ t0−τ

0

ϕ1(s) ds ≤
∫ t0−τ

0

ϕ1

(c1ρ2

n

)
ds =

( n
c1

)n(t0 − τ)ρ−2n exp(−n)

≤
( n
c1

)n(t0 − τ)1−n exp
(
− c1ρ

2

t0 − τ

)
,

where we used the properties that

ϕ1(s) ≤ ϕ1

(c1ρ2

n

)
for any 0 < s ≤ t0 − τ ;

n ≥ c1ρ
2

t0 − τ
and ρ2 ≥ t0 − τ.

Summing up, we have

I0 ≤ max
{

1,
( n
c1

)n}|B1(0)|ρn(t0 − τ)1−n exp
(
− c1ρ

2

t0 − τ

)
.

Let us consider the case (ii). Then we have (
√

14−1)ρ ≤ |x−ξ| for all x ∈ Bρ(x0),
because |x0 − ξ| ≥

√
14 ρ. Hence we have

I0 ≤
∫ t0

t0−ρ2

∫
Bρ(x0)

1
(t− τ)n

exp
(
− c2ρ

2

t− τ

)
dx dt = |B1(0)|ρn

∫ t0−τ

t0−ρ2−τ
ϕ2(s) ds,

where ϕ2(s) := s−n exp(−c2ρ2/s) and c2 := 2(
√

14 − 1)2c∗. In a similarly way as
the case (i), if ρ2 ≤ t0 − τ ≤ c2ρ2/n, then we have∫ t0−τ

t0−ρ2−τ
ϕ2(s) ds ≤

∫ t0−τ

t0−ρ2−τ
ϕ2(t0 − τ) ds = ρ2(t0 − τ)−n exp

(
− c2ρ

2

t0 − τ

)
≤ (t0 − τ)−n+1 exp

(
− c2ρ

2

t0 − τ

)
,

because ϕ2(s) ≤ ϕ(t0− τ) for any s ∈ [t0− ρ2− τ, t0− τ ], and we have ρ2 ≤ t0− τ .
On the other hand, if c2ρ2/n ≤ t0 − τ ≤ 2ρ2, then we have∫ t0−τ

t0−ρ2−τ
ϕ2(s) ds ≤

∫ t0−τ

t0−ρ2−τ
ϕ2

(
c2ρ

2

n

)
ds =

(
n

c2

)n
ρ−2n+2 exp(−n)

≤ 2n−1

(
n

c2

)n
(t0 − τ)1−n exp

(
− c2ρ

2

t0 − τ

)
,

where we used the properties that

ϕ2(s) ≤ ϕ2

(c2ρ2

n

)
for any t0 − ρ2 − τ ≤ s ≤ t0 − τ ;



EJDE-2013/93 A GRADIENT ESTIMATE FOR SOLUTIONS 15

n ≥ c2ρ
2

t0 − τ
, and ρ2 ≥ t0 − τ

2
.

Summing up, we have

I0 ≤ |B1(0)|max
{

1, 2n−1
( n
c2

)n}
ρn(t0 − τ)1−n exp

(
− c2ρ

2

t0 − τ

)
.

Finally we consider the case (iii). We first remark that∫ t0

t0−ρ2
(t− τ)−n dt ≤

{
1

n−1 (t0 − ρ2 − τ)−n+1 if n ≥ 2,
log 2 if n = 1,

because t0 − τ ≤ 2(t0 − ρ2 − τ). In particular, we have∫ t0

t0−ρ2
(t− τ)−n dt ≤ (t0 − ρ2 − τ)−n+1 ≤ 2n−1(t0 − τ)−n+1.

Hence we have

I0 ≤ |B1(0)|ρn
∫ t0

t0−ρ2
(t− τ)−n dt ≤ 2n−1|B1(0)|ρn(t0 − τ)−n+1

≤ 2n−1 exp(8)|B1(0)|ρn(t0 − τ)−n+1 exp
(
− |x0 − ξ|2

t0 − τ

)
,

because |x0 − ξ|2/(t0 − τ) ≤ (4ρ)2/2ρ2 = 8. Therefore we have the estimate (4.9)
in every case. �

Proof of Theorem 4.3. Let x0, ξ ∈ Rn and t0 > τ . Let ρ := (|x0−ξ|2+t0−τ)1/2/4 ≤
1. Then, by Corollary 4.1, we have

‖∇xΓ(·, ·; ξ, τ)‖L∞(Bρ/2(x0)×(t0−(ρ/2)2, t0))

≤
C ′]

ρn/2+2
‖Γ(·, ·; ξ, τ)‖L2(Bρ(x0)×(t0−ρ2, t0)),

because we have

∂Γ
∂t

(x, t; ξ, τ)−
n∑

i,j=1

∂

∂xi

(
aij(x)

∂Γ
∂xj

(x, t; ξ, τ)
)

= 0 in Bρ(x0)× (t0 − ρ2, t0].

By this estimate and Lemma 4.4, we have

‖∇xΓ(·, ·; ξ, τ)‖L∞(Bρ/2(x0)×(t0−(ρ/2)2, t0])

≤
C ′]

ρn/2+2
‖Γ(·, ·; ξ, τ)‖L2(Bρ(x0)×(t0−ρ2, t0])

≤
C ′]C

′
∗

ρ2

1
(t0 − τ)(n−1)/2

exp
(
− c′∗|x0 − ξ|2

t0 − τ

)
≤

16C ′]C
′
∗

(t0 − τ)(n+1)/2
exp

(
− c′∗|x0 − ξ|2

t0 − τ

)
,

because we have ρ−2 ≤ 16(t0 − τ)−1. Hence the proof is complete. �
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5. Appendix

In Appendix, we show the estimates (2.1) and (2.2) in Lemma 2.1 for the sake of
completeness. To begin with, we give some embedding lemma which is necessary
to show the estimates (2.1) and (2.2). First, the following Gagliardo-Nirenberg’s
inequality is well known (see [5, p. 24, Theorem 9.3], for example).

Lemma 5.1 (Gagliardo-Nirenberg’s inequality). Let r, s be any numbers satisfying
1 ≤ r, s ≤ ∞, and let j, k be any integers satisfying 0 ≤ j < k. If u is any function
in W k

s (Rn) ∩ Lr(Rn), then

‖Dju‖Lq(Rn) ≤ C1‖Dku‖γLs(Rn)‖u‖
1−γ
Lr(Rn), (5.1)

where
1
q

=
j

n
+ γ
(1
s
− k

n

)
+

1− γ
r

(5.2)

for all γ in the interval
j

k
≤ γ ≤ 1,

where a positive constant C1 depends only on n, k, j, r, s, γ, with the following excep-
tion: If k− j−n/s is a nonnegative integer, then (5.1) holds only for j/k ≤ γ < 1.

Then, as an application of Lemma 5.1, we have the following embedding lemma.

Lemma 5.2 (Embedding lemma). Let v ∈ L∞
(
0, T ;L2(D)

)
∩ L2

(
0, T ;H1

0 (D)
)
.

Then v ∈ L2(n+2)/n(Q) holds. Moreover, we have the estimate

‖v‖L2(n+2)/n(Q) ≤ C1‖v‖2/(n+2)
L∞(0,T ;L2(D))‖∇v‖

n/(n+2)
L2(Q)

≤ C1

(
‖v‖L∞(0,T ;L2(D)) + ‖∇v‖L2(Q)

)
,

(5.3)

where a positive constant C1 depends only on n, and we denote Q := D × (0, T ].

Proof. We apply Lemma 5.1 with q = 2(n + 2)/n, r = 2, s = 2, k = 1 and j = 0.
Then the equation (5.2) yields γ = n/(n+ 2). Hence we have

‖v(·, t)‖L2(n+2)/n(D) ≤ C1‖∇v(·, t)‖n/(n+2)
L2(D) ‖v(·, t)‖2/(n+2)

L2(D) .

Therefore, we have

‖v‖2(n+2)/n

L2(n+2)/n(Q)
=
∫ T

0

‖v(·, t)‖2(n+2)/n

L2(n+2)/n(D)
dt

≤
∫ T

0

(
C1‖∇v(·, t)‖n/(n+2)

L2(D) ‖v(·, t)‖2/(n+2)
L2(D)

)2(n+2)/n

dt

≤ C2(n+2)/n
1 ‖v‖4/nL∞(0,T ;L2(D))‖∇v‖

2
L2(Q).

By this inequality and Young’s inequality, we have the estimate (5.3). �

Based on Di Giorgi’s famous argument, we start to estimate solutions to the
parabolic equation (1.8). By testing (u − k)+ζ2 to (1.8) we have the following
lemma, where v+(x) := max{v(x), 0}.
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Lemma 5.3. Let p > 2. Let Qρ := Bρ(x0) × (t0 − ρ2, t0] ⊂ Q and ζ ∈ C∞
(
[t0 −

ρ2, t0];C∞0 (Bρ(x0))
)

satisfy 0 ≤ ζ ≤ 1 and ζ(·, t0 − ρ2) = 0. Then a solution u to
the parabolic equation (1.8) satisfies

‖(u− k)+ζ‖2L∞(t0−ρ2,t0;L2(Bρ(x0)))
+
∥∥∇((u− k)+ζ

)∥∥2

L2(Qρ)

≤ C2

[(
‖∂ζ
∂t
‖L∞(Qρ) + ‖∇ζ‖2L∞(Qρ)

)
‖(u− k)+‖2L2(Qρ)

+ F 2
0,ρ

∣∣Qρ ∩ {u(x, t) > k}
∣∣1−2/p

] (5.4)

for any k ∈ R, where

F0,r := ‖f‖
L
p(n+2)
n+2+p (Qr)

+
n∑
i=1

‖fi‖Lp(Qr) for r > 0 (5.5)

and C2 > 0 depends only on n,Λ and λ.

Proof. Multiplying (1.8) by (u−k)+ζ2 and integrating it over Q′ρ := Bρ(x0)× (t0−
ρ2, t′) (also see Remark 2.2), we have

(LHS) =
∫∫

Q′ρ

( ∂
∂t

(u− k)+
)

(u− k)+ζ2 dx dt

−
n∑

i,j=1

∫∫
Q′ρ

∂

∂xi

(
aij

∂

∂xj
(u− k)+

)
(u− k)+ζ2 dx dt

=
1
2

∫∫
Q′ρ

( ∂
∂t

(u− k)2+
)
ζ2 dx dt

+
n∑

i,j=1

∫∫
Q′ρ

aij
∂

∂xj
(u− k)+

∂

∂xi

(
(u− k)+ζ2

)
dx dt

=
1
2

∫∫
Q′ρ

[ ∂
∂t

(
(u− k)2+ζ

2
)
− 2(u− k)2+ζ

∂ζ

∂t

]
dx dt

+
n∑

i,j=1

∫∫
Q′ρ

aij
∂

∂xj

(
(u− k)+ζ

) ∂

∂xi

(
(u− k)+ζ

)
dx dt

−
n∑

i,j=1

∫∫
Q′ρ

aij(u− k)2+
∂ζ

∂xj

∂ζ

∂xi
dx dt

=
1
2

∫
Bρ(x0)

(u− k)2+ζ
2 dx

∣∣∣∣
t=t′
−
∫∫

Q′ρ

(u− k)2+ζ
∂ζ

∂t
dx dt

+
n∑

i,j=1

∫∫
Q′ρ

aij
∂

∂xj

(
(u− k)+ζ

) ∂

∂xi

(
(u− k)+ζ

)
dx dt

−
n∑

i,j=1

∫∫
Q′ρ

aij(u− k)2+
∂ζ

∂xj

∂ζ

∂xi
dx dt.
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Hence we have
1
2

∫
Bρ(x0)

(u− k)2+ζ
2 dx

∣∣∣∣
t=t′

+
n∑

i,j=1

∫∫
Q′ρ

aij
∂

∂xj

(
(u− k)+ζ

) ∂

∂xi

(
(u− k)+ζ

)
dx dt

=
∫∫

Q′ρ

(u− k)2+ζ
∂ζ

∂t
dx dt+

n∑
i,j=1

∫∫
Q′ρ

aij(u− k)2+
∂ζ

∂xj

∂ζ

∂xi
dx dt

+
∫∫

Q′ρ

f(u− k)+ζ2 dx dt+
n∑
i=1

∫∫
Q′ρ

fi
∂

∂xi

(
(u− k)+ζ2

)
dx dt.

(5.6)

We remark that∣∣∣ ∫∫
Q′ρ

fi
∂

∂xi

(
(u− k)+ζ2

)
dx dt

∣∣∣
=
∣∣∣∫∫

Q′ρ∩{u(x,t)>k}
fiζ

∂

∂xi

(
(u− k)+ζ

)
dx dt

+
∫∫

Q′ρ∩{u(x,t)>k}
fi(u− k)+ζ

∂ζ

∂xi
dx dt

∣∣∣
≤ ε1

∫∫
Q′ρ∩{u(x,t)>k}

∣∣ ∂
∂xi

(
(u− k)+ζ

)∣∣2 dx dt+
1
ε1

∫∫
Q′ρ∩{u(x,t)>k}

|fiζ|2 dx dt

+
∫∫

Q′ρ∩{u(x,t)>k}
|fiζ|2 dx dt+

∫∫
Q′ρ∩{u(x,t)>k}

(u− k)2+
∣∣ ∂ζ
∂xi

∣∣2 dx dt.
Hence, by (1.4) and (5.6), we have

1
2

∫
Bρ(x0)

(u− k)2+ζ
2 dx

∣∣∣∣
t=t′

+ λ

∫∫
Q′ρ

∣∣∇((u− k)+ζ
)∣∣2 dx dt

≤ 1
2

∫
Bρ(x0)

(u− k)2+ζ
2 dx

∣∣∣∣
t=t′

+
n∑

i,j=1

∫∫
Q′ρ

aij
∂

∂xj

(
(u− k)+ζ

) ∂

∂xi

(
(u− k)+ζ

)
dx dt

=
∫∫

Q′ρ

(u− k)2+ζ
∂ζ

∂t
dx dt+

n∑
i,j=1

∫∫
Q′ρ

aij(u− k)2+
∂ζ

∂xj

∂ζ

∂xi
dx dt

+
∫∫

Q′ρ

f(u− k)+ζ2 dx dt+
n∑
i=1

∫∫
Q′ρ

fi
∂

∂xi

(
(u− k)+ζ2

)
dx dt

≤ ‖∂ζ
∂t
‖L∞(Qρ)

∫∫
Q′ρ

(u− k)2+ dx dt+ Λ‖∇ζ‖2L∞(Qρ)

∫∫
Q′ρ

(u− k)2+ dx dt

+
∫∫

Q′ρ

f(u− k)+ζ2 dx dt+ ε1

∫∫
Q′ρ

∣∣∇((u− k)+ζ
)∣∣2 dx dt

+
(

1
ε1

+ 1
)∫∫

Q′ρ∩{u(x,t)>k}

n∑
i=1

|fi|2 dx dt
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+ n‖∇ζ‖2L∞(Qρ)

∫∫
Q′ρ

(u− k)2+ dx dt;

that is,

1
2

∫
Bρ(x0)

(u− k)2+ζ
2 dx

∣∣∣∣
t=t′

+ (λ− ε1)
∫∫

Q′ρ

∣∣∇((u− k)+ζ
)∣∣2 dx dt

≤ (Λ + n)
(
‖∂ζ
∂t
‖L∞(Qρ) + ‖∇ζ‖2L∞(Qρ)

)∫∫
Q′ρ

(u− k)2+ dx dt

+
( 1
ε1

+ 1
) ∫∫

Q′ρ∩{u(x,t)>k}

n∑
i=1

|fi|2 dx dt+
∫∫

Q′ρ

f(u− k)+ζ2 dx dt.

Taking the supremum of the inequality over (t0− ρ2, t0] with respect to t′, we have

max
{1

2
‖(u− k)+ζ‖2L∞(t0−ρ2,t0;L2(Bρ(x0)))

, (λ− ε1)
∥∥∇((u− k)+ζ

)∥∥2

L2(Qρ)

}
≤ (Λ + n)

(
‖∂ζ
∂t
‖L∞(Qρ) + ‖∇ζ‖2L∞(Qρ)

) ∫∫
Qρ

(u− k)2+ dx dt

+
( 1
ε1

+ 1
) ∫∫

Qρ∩{u(x,t)>k}

n∑
i=1

|fi|2 dx dt+
∫∫

Qρ

f(u− k)+ζ2 dx dt.

(5.7)

Now we estimate the last two terms in the right-hand side of (5.7). First we obtain∫∫
Qρ∩{u(x,t)>k}

|fi|2 dx dt ≤
∣∣Qρ ∩ {u(x, t) > k}

∣∣1−2/p‖fi‖2Lp(Qρ) (5.8)

by Hölder’s inequality. Now we estimate
∫∫
Qρ
f(u− k)+ζ2 dx dt. We first recall

‖(u− k)+ζ‖L2(n+2)/n(Qρ)

≤ C1

(
‖(u− k)+ζ‖L∞(t0−ρ2,t0;L2(Bρ(x0))) +

∥∥∇((u− k)+ζ
)∥∥
L2(Qρ)

)
by Lemma 5.2, where C1 > 0 depends only on n. Then, by this inequality, Hölder’s
inequality and Young’s inequality, we have∫∫

Qρ

f(u− k)+ζ2 dx dt

≤ ‖fζ‖L2(n+2)/(n+4)(Qρ∩{u(x,t)>k})‖(u− k)+ζ‖L2(n+2)/n(Qρ)

≤ ε2‖(u− k)+ζ‖2L2(n+2)/n(Qρ)
+

1
ε2
‖fζ‖2L2(n+2)/(n+4)(Qρ∩{u(x,t)>k})

≤ 2ε2C2
1 max

{
‖(u− k)+ζ‖2L∞(t0−ρ2,t0;L2(Bρ(x0)))

,
∥∥∇((u− k)+ζ

)∥∥2

L2(Qρ)

}
+

1
ε2
‖f‖2

L
p(n+2)
n+2+p (Qρ)

∣∣Qρ ∩ {u(x, t) > k}
∣∣1−2/p

(5.9)

because 2(n+2)/(n+4) < p(n+2)/(n+2+p). By (5.7), (5.8) and (5.9), we obtain
the estimate (5.4). �

By the same argument, we obtain the following lemma for the function v−(x) :=
max{−v(x), 0}.
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Lemma 5.4. Under the same assumption as in Lemma 5.3, a solution u to the
parabolic equation (1.8) satisfies

‖(u− k)−ζ‖2L∞(t0−ρ2,t0;L2(Bρ(x0)))
+
∥∥∇((u− k)−ζ

)∥∥2

L2(Qρ)

≤ C2

[(
‖∂ζ
∂t
‖L∞(Qρ) + ‖∇ζ‖2L∞(Qρ)

)
‖(u− k)−‖2L2(Qρ)

+ F 2
0,ρ

∣∣Qρ ∩ {u(x, t) < k}
∣∣1−2/p

] (5.10)

for any k ∈ R, where we define F0,ρ as (5.5), and C2 > 0 depends only on n,Λ and
λ.

The estimate (2.1) easily follows from Lemmas 5.3 and 5.3′. Our next task is to
prove the estimate (2.2). We start by giving a technical lemma which will be used
later.

Lemma 5.5. Let C̃ > 0, b > 1 and ε > 0. If a sequence {ym}∞m=0 satisfies

y0 ≤ θ0 := C̃−1/εb−1/ε2 and 0 ≤ ym+1 ≤ C̃bmy1+ε
m , (5.11)

then
lim
m→∞

ym = 0

holds.

Proof. We show

ym ≤
θ0
rm

, m = 0, 1, 2, . . . (5.12)

by inductive method, where we will determine r > 1 later. By assumption, (5.12)
with m = 0 holds. Hence we now assume (5.12) holds, and show (5.12) for m+ 1.
By the assumption (5.11) and the induction hypothesis, we have

ym+1 ≤ C̃bmy1+ε
m ≤ C̃bm

( θ0
rm
)1+ε =

θ0
rm+1

C̃bm
θε0

rmε−1
.

Now we take r = b1/ε. Then we have

ym+1 ≤
θ0

rm+1
C̃bm

θε0
rmε−1

=
θ0

rm+1
C̃rθε0 =

θ0
rm+1

,

which is (5.12) for m+ 1. �

Now we are now ready to show the estimate (2.2). The estimate easily follows if
we have the following lemma.

Lemma 5.6. Let p > n+ 2. Then a solution u to (1.8) satisfies the estimate

‖u‖L∞(Qρ) ≤ Cρ
(
‖u‖L2(Q2ρ) + F0,2ρ

)
,

where we define F0,2ρ by (5.5), and Cρ > 0 depends only on n, λ,Λ, p and ρ.

Proof. First of all a letter C denotes a general constant depending only on n,Λ, λ
and p. Now, let ρm := (1 + 2−m)ρ and km = k(2 − 2−m) for m = 0, 1, 2, . . .,
where we will determine k > 0 later. For m = 0, 1, 2, . . ., we take cut-off functions
ζm ∈ C∞(Qρm) which satisfy

0 ≤ ζm ≤ 1 in Qρm ,

ζm =

{
1 in Qρm+1 ,

0 in Qρm \Q(ρm+ρm+1)/2,



EJDE-2013/93 A GRADIENT ESTIMATE FOR SOLUTIONS 21

‖∂ζm
∂t
‖L∞(Qρm ) + ‖∇ζm‖2L∞(Qρm ) ≤

C

(ρm − ρm+1)2
.

We remark that ζm = 0 near Bρm(x0) × {t0 − ρ2
m} ∪ ∂Bρm(x0) × (t0 − ρ2

m, t0) in
particular. By Lemmas 5.2 and 5.3, we have

‖(u− km+1)+ζm‖2L2(n+2)/n(Qρm )

≤ C
(
‖(u− km+1)+ζm‖2L∞(t0−ρ2m,t0;L2(Bρm (x0)))

+
∥∥∇((u− km+1)+ζm

)∥∥2

L2(Qρm )

)
≤ C

[(
‖∂ζm
∂t
‖L∞(Qρm ) + ‖∇ζm‖2L∞(Qρm )

)
‖(u− km+1)+‖2L2(Qρm )

+ F 2
0,ρm

∣∣Qρm ∩ {u(x, t) > km+1}
∣∣1−2/p

]
≤ C

[22m

ρ2
‖(u− km+1)+‖2L2(Qρm ) + F 2

0,2ρ

∣∣Am(km+1)
∣∣1−2/p

]
,

(5.13)

where Am(l) := Qρm ∩ {u(x, t) > l} for l ∈ R. Now we take k > 0 as

k ≥ ρ1−(n+2)/pF0,2ρ. (5.14)

Then we have

‖(u− km+1)+ζm‖2L2(n+2)/n(Qρm )

≤ C
[22m

ρ2
‖(u− km+1)+‖2L2(Qρm ) +

k2

ρ2(1−(n+2)/p)

∣∣Am(km+1)
∣∣1−2/p

]
by the estimate (5.13). By defining ϕm := ‖(u− km)+‖2L2(Qρm ), we have

ϕm+1

= ‖(u− km+1)+ζm‖2L2(Qρm+1 ) ≤ ‖(u− km+1)+ζm‖2L2(Qρm )

≤ |Am(km+1)|2/(n+2)‖(u− km+1)+ζm‖2L2(n+2)/n(Qρm )

≤ C|Am(km+1)|2/(n+2)

×
[22m

ρ2
‖(u− km+1)+‖2L2(Qρm ) +

k2

ρ2(1−(n+2)/p)

∣∣Am(km+1)
∣∣1−2/p

]
≤ C|Am(km+1)|2/(n+2)

[22m

ρ2
ϕm +

k2

ρ2(1−(n+2)/p)

∣∣Am(km+1)
∣∣1−2/p

]
,

(5.15)

where we used Hölder’s inequality and the estimate

‖(u− km+1)+‖2L2(Qρm ) ≤ ‖(u− km)+‖2L2(Qρm ) = ϕm.

On the other hand, we have

ϕm = ‖(u− km)+‖2L2(Qρm ) ≥
∫∫

Am(km+1)

(u− km)2+ dx dt

≥
∫∫

Am(km+1)

(km+1 − km)2+ dx dt =
k2

22m+2
|Am(km+1)|;

that is,

|Am(km+1)| ≤ 22m+2

k2
ϕm. (5.16)
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By (5.15) and (5.16), we have

ϕm+1 ≤ C22m(1+ 2
n+2 )

×
[
ρ−2k−

4
n+2ϕ

1+ 2
n+2

m + ρ−2(1−n+2
p )k−( 4

n+2−
4
p )ϕ

1+ 2
n+2−

2
p

m

]
.

(5.17)

We now take k as

k ≥
( 1
|Q2ρ|

∫∫
Q2ρ

u2 dx dt
)1/2

. (5.18)

Then we have

ϕm ≤
∫∫

Qρm

u2 dx dt ≤
∫∫

Q2ρ

u2 dx dt ≤ |Q2ρ|k2;

that is,
ϕ2/p
m ≤ |Q2ρ|2/pk4/p.

By this inequality and (5.17), we have

ϕm+1 ≤ C22m(1+ 2
n+2 )ϕ

1+ 2
n+2−

2
p

m

[
ρ−2k−

4
n+2ϕ2/p

m + ρ−2(1−n+2
p )k−( 4

n+2−
4
p )
]

≤ C22m(1+ 2
n+2 )ϕ

1+ 2
n+2−

2
p

m

×
[
ρ−2k−

4
n+2 |Q2ρ|2/pk4/p + ρ−2(1−n+2

p )k−( 4
n+2−

4
p )
]

≤ C22m(1+ 2
n+2 )ρ−2(1−n+2

p )k−
4

n+2 (1−n+2
p )ϕ

1+ 2
n+2−

2
p

m .

(5.19)
Now we denote ym := k−2|Q2ρ|−1ϕm. Then by (5.19), we have

ym+1 ≤ C22m(1+ 2
n+2 )y

1+( 2
n+2−

2
p )

m , (5.20)

which is the second condition of (5.11) with

C̃ = C, b = 22(1+ 2
n+2 ), ε =

2
n+ 2

− 2
p
. (5.21)

Then limm→∞ ym = 0 if
y0 ≤ C−1/εb−1/ε2 =: θ0 (5.22)

by Lemma 5.5, where b and ε are defined by (5.21) and C is the constant C in
(5.20). We remark that the condition (5.22) is equivalent to

‖(u− k)+‖2L2(Q2ρ)
≤ θ0k2|Q2ρ|. (5.23)

Now we take k as
k2 ≥ 1

θ0|Q2ρ|
‖u‖2L2(Q2ρ)

. (5.24)

Then the condition (5.23); i.e., the condition (5.22) is satisfied.
Summing up, if we take k such that the conditions (5.14), (5.18) and (5.24) are

satisfied, then we have limm→∞ ym = 0. On the other hand, since

ym =
1

k2|Q2ρ|
ϕm =

1
k2|Q2ρ|

‖(u− km)+‖2L2(Qρm )

→ 1
k2|Q2ρ|

‖(u− 2k)+‖2L2(Qρ)
as m→∞.

Then we have ‖(u− 2k)+‖2L2(Qρ)
= 0; that is,

u ≤ 2k a.e. in Qρ. (5.25)
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Now we take k as

k =
1√

θ0|Q2ρ|
‖u‖L2(Q2ρ) + ρ1−(n+2)/pF0,2ρ,

which satisfies the conditions (5.14), (5.18) and (5.24). Hence we have (5.25), which
is

sup
Qρ

u ≤ Cρ
(
‖u‖L2(Q2ρ) + F0,2ρ

)
.

Replacing Lemma 5.3 by Lemma 5.3′ and doing the same argument, we can obtain

−u ≤ Cρ
(
‖u‖L2(Q2ρ) + F0,2ρ

)
in Qρ

and thus the proof has been completed. �
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