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FIRST INTEGRAL METHOD FOR AN OSCILLATOR SYSTEM

XIAOQIAN GONG, JING TIAN, JIAOYAN WANG

Abstract. In this article, we consider the nonlinear Duffing-van der Pol-type
oscillator system by means of the first integral method. This system has physi-

cal relevance as a model in certain flow-induced structural vibration problems,

which includes the van der Pol oscillator and the damped Duffing oscillator etc
as particular cases. Firstly, we apply the Division Theorem for two variables

in the complex domain, which is based on the ring theory of commutative alge-

bra, to explore a quasi-polynomial first integral to an equivalent autonomous
system. Then, through solving an algebraic system we derive the first inte-

gral of the Duffing-van der Pol-type oscillator system under certain parametric

condition.

1. Introduction

As we know, the van der Pol oscillator was originally proposed by the Dutch
electrical engineer and physicist Balthasar van der Pol whilst he was working at
Philips. van der Pol found stable oscillations, which he called relaxation-oscillations
and are now known as limit cycles, in electrical circuits employing vacuum tubes
[25]. When these circuits were driven near the limit cycle they become entrained,
i.e. the driving signal pulls the current along with it. Van der Pol and his colleague,
van der Mark, reported in [26] that at certain drive frequencies an irregular noise
was heard. This irregular noise was always heard near the natural entrainment
frequencies. This was one of the first discovered instances of deterministic chaos.
The van der Pol equation has wide applications, especially in the physical and
biological sciences. The typical example lies in biology, where Fitzhugh [12] and
Nagumo etc [24] extended the equation in a planar field as a model for action
potentials of neurons.

In this article, we consider a general Duffing-van der Pol-type oscillator system
of the form

ü+ (δ + βun)u̇− µu+ αun+1 = 0, (1.1)

where an over-dot represents differentiation with respect to the independent variable
ξ, and all coefficients δ, β, µ, α are real constants with δ · β · µ · α 6= 0. It can
also be regarded as a general combination of the van der Pol oscillator and damped
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Duffing equation, since the choices δ 6= 0, β 6= 0, µ 6= 0, α = 0 and n = 0 leads
equation (1.1) to the van der Pol oscillator [25, 26]

ü+ (δ + βu2)u̇− µu = 0. (1.2)

The choices δ 6= 0, µ 6= 0, α 6= 0, β = 0 and n = 2 leads equation (1.1) to the
damped Duffing equation [6, 15]

ü+ δu̇− µu+ αu3 = 0, (1.3)

which describes the motion of a damped oscillator with a more complicated poten-
tial than in simple harmonic motion without the driving force. When we choose
δ 6= 0, µ 6= 0, α 6= 0, β = 0 and n = 1, equation (1.1) becomes the damped
Helmholtz oscillator [1, 16]

ü+ δu̇− µu+ αu2 = 0. (1.4)

Furthermore, if we take δ 6= 0, µ 6= 0, α 6= 0, β 6= 0 and n = 2, equation (1.1)
becomes the standard form of the Duffing-van der Pol oscillator, whose autonomous
version (force free) takes the form [15, 17]

ü+ (δ + βu2)u̇− µu+ αu3 = 0. (1.5)

As we see, the nonlinear differential equation (1.1) is widely used in physics,
engineering, electronics, biology, neurology and many other disciplines [18, 20, 21,
27, 28]. Therefore, it is one of the most intensively studied systems in nonlinear
dynamics [15, 21]. It is well known that there are a great number of theoretical
works dealing with equations (1.2)-(1.5) [4, 8, 9, 10, 11, 13, 17, 19, 23] and references
therein, and applications of these four equations and related systems can be seen
in quite a few scientific areas [1, 3, 14]. For example, In 1980, Holmes and Rand
applied equation (1.5) to the study of the local and global bifurcation of the Duffing-
van der Pol-system [17]. In 1998, Maccari investigated the main resonance of the
Duffing-van der Pol-system using asymptotic perturbation method and obtained
the sufficient conditions for period-doubling motion of the system [23].

In this present paper, we apply the first integral method to study the nonlinear
Duffing-van der Pol-type oscillator system (1.1) and obtain its first integrals under
certain parametric condition. The main idea of this method is to use the Division
Theorem for two variables in the complex domain based on the ring theory of
commutative algebra. The paper is organized as follows. In the next section, we
construct the first integral for equation (1.1) by means of the first integral method.
In Section 3, we present a brief discussion.

2. Main Results

In this section, we consider the Duffing-van der Pol-type oscillator system (1.1)
for arbitrary degree n by applying the first integral method [7].

Consider the oscillator equation (1.1) in the form

ü = −(δ + βun)u̇+ µu− αun+1, (2.1)

where u′ denotes differentiation with respect to ξ. Let x = u and y = uξ, then
equation (2.1) is equivalent to an autonomous system

ẋ = y,

ẏ = −(δ + βxn)y + µx− αxn+1.
(2.2)
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By the qualitative theory of ordinary differential equations [5], if we can find two
first integrals to system (2.2) under the same conditions, the general solution to
equation (2.1) can be expressed explicitly. However, generally, it is difficult for us
to realize this, even for one first integral, because for a given plane autonomous
system, there is no systematic theory that can tell us how to find its first integrals,
nor is there a logical way to tell us what these first integrals are.

As we know, Hilbert-Nullstellensatz Theorem (Zero-locus-Theorem) is a theorem
which makes a fundamental relationship between the geometric and algebraic geom-
etry. That is, it relates algebraic sets to ideals in polynomial rings over algebraically
closed fields [2].

Theorem 2.1 (Hilbert-Nullstellensatz Theorem). Let k be a field and L be an
algebraic closure of k.

(i) Every ideal γ of k[X1, X2, . . . , Xn] not containing 1 admits at least one zero
in Ln.

(ii) Let x = (x1, x2, . . . xn), y = (y1, y2, . . . , yn) be two elements of Ln; for
the set of polynomials of k[X1, X2, . . . , Xn] zero at x to be identical with
the set of polynomials of k[X1, X2, . . . , Xn] zero at y, it is necessary and
sufficient that there exists a k-automorphism s of L such that yi = s(xi)
for 1 ≤ i ≤ n.

(iii) For an ideal α of k[X1, X2, . . . , Xn] to be maximal, it is necessary and
sufficient that there exists an x in Ln such that α is the set of polynomials
of k[X1, X2, . . . , Xn] zero at x.

(iv) For a polynomial Q of k[X1, X2, . . . , Xn] to be zero on the set of zeros in
Ln of an ideal γ of k[X1, X2, . . . , Xn], it is necessary and sufficient that
there exist an integral m > 0 such that Qm ∈ γ.

Following immediately from the Hilbert-Nullstellensatz Theorem, we obtain the
Division Theorem for two variables in the complex domain C.

Theorem 2.2 (Division Theorem). Suppose that P (w, z) and Q(w, z) are polyno-
mials in C[w, z], and P (w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all
zero points of P (w, z), then there exists a polynomial G(w, z) in C[w, z] such that

Q(w, z) = P (w, z) ·G(w, z). (2.3)

Now, we apply the above Division Theorem to seek the first integral of polyno-
mial form to system (2.2).

Suppose that x = x(ξ) and y = y(ξ) are the nontrivial solutions to system (2.2),
and p(x, y) =

∑i=m
i=0 ai(x)yi is an irreducible polynomial in C[x, y] such that

p[x(ξ), y(ξ)] =
m∑
i=0

ai(x)yi = 0, (2.4)

where ai(x)(i = 0, 1, ·,m) are polynomials of x and are all relatively prime in C[x, y],
and am(x) 6= 0. Equation (2.4) is also called the first integral of polynomial form
to equation (2.2). We start our study by considering m = 3 in equation (2.4).
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From system (2.2), we have

dp(x, y)
dξ

=
(∂p
∂x
· ∂x
∂ξ

+
∂p

∂y
· ∂y
∂ξ

)
= [a′0(x) + a′1(x)y + a′2(x)y2 + a′3(x)y3]y

+ [a1(x) + 2a2(x)y + 3a3(x)y2][−(δ + βxn)y + µx− αxn+1]

= a1(x)(µx− αxn+1) + [a′0(x) + 2a2(x)(µx− αxn+1)− a1(x)(δ + βxn)]y

+ [a′1(x) + 3a3(x)(µx− αxn+1)− 2a2(x)(δ + βxn)]y2

+ [a′2(x)− 3a3(x)(δ + βxn)]y3 + a′3(x)y4.

(2.5)

Note that dp
dξ is a polynomial in x and y, and p[x(ξ), y(ξ)] = 0 always implies

dp
dξ = 0. By the Division Theorem, there exists a polynomial H(x, y) = ρ(x)+η(x)y
in C[x, y] such that

dp(x, y)
dξ

= H(x, y) · p(x, y)

= [ρ(x) + η(x)y][a0(x) + a1(x)y + a2(x)y2 + a3(x)y3]

= ρ(x)a0(x) + (ρ(x)a1(x) + η(x)a0(x))y + (ρ(x)a2(x) + η(x)a1(x))y2

+ (ρ(x)a3(x) + η(x)a2(x))y3 + η(x)a3(x)y4.

(2.6)
By (2.5) and (2.6), on equating the coefficients of yi (i = 0, 1, 2, 3, 4) on both

sides of above equation (2.6), we have

a1(x)(µx− αxn+1) = ρ(x)a0(x),

a′0(x) + 2a2(x)(µx− αxn+1)− a1(x)(δ + βxn) = ρ(x)a1(x) + η(x)a0(x),

a′1(x) + 3a3(x)(µx− αxn+1)− 2a2(x)(δ + βxn) = ρ(x)a2(x) + η(x)a1(x),

a′2(x)− 3a3(x)(δ + βxn) = ρ(x)a3(x) + η(x)a2(x),

a′3(x) = η(x)a3(x).

That is,
a′(x) = A(x) · a(x),[

0, 0, αxn+1 − µx, ρ(x)
]
· a(x) = 0,

(2.7)

where

a(x) =


a3(x)
a2(x)
a1(x)
a0(x)

 , (2.8)

and

A(x) =


η(x) 0 0 0

ρ(x) + 3(δ + βxn) η(x) 0 0
3(αxn+1 − µx) ρ(x) + 2(δ + βxn) η(x) 0

0 2(αxn+1 − µx) ρ(x) + δ + βxn η(x)

 . (2.9)
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Since ai(x) are polynomials, from the first equation of system (2.7), we deduce
that a3(x) is a nonzero constant and η(x) = 0. For simplicity, we take a3(x) = 1.
Solving system (2.7) for a(x) yields

a(x) =


1∫

[ρ(x) + 3δ + 3βxn]dx∫
[3(αxn+1 − µx) + ρ(x)a2(x) + 2(δ + βxn)a2(x)]dx∫

[2(αxn+1 − µx)a2(x) + ρ(x)a1(x) + δa1(x) + βxna1(x)]dx

 . (2.10)

We need to determine the degree of polynomials ρ(x) and a2(x) based on system
(2.7) and formula (2.10).

Step 1. If deg ρ(x) = k > n > 0, we have

deg a2(x) = k + 1, deg a1(x) = 2k + 2, deg a0(x) = 3k + 3.

From (2.7), we derive that

deg [a1(x)(µx− αxn+1)] = 2k + 2 + n+ 1,

deg [ρ(x) · a0(x)] = k + 3k + 3.

This gives 2k+ n+ 3 = 4k+ 3; i.e., k = n/2. Apparently, it yields a contradiction.
Step 2. If deg ρ(x) = k and n > k > 0, we have

deg a2(x) = n+ 1, deg a1(x) = 2n+ 2, deg a0(x) = 3n+ 3.

From (2.7) again, we deduce that

deg [a1(x)(µx− αxn+1)] = 2n+ 2 + n+ 1,

deg [ρ(x) · a0(x)] = k + 3n+ 3,

which gives k = 0. This yields another contradiction.
Step 3. If deg ρ(x) = k = 0, which implies deg a2(x) = n+ 1, we assume that

a2(x) = B2x
n+1 +B1x+B0. (2.11)

Through formula (2.10), we find

a2(x) =
∫

[ρ(x) + 3δ + 3βxn]dx = (ρ(x) + 3δ)x+
3

n+ 1
βxn+1 +B0. (2.12)

From (2.11) and (2.12), we obtain

B1 = 3δ + ρ(x),

B2 =
3

n+ 1
β.

(2.13)

Furthermore, substituting (2.11)–(2.13) into (2.10), we can also deduce that

a1(x) =
∫ [

3(αxn+1 − µx) + ρ(x)a2(x) + 2(δ + βxn)a2(x)
]
dx

=
∫ [

3(αxn+1 − µx) + ρ(x)(B2x
n+1 +B1x+B0)

]
+
[
2(δ + βxn)(B2x

n+1 +B1x+B0)
]
dx

=
2βB2

2n+ 2
x2n+2 +

2δB2 + 2βB1 + (B1 − 3δ)B2 + 3α
n+ 2

xn+2

+
2βB0

n+ 1
xn+1 +

B2
1 − δB1 − 3µ

2
x2 + (2δB0 +B0(B1 − 3δ))x+D,

(2.14)

where D is an arbitrary integration constant.
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Substituting (2.11) and (2.14) into (2.10), where ρ(x) = B1 − 3δ, we have

a0(x) =
∫ [

2(αxn+1 − µx)a2(x) + ρ(x)a1(x) + δa1(x) + βxna1(x)
]
dx

=
β2B2

(3n+ 3)(n+ 1)
x3n+3 +

( 2αB2

2n+ 3
+

(B1 − 2δ)βB2

(n+ 1)(2n+ 3)

+
2δβB2 + 2β2B1 + (B1 − 3δ)B2β + 3αβ

(n+ 2)(2n+ 3)

)
x2n+3

+
2β2B0

(n+ 1)(2n+ 2)
x2n+2 +

(2αB1

n+ 3
+
β(B2

1 − δB1 − 3µ)
2(n+ 3)

− 2µB2

n+ 3

+
(B1 − 2δ)(2δB2 + 2βB1 + (B1 − 3δ)B2 + 3α)

(n+ 2)(n+ 3)

)
xn+3

+
(2αB0

n+ 2
+

2βB0(B1 − 2δ)
(n+ 1)(n+ 2)

+
β(B0B1 − δB0)

n+ 2

)
xn+2 +

βD

n+ 1
xn+1

+
(−2µB1

3
+

(B2
1 − δB1 − 3µ)(B1 − 2δ)

6

)
x3

+
(
− µB0 +

(B1 − 2δ)(B0B1 − δB0)
2

)
x2 + (B1 − 2δ)Dx+D′.

(2.15)
Note that

a1(x)(µx− αxn+1)

=
( 2βB2

2n+ 2
x2n+2 +

2δB2 + 2βB1 + (B1 − 3δ)B2 + 3α
n+ 2

xn+2 +
2βB0

n+ 1
xn+1

+
B2

1 − δB1 − 3µ
2

x2 + (2δB0 +B0(B1 − 3δ))x+D
)

(µx− αxn+1)

= −2αβB2

2n+ 2
x3n+3 +

(
− 2αδB2 + 2αβB1 + α(B1 − 3δ)B2 + 3α2

n+ 2
+

2µβB2

2n+ 2

)
x2n+3

− 2αβB0

n+ 1
x2n+2 +

(2µδB2 + 2µβB1 + µ(B1 − 3δ)B2 + 3µα
n+ 2

− α(B2
1 − δB1 − 3µ

2

)
xn+3 +

(2µβB0

n+ 1
−
(
2αδB0 + αB0(B1 − 3δ)

))
xn+2

−Dαxn+1 +
(B2

1 − δB1 − 3µ)µ
2

x3 +
(
2µδB0 + µB0(B1 − 3δ)

)
x2 +Dµx,

and

ρ(x)a0(x)

=
(B1 − 3δ)β2B2

(3n+ 3)(n+ 1)
x3n+3 + (B1 − 3δ)

( 2αB2

2n+ 3
+

(B1 − 2δ)βB2

(n+ 1)(2n+ 3)

+
2δβB2 + 2β2B1 + (B1 − 3δ)B2β + 3αβ

(n+ 2)(2n+ 3)

)
x2n+3

+
(B1 − 3δ)2β2B0

(n+ 1)(2n+ 2)
x2n+2 + (B1 − 3δ)

(2αB1

n+ 3
+
β(B2

1 − δB1 − 3µ)
2(n+ 3)

− 2µB2

n+ 3
+

(B1 − 2δ)(2δB2 + 2βB1 + (B1 − 3δ)B2 + 3α)
(n+ 2)(n+ 3)

)
xn+3
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+ (B1 − 3δ)
(2αB0

n+ 2
+

2βB0(B1 − 2δ)
(n+ 1)(n+ 2)

+
β(B0B1 − δB0)

n+ 2

)
xn+2

+
(B1 − 3δ)βD

n+ 1
xn+1 + (B1 − 3δ)

(−2µB1

3
+

(B2
1 − δB1 − 3µ)(B1 − 2δ)

6

)
x3

+ (B1 − 3δ)
(
− µB0 +

(B1 − 2δ)(B0B1 − δB0)
2

)
x2

+ (B1 − 3δ)(B1 − 2δ)Dx+ (B1 − 3δ)D′.

Using system (2.7) again, we have

a1(x)(µx− αxn+1) = ρ(x)a0(x).

Taking integration constants D = 0 leads to

−2αβB2

2n+ 2
=

(B1 − 3δ)β2B2

(3n+ 3)(n+ 1)
, (I)

− 2αδB2 + 2αβB1 + α(B1 − 3δ)B2 + 3α2

n+ 2
+

2µβB2

2n+ 2

= (B1 − 3δ)
( 2αB2

2n+ 3
+

(B1 − 2δ)βB2

(n+ 1)(2n+ 3)

+
2δβB2 + 2β2B1 + (B1 − 3δ)B2β + 3αβ

(n+ 2)(2n+ 3)

)
,


(II)

−2αβB0

n+ 1
=

(B1 − 3δ)2β2B0

(n+ 1)(2n+ 2)
, (III)

2µδB2 + 2µβB1 + µ(B1 − 3δ)B2 + 3µα
n+ 2

− α(B2
1 − δB1 − 3µ)

2

= (B1 − 3δ)
(B1 − 2δ)(2δB2 + 2βB1 + (B1 − 3δ)B2 + 3α)

(n+ 2)(n+ 3)

+ (B1 − 3δ)
(2αB1

n+ 3
+
β(B2

1 − δB1 − 3µ)
2(n+ 3)

− 2µB2

n+ 3

)
,

2µβB0

n+ 1
− (2αδB0 + αB0(B1 − 3δ)

= (B1 − 3δ)
(2αB0

n+ 2
+

2βB0(B1 − 2δ)
(n+ 1)(n+ 2)

+
β(B0B1 − δB0)

n+ 2

)
,

(B2
1 − δB1 − 3µ)µ

2
= (B1 − 3δ)

(−2µB1

3
+

(B2
1 − δB1 − 3µ)(B1 − 2δ)

6

)
,

2µδB0 + µB0(B1 − 3δ) = (B1 − 3δ)
(
− µB0 +

(B1 − 2δ)(B0B1 − δB0)
2

)
.

From (I), we deduce

B2[(B1 − 3δ)β + 3α(n+ 1)] = 0;

that is,

B2 = 0 or B1 =
−3α(n+ 1)

β
+ 3δ.



8 X. GONG, J. TIAN, J. WANG EJDE-2013/96

Since B2 = 3
n+1β 6= 0, it gives

B1 =
−3α(n+ 1)

β
+ 3δ.

From (III), we have

B0[(B1 − 3δ)β + 2α(n+ 1)] = 0;

that is,

B0 = 0 or B1 =
−2α(n+ 1)

β
+ 3δ.

Note the fact that B1 = −3α(n+1)
β + 3δ from (I) and α 6= 0, so the only possibility

is

B1 6=
−2α(n+ 1)

β
+ 3δ, B0 = 0.

That is,

B0 = 0, B1 =
−3α(n+ 1)

β
+ 3δ, B2 =

3β
n+ 1

. (2.16)

Substituting B1, B2 back into equation (II) leads to

− 2αδB2 + 2αβB1 + α(B1 − 3δ)B2 + 3α2

n+ 2
+

2µβB2

2n+ 2

= (B1 − 3δ)
( 2αB2

2n+ 3
+

(B1 − 2δ)βB2

(n+ 1)(2n+ 3)

+
2δβB2 + 2β2B1 + (B1 − 3δ)B2β + 3αβ

(n+ 2)(2n+ 3)

)
.

That is,

−
6αβδ
n+1 − 6α2(n+ 1) + 6αβδ − 6α2

n+ 2
+

3µβ2

(n+ 1)2
= 9α2 − 9αβδ

n+ 1
.

A straightforward calculation gives

α2(n+ 1)2 − αβδ(n+ 1)− µβ2 = 0. (2.17)

Substituting (2.16) in (2.11), we obtain

a2(x) =
3β
n+ 1

xn+1 +
(
− 3α(n+ 1)

β
+ 3δ

)
x.

Substituting (2.16) in (2.14) gives

a1(x) =
3β2

(n+ 1)2
x2n+2 +

6βδ − 6α(n+ 1)
(n+ 1)

xn+2

+
9α2(n+ 1)2 + 6β2δ2 − 15αβδ(n+ 1)− 3µβ2

2β2
x2.

Substituting (2.16) in (2.15) gives

a0(x)

=
β3

(n+ 1)3
x3n+3

+
6αβ(n+ 1)(−n)− 9αβ(n+ 1) + 3β2δ + 6β2δ(n+ 1)

(n+ 1)2(2n+ 3)
x2n+3



EJDE-2013/96 FIRST INTEGRAL METHOD 9

+
(24α2(n+ 1)2 − 36αβδ(n+ 1) + 9α2(n+ 1)3

2(n+ 1)(n+ 3)β

)
xn+3

+
(6β2δ2(n+ 1)− 15αβδ(n+ 1)2 − 3β2µ(n+ 1)− 12µβ2 + 12β2δ2

2(n+ 1)(n+ 3)β

)
xn+3

+
21αβ2µ(n+ 1)− 15β3µδ − 27α3(n+ 1)3 + 54α2βδ(n+ 1)2

6β3
x3

+
−33αβ2δ2(n+ 1) + 6β3δ3

6β3
x3.

Note that the coefficient of x2n+3 in the formula a0(x) can be simplified as

6αβ(n+ 1)(−n)− 9αβ(n+ 1) + 3β2δ + 6β2δ(n+ 1)
(n+ 1)2(2n+ 3)

=
−3αβ(n+ 1) + 3β2δ

(n+ 1)2
.

(2.18)
Let Cn+3 be the coefficient of xn+3 in the formula a0(x). By condition (2.17), we
have

Cn+3 =
3αβµ(n+ 1) + 6αβµ+ 6αβδ2 − 6α2δ(n+ 1)− 3β2δµ

α(n+ 1)(n+ 3)
. (2.19)

Similarly, let C3 be the coefficient of x3 in the formula a0(x). Using the condition
(2.17) again gives

C3 =
−αµ(n+ 1) + 2βµδ − αδ2(n+ 1) + βδ3

β
. (2.20)

Hence, from (2.18)–(2.20), the formula a0(x) can be rewritten as

a0(x) =
β3

(n+ 1)3
x3n+3 +

−3αβ(n+ 1) + 3β2δ

(n+ 1)2
x2n+3

+
3αβµ(n+ 1) + 6αβµ+ 6αβδ2 − 6α2δ(n+ 1)− 3β2δµ

α(n+ 1)(n+ 3)
xn+3

+
−αµ(n+ 1) + 2βµδ − αδ2(n+ 1) + βδ3

β
x3.

Substituting a0(x), a1(x), a2(x) and a3(x) = 1 into (2.4), we obtain the first integral
of equation (1.1) as follows

y3 +
( 3β
n+ 1

xn+1 +
(
− 3α(n+ 1)

β
+ 3δ

)
x
)
y2

+
( 3β2

(n+ 1)2
x2n+2 +

6βδ − 6α(n+ 1)
(n+ 1)

xn+2

+
9α2(n+ 1)2 + 6β2δ2 − 15αβδ(n+ 1)− 3µβ2

2β2
x2
)
y

+
β3

(n+ 1)3
x3n+3 +

6αβ(n+ 1)(−n)− 9αβ(n+ 1) + 3β2δ + 6β2δ(n+ 1)
(n+ 1)2(2n+ 3)

x2n+3

+
3αβµ(n+ 1) + 6αβµ+ 6αβδ2 − 6α2δ(n+ 1)− 3β2δµ

α(n+ 1)(n+ 3)
xn+3

+
−αµ(n+ 1) + 2βµδ − αδ2(n+ 1) + βδ3

β
x3 = 0.

(2.21)
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It is notable that under the parametric condition (2.17), equation (2.21) can be
simplified as [

y +
β

n+ 1
xn+1 +

(
− α(n+ 1)

β
+ δ
)
x
]3

= 0.

Consequently, under the parametric condition (2.17), we have

y =
(α(n+ 1)

β
− δ
)
x− β

n+ 1
xn+1.

By (2.6), namely,
dp(x, y)
dξ

= [−3α(n+ 1)
β

] · p(x, y), (2.22)

solving equation (2.22) yields the first integral[
u′ +

β

n+ 1
un+1 +

(
− α(n+ 1)

β
+ δ
)
u
]
· exp

[α(n+ 1)
β

]
ξ = I, (2.23)

where I is an arbitrary constant.

3. Discussion

Since the first integral method was introduced in [7] for studying traveling wave
phenomena of Burgers-KdV equation, it has become a very useful method to deal
with exact solutions of a rather diverse classes of nonlinear differential equations.
One of advantages of this method is that it is not only efficient to find the first
integral, but also has the merit of being widely applicable. As described in [9, 10,
11, 22], one can apply this technique to some nonlinear models arising in physical
and biological phenomena, such as the nonlinear Schrödinger equation, the Klein-
Gordon equation, and the higher order KdV-like equation.

In this paper, we applied the first integral method to investigate a nonlinear
Duffing-van der Pol-type oscillator system for its first integral. Under certain para-
metric conditions, we obtained a first integral of the Duffing-van der Pol-type os-
cillator system. Note that formula (2.23) is in agreement with the main result
presented in [8] by using the Lie symmetry reduction method, but our parametric
condition (2.17) appear weaker.

In [4], when n = 2, the first integral of the Duffing-van der Pol oscillator system
with the parameter α = 1 is considered, namely

ÿ + (δ + βy2)ẏ − µy + y3 = 0. (3.1)

Following the parametric condition (2.17); that is,

δ =
3
β
− µβ

3
,

and using formula (2.23), we can obtain immediately that the Duffing-van der Pol
equation (3.1) has one first integral of the form[

ẏ +
(
δ − 3

β

)
y +

β

3
y3
]
e3x/β = I1, (3.2)

where I1 is an arbitrary constant. Note that the first integral (3.2) is identical to
formula (17) described in [9].
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