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EXISTENCE OF INFINITELY MANY ANTI-PERIODIC
SOLUTIONS FOR SECOND-ORDER IMPULSIVE
DIFFERENTIAL INCLUSIONS

SHAPOUR HEIDARKHANI, GHASEM A. AFROUZI,
ARMIN HADJIAN, JOHNNY HENDERSON

ABSTRACT. In this article, we establish the existence of infinitely many anti-
periodic solutions for a second-order impulsive differential inclusion with a
perturbed nonlinearity and two parameters. The technical approach is mainly
based on a critical point theorem for non-smooth functionals.

1. INTRODUCTION

The aim of this article is to show the existence of infinitely many solutions for
the following two parameter second-order impulsive differential inclusion subject to
anti-periodic boundary conditions

—(¢p(u'(2)))" + Mp(u(x)) € AF (u(x)) + pG(z,u(z)) in [0,T]\Q,
—Adp(u(2)) = Ie(u(zr)), k=12,...,m, (1.1)
u(0) = —u(T), u'(0) =—u'(T),

where Q = {z1,22,...,2m}, p > 1, T >0, M > 0, ¢p(x) := |z|P722, 0 = 79 <
1< < Ty < Tpp1 = Ty Agp (W (k) 1= dp(/ (x)) — dp(u' (zy,)), with o' (z}))
and u'(x, ) denoting the right and left limits, respectively, of u/(z) at = zy, I €
CR,R), k=1,2,...,m, X is a positive parameter, y is a nonnegative parameter,
and F' is a multifunction defined on R, satisfying

(F1) F:R — 2% is upper semicontinuous with compact convex values;

(F2) min F, max F': R — R are Borel measurable;

(F3) [¢] <a(l+|s|"" 1) forall s e R, £ € F(s), r>1 (a>0).
Also, G is a multifunction defined on [0, 7] x R, satisfying

(G1) G(z,-) : R — 2% is upper semicontinuous with compact convex values for

a.e. z €1[0,7]\ Q;
(G2) minG, max G : ([0,7]\ Q) x R — R are Borel measurable;
(G3) |¢] <a(l+|s|"™!) for ae. z €[0,7], s €R, € G(a,s), 7> 1 (a>0).
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Impulsive differential equations are used to describe various models of real-world
processes that are subject to a sudden change. These models are studied in physics,
population dynamics, ecology, industrial robotics, biotechnology, economics, opti-
mal control, and so forth. Associated with this development, a theory of impulsive
differential equations has been given extensive attention. Differential inclusions
arise in models for control systems, mechanical systems, economical systems, game
theory, and biological systems to name a few. It is very important to study anti-
periodic boundary value problems because they can be applied to interpolation
problems [5], antiperiodic wavelets [3], the Hill differential operator [6], and so on.
It is natural from both a physical standpoint as well as a theoretical view to give
considerable attention to a synthesis involving problems for impulsive differential
inclusion with anti-periodic boundary conditions.

Recently, multiplicity of solutions for differential inclusions via non-smooth vari-
ational methods and critical point theory has been considered and here we cite the
papers [9, 10, 11 12} [16]. For instance, in [I1], the author, employing a non-smooth
Ricceri-type variational principle [15], developed by Marano and Motreanu [13], has
established the existence of infinitely many, radially symmetric solutions for a dif-
ferential inclusion problem in RY. Also, in [I2], the authors extended a recent result
of Ricceri concerning the existence of three critical points of certain non-smooth
functionals. Two applications have been given, both in the theory of differential
inclusions; the first one concerns a non-homogeneous Neumann boundary value
problem, the second one treats a quasilinear elliptic inclusion problem in the whole
RY. In [9], the author, under convenient assumptions, has investigated the exis-
tence of at least three positive solutions for a differential inclusion involving the
p-Laplacian operator on a bounded domain, with homogeneous Dirichlet boundary
conditions and a perturbed nonlinearity depending on two positive parameters; his
result also ensured an estimate on the norms of the solutions independent of both
the perturbation and the parameters. Very recently, Tian and Henderson in [I6],
based on a non-smooth version of critical point theory of Ricceri due to Iannizzotto
[9], have established the existence of at least three solutions for the problem
whenever A is large enough and p is small enough.

In the present paper, motivated by [I6], employing an abstract critical point
result (see Theorem below), we are interested in ensuring the existence of in-
finitely many anti-periodic solutions for the problem ; see Theorem below.
We refer to [2], in which related variational methods are used for non-homogeneous
problems.

To the best of our knowledge, no investigation has been devoted to establishing
the existence of infinitely many solutions to such a problem as . For a couple
of references on impulsive differential inclusions, we refer to [7] and [g].

A special case of our main result is the following theorem.

Theorem 1.1. Assume that (F1)—(F3) hold, and I;(0) = 0, I;(s)s < 0, s € R,
i=1,2,...,m. Furthermore, suppose that
.ot
su min |, F'(s)ds
lim inf Piri<e fo ()
§—+o0 €Z)
T_

T _ . T
lim sup Jy min f5* 7 F(s) ds dx
£—+o00 %gp (TJr M(Z)ml) _ Zm £(F =) Ii(s)ds

=0,

= +o00.
p+1\2 i=1Jo
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Then, the problem (1.1), for A =1 and p = 0, admits a sequence of pairwise distinct
solutions.

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Let (X, | - ||x) be a real Banach space. We denote by X* the dual space of X,
while (-, -) stands for the duality pairing between X* and X. A function ¢ : X — R
is called locally Lipschitz if, for all u € X, there exist a neighborhood U of u and
a real number L > 0 such that

lp(v) — p(w)] < L|jv —w||x for all v,w € U.

If ¢ is locally Lipschitz and u € X, the generalized directional derivative of ¢ at u
along the direction v € X is

plw+70) = p(w)

©°(u;v) := limsup
w—u, 7—0*F

The generalized gradient of ¢ at w is the set
Op(u) == {u* € X : (u",v) < p°(u;v) for allv € X}.

So dp : X — 2X7 is a multifunction. We say that ¢ has compact gradient if dy
maps bounded subsets of X into relatively compact subsets of X*.

Lemma 2.1 ([I4, Proposition 1.1]). Let ¢ € CY(X) be a functional. Then ¢ is
locally Lipschitz and

©°(u;v) = (@' (u),v) for all u,v € X;
dp(u) ={¢' (w)} forallu e X.

Lemma 2.2 ([I4, Proposition 1.3]). Let ¢ : X — R be a locally Lipschitz functional.
Then ©°(u;-) is subadditive and positively homogeneous for all u € X, and

©°(u;v) < L||v||  for all u,v € X,
with L > 0 being a Lipschitz constant for ¢ around wu.

Lemma 2.3 ([]). Let ¢ : X — R be a locally Lipschitz functional. Then ¢° :
X x X — R is upper semicontinuous and for all A >0, u,v € X,

(Ap)°(u;v) = Ap®(us v).
Moreover, if p,1 : X — R are locally Lipschitz functionals, then
(o +¥)°(u;v) < °(u;v) +°(usv)  for all u,v € X.

Lemma 2.4 ([I4, Proposition 1.6]). Let p,% : X — R be locally Lipschitz func-
tionals. Then

OAp)(u) = Adp(u) for allu e X, X € R,
Ao+ ) (u) C dp(u) + OY(u) for allu € X.

Lemma 2.5 ([9, Proposition 1.6]). Let ¢ : X — R be a locally Lipschitz functional
with a compact gradient. Then ¢ is sequentially weakly continuous.
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We say that u € X is a (generalized) critical point of a locally Lipschitz functional
@ if 0 € Op(u); ie.,
©°(u;v) >0 forallv € X.
When a non-smooth functional, g : X — (—o0,400), is expressed as a sum of a
locally Lipschitz function, ¢ : X — R, and a convex, proper, and lower semicon-
tinuous function, j : X — (—o0,400); that is, g := ¢ + j, a (generalized) critical
point of g is every u € X such that

@ (u;v —u) +j(v) = j(u) 20

for all v € X (see [14] Chapter 3]).

Hereafter, we assume that X is a reflexive real Banach space, N/ : X — R is
a sequentially weakly lower semicontinuous functional, T : X — R is a sequen-
tially weakly upper semicontinuous functional, A is a positive parameter, j : X —
(=00, +00) is a convex, proper, and lower semicontinuous functional, and D(j) is
the effective domain of j. Write

M:="—j, ©L:=N-2dIM=(N-XT)+ ).
We also assume that N is coercive and
D(j) NN (—o0,7)) # 0 (2.1)

for all » > infx A. Moreover, owing to (2.1) and provided r > infx NV, we can
define

(Supv€N71((,m7r)) M('U)) - M(U)

= inf
A= -y r- N |
y Tlg-&{lolo o(r) TH(IiIrﬂ;l(nN)J’ #lr)

If A and Y are locally Lipschitz functionals, in [I, Theorem 2.1] the following result
is proved; it is a more precise version of [I3, Theorem 1.1] (see also [15]).

Theorem 2.6. Under the above assumption on X, N' and M, one has

(a) For every r > infx N and every A € (0,1/0(r)), the restriction of the
functional Iy = N =AM to N=((—o0,r)) admits a global minimum, which
is a critical point (local minimum) of I in X.
(b) If v < 400, then for each A € (0,1/7), the following alternative holds:
either
(bl) I possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of I such
that lim,,_, 4 oo N (uy,) = +00.
(¢) If 6 < +o0, then for each A € (0,1/8), the following alternative holds:
either
(cl) there is a global minimum of N' which is a local minimum of I, or
(c2) there is a sequence {uy,} of pairwise distinct critical points (local min-
ima) of I, with lim, . N (u,) = infx N, which converges weakly
to a global minimum of N.

Now we recall some basic definitions and notation. On the reflexive Banach
space X := {u € WH?([0,T]) : u(0) = —u(T)} we consider the norm

el = (/OT (|U’(w)|p+M|u(x)|p)dm)1/p
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for all w € X, which is equivalent to the usual norm (note that M > 0). We
recall that X is compactly embedded into the space C°([0,T]) endowed with the
maximum norm || - ||go.

Lemma 2.7 ([16] Lemma 3.3]). Let u € X. Then
1
fulleo < 5T/4]ullx. (2

where 1/p+1/q = 1.

Obviously, X is compactly embedded into L7([0,T]) endowed with the usual
norm || - ||z, for all v > 1.

Definition 2.8. A function u € X is a weak solution of the problem (|1.1)) if there
exists u* € L7([0,T)]) (for some y > 1) such that

T m
| [t @ye' @)+ Mo (ut@)ota) @) da = - Fute)ole) = 0

for all v € X and u* € AF(u(x)) + pG(z,u(x)) for a.e. x € [0,T].

Definition 2.9. By a solution of the impulsive differential inclusion (1.1)) we will
understand a function u : [0,T]\ @ — R is of class C' with ¢,(u’) absolutely
continuous, satisfying

—(¢p(u'(2))) + Mp(u(x)) = v in [0 T\ Q,
—A¢y (U (zr)) = I (u(zy)), k= ceymy,
u(0) = —u(T), '(0)=-u (T),
where u* € AF(u(z)) + pG(x,u(z)) and u* € L7([0,T]) (for some y > 1).

Lemma 2.10 ([I6, Lemma 3.5)). If a function u € X is a weak solution of (L.1)),
then w is a classical solution of (L.1)).

We introduce for a.e. = € [0,7] and all s € R, the Aumann-type set-valued
integral

S s
/ F(t)dt = / f(@®)dt : f:R — R is a measurable selection of F}

and set F(u fo min [;' F(s)dsdx for all w € LP([0,T]); the Aumann-type set-
valued 1ntegral

/ Gz, t)dt = / glz,t)dt : g:]0,T] x R — R is a measurable selection of G}

and set G(u fo min [ G(z, s) ds dx for all u € LP([0,T]).

Lemma 2.11 ([10, Lemma 3.1]). The functionals F,G : LP([0,T]) — R are well
defined and Lipschitz on any bounded subset of LP([0,T]). Moreover, for all u €
LP([0,T]) and all u* € O(F(u) + G(u)),

u*(z) € F(u(x)) + G(z,u(x)) for a.e. x €[0,T].

We define an energy functional for the problem (1.1) by setting
1 m u(ac )
D) = Sl = AF(@) — G =3 [ Es)ds
0

=1

for all u € X.
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Lemma 2.12 ([I6l Lemma 4.4]). The functional Iy : X — R is locally Lipschitz.
Moreover, for each critical point uw € X of I, u is a weak solution of (L.1).

3. MAIN RESULTS

We formulate our main result using the following assumptions:
(F4)

ot
su min |, F'(s)ds
lim inf Plri<e fo (5)
£—+o0 fp
T . ré(F-a)
1,2 min F(s)dsdx
<7(T)phmsup Js J T ;
p £—+00 1§p(T+§iV11( )p+1) DTN N I;(s)ds
(I1) I;(0) =0, Ii(s)s<0,s€R,i=1,2,...,m

Theorem 3.1. Assume that (F1)—(F4), (I1) hold. Let

] fOT min fog(%iz) F(s)dsdz
)\1 = 1/1

im sup

m I*fl’l ’
e—too Lep (T+ %(%)pﬂ) - G L) ds

.t

su min [, F(s)ds
Ag 1= 1/liminf Piri<e fop (s)
=T
p\T
Then, for every X € (A1, \2), and every multifunction G satisfying
(G4) fo mmfo (z,8)dsdx >0 for allt € R, and

(G5) Goo = lime 4 o0 5‘1P\t|§em12];fo (z,s)ds < +o0,

if we put

—
1 9P su min |, F'(s)ds
pG = 7( _)\ h inf p‘ﬂﬁf fO ( ) )7
G Tr £—>+oo gp
where pg x = +00 when G, =0, problem admits an unbounded sequence of
solutions for every u € [0, pg.\) in X.

Proof. Our aim is to apply Theorem [2.6(b) to (I.1). To this end, we fix X € (A1, A2)
and let G' be a multifunction satisfying (G1)—(G5). Since A < \g, we have

ot
1o SUp 4 <¢ min [ F(s)ds
Hax = oy (1~ Vg fminf Z )>0

Now fix 7 € (O,MQ_X), put v1 := A, and

A2

14+ B EN G

Vo =

If Goo = 0, then v; = \j, o = Ay and A € (v1,10). If Goo # 0, since 1 < He o we

have _
A pTP_
— 4+ — 7Gx < 1,
N o PO S
and so
Ao -

e > A,
1+ 27E X Goo
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namely, A < v5. Hence, taking into account that A > A\; = vy, one has A € (v1,vs).
Now, set

J(z,s) = F(s) + %G(x, )
for all (x,s) € [0,T] x R. Assume j identically zero in X and for each u € X put

m u(x;) T u
N(u) := 1||u||§( — Z/ Li(s)ds, Y(u) ::/ min/ J(z,s)dsdx,
p =170 0 0

M(u) =T (u) = j(u) = T(u),
I (u) = N(u) = AM(u) = N (u) — AT (u).
It is a simple matter to verify that N is sequentially weakly lower semicontinuous
on X. Clearly, N' € C'(X). By Lemma N is locally Lipschitz on X. By
Lemma F and G are locally Lipschitz on LP([0,T]). So, T is locally Lipschitz
on LP([0,T]). Moreover, X is compactly embedded into L?([0,T]). So Y is locally

Lipschitz on X. Furthermore, T is sequentially weakly upper semicontinuous. For
all u € X, by (I),

u(i)
/ Ii(s)ds <0, i=1,2,...,m.
0
So, we have
1 p - U(zl) 1 p
N =l =3 [ nieds > Sl
p =1 /0 p

for all u € X. Hence, NV is coercive and infx N = N(0) = 0. We want to prove
that, under our hypotheses, there exists a sequence {u,} C X of critical points for
the functional Iy, that is, every element w, satisfies

L (@, v —1y,) >0, for every v € X.
Now, we claim that v < +o00. To see this, let {£,,} be a sequence of positive numbers
such that lim,, 4 &, = +00 and

SUP 4 <¢, Min fot J(z,8)ds

SUP 4 <¢ Min fot J(x,5)ds

i 7 ~lif =P )
Put »
1/ 2¢,
Tn = ]; <7§/q) y for all n € N.

Then, for all v € X with A (v) < r,, taking into account that ||v||% < pr, and
[vllco < %Tl/qH””X’ one has |v(z)| < &, for every x € [0,T]. Therefore, for all
n €N,

: (Supve.f\f—l((foo,r)) M(U)) - M(U)

inf
uEN ~1((—00,r)) r—N(u)
SUD . <pr, (F(v) + 5G(v))

Tn
T . t T . t
supjy<e, (Jo min [y F(s)dsde+ £ [ min [ G(z, s)ds dz)
T.'n.

—
T\ p[SUDpy <, min [y F(s)ds
oy s

o(rn) =

I SUPj|<¢,, Min fot G(x, s)ds}
5 .

* &
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Moreover, from Assumptions (F4) and (G5), we have

. t
SUp|y|<¢, min fo F(s)ds 4 fim PSPl<e mlnfo (z,s)ds
A

n—-+oo é‘g n=-Foo gﬁ < +OO,
which follows .
su min [, J(z,s)ds
hm p‘tlgfn pfO ( ) <+OO.
n—-+4oo gn
Therefore,
.ot
T su min |, J(x,s)ds
v < Egmnfgp(rn) <p(= 5 )plglgil;f Plri<e Epfo (@ 5) < 4o0. (3.2)
Since
.t .t _ .ot
supjy ¢ in J J(z, 5)ds T Jo F(s)ds  FSUPjyj<e D Jo G(x,5)ds
&p - &p by &p ’
and taking (G5) into account, we get
.t .t
su min [, J(z,s)ds su min [, F(s)ds 71
lim inf Plui<e Jo J(:5) < liminf Plri<e Jo (5) +E Gy (3.3)
£—+o0 &p §—+o0 &p A
Moreover, from Assumption (G4) we obtain
T —x)
I e
-roe Ler(T+ 25(3 )pﬂ)_zl 1o ® T Lils)ds
T —x)
F(s)dsd
> lim sup Jo mlnfo (5)ds de (3.4)

£—+00 1§p <T+ p+1( )P+1) > 1f0 779“)1 )ds
Therefore, from and (3.4), we observe that

_ 1
A E (l/l,l/g) - ( P =
fOT min [ 2 J(z,s) ds dz

Lgp(TJrM(Z)erl), m 5(%*”)1.( )d
P pHI\2 i=1Jo ils)as

limsupg_, 4

1 )
Sup|;| <¢ min fg J(x,8)ds
HEST

liminfe_, 4

C(0,1/7).

For the fixed A, the inequality ensures that the condition (b) of Theorem
can be applied and either I5 has a global minimum or there exists a sequence {uy, }
of weak solutions of the problem such that lim,_. ||u,|| = +00, The other
step is to show that for the fixed A the functional I5 has no global minimum. Let
us verify that the functional I is unbounded from below. Since

171}
1 < limsup foT min 05(2 )F(S) ds dzx
= - -
A ot %gP(T+ %(%)p+1) . 05(2 )L-(S)ds
<1 fT min fog(%fz) J(x,s)dsdx
< limsup

m Z*"Ei ’
£—+o0 1517( p+1( Py =3 05(2 )Il-(s)ds
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there exists a sequence {n,} of positive numbers and a constant 7 such that
limy,— 4 oo My = +00 and

1 fT minfn"(%fx) J(z,5) ds dx
T <7< °2M 0 = (3.5)
L (1 + 24 () = it o L a)ds
for each n € N large enough. For all n € N, set
T
wp () = 77”(5 — x)
For any fixed n € N, it is easy to see that w,, € X and, in particular, one has
2M T
p T p+1)
lwallie = o (7+ =5 (G5),
and so
1 2M T T "m
N(wy) = = 5<T+ P+1 / (s)ds. 3.6
() = it (T+ =5 (5) Z (36)

By (3.5) and (3.6)), we see that

Ii(wy,) = N(w,) — AM(w,)

1 2M T (3 =)
— ZpP(T p+1 s)d
= | s

T Nn E—z)
—)\/ min/ J(x,s)dsdx
0
1 2M T (5 =2:) -
P (T p+1 1—
<(pn”( +p+1 2 Z/ ds)( AT)

for every n € N large enough. Since A7 > 1 and lim,,_, ;o 1, = +00, we have

lim Ig(wp) = —oo.

n— 00

Then, the functional I3 is unbounded from below, and it follows that I has no
global minimum. Therefore, from part (b) of Theorem the functional I5 admits
a sequence of critical points {u,} C X such that lim,_ 4 N (%,) = +o00. Since N
is bounded on bounded sets, and taking into account that lim,, 4 N (%, ) = +o0,
then {@,} has to be unbounded, i.e.,

lim ||@,||x = +o0.
n—-+o0o

Moreover, if %, € X is a critical point of Iy, clearly, by definition, one has

L (U, v —up) >0, for every v € X.

Finally, by Lemma [2.12] the critical points of I3 are weak solutions for the problem
(1.1), and by Lemma every weak solution of ([L.1)) is a solution of (I.1)). Hence,
the assertion follows. O

Remark 3.2. Under the conditions

.t
su min [, F(s)ds
lim inf Plri<e fo (5)

= 07
£—+o0 é.p
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fOT min fo - F(s)dsdz

pr) = S 5T Li(s)ds

lim sup = o0,

£—+oo lgp(T+ ;0+1( )

from Theorem we see that for every A\ > 0 and for each u € [O, pTﬁigw),
problem (1.1)) admits a sequence of solutions which is unbounded in X. Moreover,
if G = 0, the result holds for every A > 0 and p > 0.

The following result is a special case of Theorem [3.1] with p = 0.
Theorem 3.3. Assume that (F1)—(F4), (I1) hold. Then, for each

1
A€ &= ’
. fonin 5 2 * F(s)ds dax

lim sup,_,
Tt (re e Br) -2 5 L

1
SUP |4 <¢ minfot’ F(s)ds |’
&y

liminfe, oo

the problem
—(¢p(W'(2))) + Mp(u(x)) € AF(u(x)) in [0,T]\ Q,
—A¢y (' (zr)) = In(u(zk), k=12,...,m,
w(0) = —u(T), '(0) =—u'(T)
has an unbounded sequence of solutions in X.

Now, we present the following example to illustrate our results.

Example 3.4. Consider the problem
—(¢3(u/(2)))" + ¢3(u(z)) € AF(u(z)) in [0,2]\ {1},
—Ag3(u'(21)) = Li(u(zr)), 1 =1, (3.7)
u(0) = —u(2), u'(0)=—u'(2),
where, for s € R,
{0}, if 5] < 27173,
[0,1], if [s| = 271/3,
{s—2713 £ 1}, ifs>271/3
{s+273 1}, ifs<—271/3

F(s) =

Simple calculations show that
sup min /t F(s)ds=0
t]<2-1/3 0
and
f2 min fog(lfx) F( ) ds dx
653 fﬂl ) (s)ds

§:c
553/ mm/ s)dsdz
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61, -2 e 0 ¢
— 773(/ max F(s) ds dx +/ max F'(s) dsdx
58\ 0 —2-1/3Jo

2-1/3 Ex 1 Ex
+/ max F(s) dsdx—l—/ max F(s) dsdx) >0
0 0 2-1/8 Jo

for some £ € R. So,
. . SUDj<g minfot F(s)ds
lim inf T
£—+o0 §§3
2 . £(1—x)
F(s)dsd
lim sup fo mmfog(l_x ) (s) ds du >
Eotoo 263 — [CUTTV I (s)ds

Hence, using Theorem problem (3.7, for A lying in a convenient interval, has
an unbounded sequence of solutions in X := {u € W3([0,2]) : u(0) = —u(2)}.

:07

0.

Here we point out the following consequences of Theorem 3.3} using the assump-
tions

(F5) liminfe_ 4o Supiseminfo Flo)ds l(g)p;

134 p\T
i S min f£F ) p(s) ds d
(F6) limsupg_, 0 0 o o1
Ler (T4 24 Ty ) =0 (50277 1 (s)ds

Corollary 3.5. Assume that (F1)—(F3), (F5)—(F6), (I1) hold. Then, the problem
—(6p(u'(2)))" + Myp(u(z)) € F(u(z)) in[0,T]\Q,
_A¢P(u/(xk)) :Ik(u(xk))7 k= 1,2,...,m,
w(0) = —u(T), «'(0)=—u/(T)
has an unbounded sequence of solutions in X.

Remark 3.6. Theorem in the Introduction is an immediate consequence of

Corollary[3.5
Now, we give the following consequence of the main result.

Corollary 3.7. Let F; : R — 2R be an upper semicontinuous multifunction with
compact conver values, such that min Fy, max Fy : R — R are Borel measurable and
1€l < a(l+ |s|™7Y) for all s € R, € € Fi(s), r1 > 1(a > 0). Furthermore, suppose
that

SUp|;|<¢ min fof Fi(s)ds

(C1) liminfe_ 4o - < +o0;
17(E
(C2) limsup [ min Jy 27 B () ds da e
£ ——+o0 %gp (T+%(%)p+1)7 ;11 05(7*321;) L;(s)ds

Then, for every multifunction Fy : R — 28 which is upper semicontinuous with
compact conver values, min Fp,max Fy : R — R are Borel measurable and |§| <
b(1+ |s|271) for all s € R, € € Fy(s), ro > 1(b > 0), and satisfies the conditions

t
supmin/ F(s)ds <0
teR 0

and s
T . T_
lim inf Jo mmfo(2 *) Fy(s) ds dx

oo m €L —m;)
o0 Lep(p 4 2M (Dypety — 5o 2570 [(s)ds

> —00,
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for each

1
re )
liminfe 4 Supmss:l;])}; Fy(s)ds
p\T

and the problem

—(¢p('(2))) + Mp(u(z)) € A(Fr(u()) + Fa(u(x))) in [0,T]\ Q,
—Adp(u'(zk)) = In(u(zr)), k=1,2,....m
u(0) = —u(T), u'(0) =—u'(T)
has an unbounded sequence of solutions in X.

Proof. Set F(t) = Fi(t) + F»(t) for all t € R. Assumption (C2) along with the
condition

T _ . I g
T J, min 5(2 ) Fy(s) ds da

> —00
e e 20r) -2 S o

yield
lim sup fT min fog(%_m) F(s) dsde
et Ler(T+ J5(3 >p+1> =S Fs)as
= limsup fOTmin 05(2 (s )dem+fo mmfo,, I)F( ) ds dx e
oo Len(T 4 2 (Lyprny = 5o (€29 1)

Moreover, Assumption (C1) and the condition
¢
supmin/ Fy(s)ds <0
teR 0

ensure that

.t .ot
su min [, F(s)ds su min [, Fi(s)ds
lim inf Plri<e fo (5) < lim inf Plei<e fo 1(s)
£—+o0 é‘p §—+o0 g;D

< +o00.

Since
1 1

supm<g min fO F(s)ds

HEIR

SUP|4 <¢ min [} Fy(s)ds’
1(2¢
s(F)P

liminfe .4 "~ lim infe . yoo

by applying Theorem we have the desired conclusion. (|

Remark 3.8. We observe that in Theorem we can replace & — —+oo with
¢ — 07, and then by the same argument as in the proof of Theorem but
using conclusion (¢) of Theoreminstead of (b), problem has a sequence of
solutions, which strongly converges to 0 in X.
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