Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 97, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF INFINITELY MANY ANTI-PERIODIC SOLUTIONS FOR SECOND-ORDER IMPULSIVE DIFFERENTIAL INCLUSIONS

SHAPOUR HEIDARKHANI, GHASEM A. AFROUZI, ARMIN HADJIAN, JOHNNY HENDERSON

Abstract

In this article, we establish the existence of infinitely many antiperiodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters. The technical approach is mainly based on a critical point theorem for non-smooth functionals.

1. Introduction

The aim of this article is to show the existence of infinitely many solutions for the following two parameter second-order impulsive differential inclusion subject to anti-periodic boundary conditions

$$
\begin{gather*}
-\left(\phi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+M \phi_{p}(u(x)) \in \lambda F(u(x))+\mu G(x, u(x)) \quad \text { in }[0, T] \backslash Q \\
-\Delta \phi_{p}\left(u^{\prime}\left(x_{k}\right)\right)=I_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \ldots, m \tag{1.1}\\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T)
\end{gather*}
$$

where $Q=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, p>1, T>0, M \geq 0, \phi_{p}(x):=|x|^{p-2} x, 0=x_{0}<$ $x_{1}<\cdots<x_{m}<x_{m+1}=T, \Delta \phi_{p}\left(u^{\prime}\left(x_{k}\right)\right):=\phi_{p}\left(u^{\prime}\left(x_{k}^{+}\right)\right)-\phi_{p}\left(u^{\prime}\left(x_{k}^{-}\right)\right)$, with $u^{\prime}\left(x_{k}^{+}\right)$ and $u^{\prime}\left(x_{k}^{-}\right)$denoting the right and left limits, respectively, of $u^{\prime}(x)$ at $x=x_{k}, I_{k} \in$ $C(\mathbb{R}, \mathbb{R}), k=1,2, \ldots, m, \lambda$ is a positive parameter, μ is a nonnegative parameter, and F is a multifunction defined on \mathbb{R}, satisfying
(F1) $F: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is upper semicontinuous with compact convex values;
(F2) $\min F, \max F: \mathbb{R} \rightarrow \mathbb{R}$ are Borel measurable;
(F3) $|\xi| \leq a\left(1+|s|^{r-1}\right)$ for all $s \in \mathbb{R}, \xi \in F(s), r>1(a>0)$.
Also, G is a multifunction defined on $[0, T] \times \mathbb{R}$, satisfying
(G1) $G(x, \cdot): \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is upper semicontinuous with compact convex values for a.e. $x \in[0, T] \backslash Q$;
(G2) $\min G, \max G:([0, T] \backslash Q) \times \mathbb{R} \rightarrow \mathbb{R}$ are Borel measurable;
(G3) $|\xi| \leq a\left(1+|s|^{r-1}\right)$ for a.e. $x \in[0, T], s \in \mathbb{R}, \xi \in G(x, s), r>1(a>0)$.

[^0]Impulsive differential equations are used to describe various models of real-world processes that are subject to a sudden change. These models are studied in physics, population dynamics, ecology, industrial robotics, biotechnology, economics, optimal control, and so forth. Associated with this development, a theory of impulsive differential equations has been given extensive attention. Differential inclusions arise in models for control systems, mechanical systems, economical systems, game theory, and biological systems to name a few. It is very important to study antiperiodic boundary value problems because they can be applied to interpolation problems [5], antiperiodic wavelets [3], the Hill differential operator [6], and so on. It is natural from both a physical standpoint as well as a theoretical view to give considerable attention to a synthesis involving problems for impulsive differential inclusion with anti-periodic boundary conditions.

Recently, multiplicity of solutions for differential inclusions via non-smooth variational methods and critical point theory has been considered and here we cite the papers [9, 10, 11, 12, 16. For instance, in [11, the author, employing a non-smooth Ricceri-type variational principle [15], developed by Marano and Motreanu [13], has established the existence of infinitely many, radially symmetric solutions for a differential inclusion problem in \mathbb{R}^{N}. Also, in 12 , the authors extended a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications have been given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole \mathbb{R}^{N}. In [9], the author, under convenient assumptions, has investigated the existence of at least three positive solutions for a differential inclusion involving the p-Laplacian operator on a bounded domain, with homogeneous Dirichlet boundary conditions and a perturbed nonlinearity depending on two positive parameters; his result also ensured an estimate on the norms of the solutions independent of both the perturbation and the parameters. Very recently, Tian and Henderson in [16], based on a non-smooth version of critical point theory of Ricceri due to Iannizzotto 9, have established the existence of at least three solutions for the problem (1.1) whenever λ is large enough and μ is small enough.

In the present paper, motivated by [16, employing an abstract critical point result (see Theorem 2.6 below), we are interested in ensuring the existence of infinitely many anti-periodic solutions for the problem (1.1); see Theorem 3.1 below. We refer to [2], in which related variational methods are used for non-homogeneous problems.

To the best of our knowledge, no investigation has been devoted to establishing the existence of infinitely many solutions to such a problem as 1.1). For a couple of references on impulsive differential inclusions, we refer to [7] and [8].

A special case of our main result is the following theorem.
Theorem 1.1. Assume that (F1)-(F3) hold, and $I_{i}(0)=0, I_{i}(s) s<0, s \in \mathbb{R}$, $i=1,2, \ldots, m$. Furthermore, suppose that

$$
\begin{gathered}
\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}=0 \\
\limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}=+\infty
\end{gathered}
$$

Then, the problem (1.1), for $\lambda=1$ and $\mu=0$, admits a sequence of pairwise distinct solutions.

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Let $\left(X,\|\cdot\|_{X}\right)$ be a real Banach space. We denote by X^{*} the dual space of X, while $\langle\cdot, \cdot\rangle$ stands for the duality pairing between X^{*} and X. A function $\varphi: X \rightarrow \mathbb{R}$ is called locally Lipschitz if, for all $u \in X$, there exist a neighborhood U of u and a real number $L>0$ such that

$$
|\varphi(v)-\varphi(w)| \leq L\|v-w\|_{X} \quad \text { for all } v, w \in U
$$

If φ is locally Lipschitz and $u \in X$, the generalized directional derivative of φ at u along the direction $v \in X$ is

$$
\varphi^{\circ}(u ; v):=\limsup _{w \rightarrow u, \tau \rightarrow 0^{+}} \frac{\varphi(w+\tau v)-\varphi(w)}{\tau}
$$

The generalized gradient of φ at u is the set

$$
\partial \varphi(u):=\left\{u^{*} \in X^{*}:\left\langle u^{*}, v\right\rangle \leq \varphi^{\circ}(u ; v) \text { for all } v \in X\right\}
$$

So $\partial \varphi: X \rightarrow 2^{X^{*}}$ is a multifunction. We say that φ has compact gradient if $\partial \varphi$ maps bounded subsets of X into relatively compact subsets of X^{*}.

Lemma 2.1 ([14) Proposition 1.1]). Let $\varphi \in C^{1}(X)$ be a functional. Then φ is locally Lipschitz and

$$
\begin{gathered}
\varphi^{\circ}(u ; v)=\left\langle\varphi^{\prime}(u), v\right\rangle \quad \text { for all } u, v \in X \\
\partial \varphi(u)=\left\{\varphi^{\prime}(u)\right\} \quad \text { for all } u \in X
\end{gathered}
$$

Lemma 2.2 ([14, Proposition 1.3]). Let $\varphi: X \rightarrow \mathbb{R}$ be a locally Lipschitz functional. Then $\varphi^{\circ}(u ; \cdot)$ is subadditive and positively homogeneous for all $u \in X$, and

$$
\varphi^{\circ}(u ; v) \leq L\|v\| \quad \text { for all } u, v \in X
$$

with $L>0$ being a Lipschitz constant for φ around u.
Lemma 2.3 (4). Let $\varphi: X \rightarrow \mathbb{R}$ be a locally Lipschitz functional. Then φ° : $X \times X \rightarrow \mathbb{R}$ is upper semicontinuous and for all $\lambda \geq 0, u, v \in X$,

$$
(\lambda \varphi)^{\circ}(u ; v)=\lambda \varphi^{\circ}(u ; v)
$$

Moreover, if $\varphi, \psi: X \rightarrow \mathbb{R}$ are locally Lipschitz functionals, then

$$
(\varphi+\psi)^{\circ}(u ; v) \leq \varphi^{\circ}(u ; v)+\psi^{\circ}(u ; v) \quad \text { for all } u, v \in X
$$

Lemma 2.4 ([14) Proposition 1.6]). Let $\varphi, \psi: X \rightarrow \mathbb{R}$ be locally Lipschitz functionals. Then

$$
\begin{gathered}
\partial(\lambda \varphi)(u)=\lambda \partial \varphi(u) \quad \text { for all } u \in X, \lambda \in \mathbb{R} \\
\partial(\varphi+\psi)(u) \subseteq \partial \varphi(u)+\partial \psi(u) \quad \text { for all } u \in X
\end{gathered}
$$

Lemma 2.5 (9, Proposition 1.6]). Let $\varphi: X \rightarrow \mathbb{R}$ be a locally Lipschitz functional with a compact gradient. Then φ is sequentially weakly continuous.

We say that $u \in X$ is a (generalized) critical point of a locally Lipschitz functional φ if $0 \in \partial \varphi(u)$; i.e.,

$$
\varphi^{\circ}(u ; v) \geq 0 \quad \text { for all } v \in X
$$

When a non-smooth functional, $g: X \rightarrow(-\infty,+\infty)$, is expressed as a sum of a locally Lipschitz function, $\varphi: X \rightarrow \mathbb{R}$, and a convex, proper, and lower semicontinuous function, $j: X \rightarrow(-\infty,+\infty)$; that is, $g:=\varphi+j$, a (generalized) critical point of g is every $u \in X$ such that

$$
\varphi^{\circ}(u ; v-u)+j(v)-j(u) \geq 0
$$

for all $v \in X$ (see [14, Chapter 3]).
Hereafter, we assume that X is a reflexive real Banach space, $\mathcal{N}: X \rightarrow \mathbb{R}$ is a sequentially weakly lower semicontinuous functional, $\Upsilon: X \rightarrow \mathbb{R}$ is a sequentially weakly upper semicontinuous functional, λ is a positive parameter, $j: X \rightarrow$ $(-\infty,+\infty)$ is a convex, proper, and lower semicontinuous functional, and $D(j)$ is the effective domain of j. Write

$$
\mathcal{M}:=\Upsilon-j, \quad I_{\lambda}:=\mathcal{N}-\lambda \mathcal{M}=(\mathcal{N}-\lambda \Upsilon)+\lambda j .
$$

We also assume that \mathcal{N} is coercive and

$$
\begin{equation*}
D(j) \cap \mathcal{N}^{-1}((-\infty, r)) \neq \emptyset \tag{2.1}
\end{equation*}
$$

for all $r>\inf _{X} \mathcal{N}$. Moreover, owing to (2.1) and provided $r>\inf _{X} \mathcal{N}$, we can define

$$
\begin{gathered}
\varphi(r):=\inf _{u \in \mathcal{N}^{-1}((-\infty, r))} \frac{\left(\sup _{v \in \mathcal{N}^{-1}((-\infty, r))} \mathcal{M}(v)\right)-\mathcal{M}(u)}{r-\mathcal{N}(u)}, \\
\gamma:=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \mathcal{N}\right)^{+}} \varphi(r) .
\end{gathered}
$$

If \mathcal{N} and Υ are locally Lipschitz functionals, in [1, Theorem 2.1] the following result is proved; it is a more precise version of [13, Theorem 1.1] (see also [15]).
Theorem 2.6. Under the above assumption on X, \mathcal{N} and \mathcal{M}, one has
(a) For every $r>\inf _{X} \mathcal{N}$ and every $\lambda \in(0,1 / \varphi(r))$, the restriction of the functional $I_{\lambda}=\mathcal{N}-\lambda \mathcal{M}$ to $\mathcal{N}^{-1}((-\infty, r))$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
(b) If $\gamma<+\infty$, then for each $\lambda \in(0,1 / \gamma)$, the following alternative holds: either
(b1) I_{λ} possesses a global minimum, or
(b2) there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of I_{λ} such that $\lim _{n \rightarrow+\infty} \mathcal{N}\left(u_{n}\right)=+\infty$.
(c) If $\delta<+\infty$, then for each $\lambda \in(0,1 / \delta)$, the following alternative holds: either
(c1) there is a global minimum of \mathcal{N} which is a local minimum of I_{λ}, or
(c2) there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points (local minima) of I_{λ}, with $\lim _{n \rightarrow+\infty} \mathcal{N}\left(u_{n}\right)=\inf _{X} \mathcal{N}$, which converges weakly to a global minimum of \mathcal{N}.

Now we recall some basic definitions and notation. On the reflexive Banach space $X:=\left\{u \in W^{1, p}([0, T]): u(0)=-u(T)\right\}$ we consider the norm

$$
\|u\|_{X}:=\left(\int_{0}^{T}\left(\left|u^{\prime}(x)\right|^{p}+M|u(x)|^{p}\right) d x\right)^{1 / p}
$$

for all $u \in X$, which is equivalent to the usual norm (note that $M \geq 0$). We recall that X is compactly embedded into the space $C^{0}([0, T])$ endowed with the maximum norm $\|\cdot\|_{C^{0}}$.
Lemma 2.7 ([16, Lemma 3.3]). Let $u \in X$. Then

$$
\begin{equation*}
\|u\|_{C^{0}} \leq \frac{1}{2} T^{1 / q}\|u\|_{X} \tag{2.2}
\end{equation*}
$$

where $1 / p+1 / q=1$.
Obviously, X is compactly embedded into $L^{\gamma}([0, T])$ endowed with the usual norm $\|\cdot\|_{L^{\gamma}}$, for all $\gamma \geq 1$.

Definition 2.8. A function $u \in X$ is a weak solution of the problem (1.1) if there exists $u^{*} \in L^{\gamma}([0, T])$ (for some $\gamma>1$) such that

$$
\int_{0}^{T}\left[\phi_{p}\left(u^{\prime}(x)\right) v^{\prime}(x)+M \phi_{p}(u(x)) v(x)-u^{*}(x) v(x)\right] d x-\sum_{i=1}^{m} I_{i}\left(u\left(x_{i}\right)\right) v\left(x_{i}\right)=0
$$

for all $v \in X$ and $u^{*} \in \lambda F(u(x))+\mu G(x, u(x))$ for a.e. $x \in[0, T]$.
Definition 2.9. By a solution of the impulsive differential inclusion (1.1) we will understand a function $u:[0, T] \backslash Q \rightarrow \mathbb{R}$ is of class C^{1} with $\phi_{p}\left(u^{\prime}\right)$ absolutely continuous, satisfying

$$
\begin{gathered}
-\left(\phi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+M \phi_{p}(u(x))=u^{*} \quad \text { in }[0, T] \backslash Q \\
-\Delta \phi_{p}\left(u^{\prime}\left(x_{k}\right)\right)=I_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \ldots, m \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T)
\end{gathered}
$$

where $u^{*} \in \lambda F(u(x))+\mu G(x, u(x))$ and $u^{*} \in L^{\gamma}([0, T])$ (for some $\gamma>1$).
Lemma 2.10 ([16, Lemma 3.5]). If a function $u \in X$ is a weak solution of (1.1), then u is a classical solution of (1.1).

We introduce for a.e. $x \in[0, T]$ and all $s \in \mathbb{R}$, the Aumann-type set-valued integral

$$
\int_{0}^{s} F(t) d t=\left\{\int_{0}^{s} f(t) d t: f: \mathbb{R} \rightarrow \mathbb{R} \text { is a measurable selection of } F\right\}
$$

and set $\mathcal{F}(u)=\int_{0}^{T} \min \int_{0}^{u} F(s) d s d x$ for all $u \in L^{p}([0, T])$; the Aumann-type setvalued integral
$\int_{0}^{s} G(x, t) d t=\left\{\int_{0}^{s} g(x, t) d t: g:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}\right.$ is a measurable selection of $\left.G\right\}$ and set $\mathcal{G}(u)=\int_{0}^{T} \min \int_{0}^{u} G(x, s) d s d x$ for all $u \in L^{p}([0, T])$.
Lemma 2.11 ([10, Lemma 3.1]). The functionals $\mathcal{F}, \mathcal{G}: L^{p}([0, T]) \rightarrow \mathbb{R}$ are well defined and Lipschitz on any bounded subset of $L^{p}([0, T])$. Moreover, for all $u \in$ $L^{p}([0, T])$ and all $u^{*} \in \partial(\mathcal{F}(u)+\mathcal{G}(u))$,

$$
u^{*}(x) \in F(u(x))+G(x, u(x)) \quad \text { for a.e. } x \in[0, T]
$$

We define an energy functional for the problem 1.1 by setting

$$
I_{\lambda}(u)=\frac{1}{p}\|u\|_{X}^{p}-\lambda \mathcal{F}(u)-\mu \mathcal{G}(u)-\sum_{i=1}^{m} \int_{0}^{u\left(x_{i}\right)} I_{i}(s) d s
$$

for all $u \in X$.

Lemma 2.12 ([16, Lemma 4.4]). The functional $I_{\lambda}: X \rightarrow \mathbb{R}$ is locally Lipschitz. Moreover, for each critical point $u \in X$ of I_{λ}, u is a weak solution of (1.1).

3. Main Results

We formulate our main result using the following assumptions:
(F4)

$$
\begin{aligned}
& \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}} \\
& <\frac{1}{p}\left(\frac{2}{T}\right)^{p} \limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}
\end{aligned}
$$

(I1) $I_{i}(0)=0, I_{i}(s) s<0, s \in \mathbb{R}, i=1,2, \ldots, m$.
Theorem 3.1. Assume that (F1)-(F4), (I1) hold. Let

$$
\begin{gathered}
\lambda_{1}:=1 / \limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}, \\
\lambda_{2}:=1 / \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\frac{1}{p}\left(\frac{2 \xi}{T}\right)^{p}} .
\end{gathered}
$$

Then, for every $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$, and every multifunction G satisfying
(G4) $\int_{0}^{T} \min \int_{0}^{t} G(x, s) d s d x \geq 0$ for all $t \in \mathbb{R}$, and
(G5) $G_{\infty}:=\lim _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} G(x, s) d s}{\xi^{p}}<+\infty$,
if we put

$$
\mu_{G, \lambda}:=\frac{1}{p G_{\infty}} \frac{2^{p}}{T^{p}}\left(1-\lambda \frac{p T^{p}}{2^{p}} \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}\right)
$$

where $\mu_{G, \lambda}=+\infty$ when $G_{\infty}=0$, problem (1.1) admits an unbounded sequence of solutions for every $\mu \in\left[0, \mu_{G, \lambda}\right)$ in X.

Proof. Our aim is to apply Theorem 2.6 (b) to (1.1). To this end, we fix $\bar{\lambda} \in\left(\lambda_{1}, \lambda_{2}\right)$ and let G be a multifunction satisfying (G1)-(G5). Since $\bar{\lambda}<\lambda_{2}$, we have

$$
\mu_{G, \bar{\lambda}}=\frac{1}{p G_{\infty}} \frac{2^{p}}{T^{p}}\left(1-\bar{\lambda} \frac{p T^{p}}{2^{p}} \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}\right)>0
$$

Now fix $\bar{\mu} \in\left(0, \mu_{g, \bar{\lambda}}\right)$, put $\nu_{1}:=\lambda_{1}$, and

$$
\nu_{2}:=\frac{\lambda_{2}}{1+\frac{p T^{p}}{2^{p}} \frac{\overline{\bar{\lambda}}}{\bar{\lambda}} \lambda_{2} G_{\infty}} .
$$

If $G_{\infty}=0$, then $\nu_{1}=\lambda_{1}, \nu_{2}=\lambda_{2}$ and $\bar{\lambda} \in\left(\nu_{1}, \nu_{2}\right)$. If $G_{\infty} \neq 0$, since $\bar{\mu}<\mu_{G, \bar{\lambda}}$, we have

$$
\frac{\bar{\lambda}}{\lambda_{2}}+\frac{p T^{p}}{2^{p}} \bar{\mu} G_{\infty}<1
$$

and so

$$
\frac{\lambda_{2}}{1+\frac{p T^{p}}{2^{p}} \frac{\bar{\mu}}{\lambda} \lambda_{2} G_{\infty}}>\bar{\lambda}
$$

namely, $\bar{\lambda}<\nu_{2}$. Hence, taking into account that $\bar{\lambda}>\lambda_{1}=\nu_{1}$, one has $\bar{\lambda} \in\left(\nu_{1}, \nu_{2}\right)$. Now, set

$$
J(x, s):=F(s)+\frac{\bar{\mu}}{\bar{\lambda}} G(x, s)
$$

for all $(x, s) \in[0, T] \times \mathbb{R}$. Assume j identically zero in X and for each $u \in X$ put

$$
\begin{gathered}
\mathcal{N}(u):=\frac{1}{p}\|u\|_{X}^{p}-\sum_{i=1}^{m} \int_{0}^{u\left(x_{i}\right)} I_{i}(s) d s, \quad \Upsilon(u):=\int_{0}^{T} \min \int_{0}^{u} J(x, s) d s d x \\
\mathcal{M}(u):=\Upsilon(u)-j(u)=\Upsilon(u) \\
I_{\bar{\lambda}}(u):=\mathcal{N}(u)-\bar{\lambda} \mathcal{M}(u)=\mathcal{N}(u)-\bar{\lambda} \Upsilon(u)
\end{gathered}
$$

It is a simple matter to verify that \mathcal{N} is sequentially weakly lower semicontinuous on X. Clearly, $\mathcal{N} \in C^{1}(X)$. By Lemma 2.1. \mathcal{N} is locally Lipschitz on X. By Lemma 2.11, \mathcal{F} and \mathcal{G} are locally Lipschitz on $L^{p}([0, T])$. So, Υ is locally Lipschitz on $L^{p}([0, T])$. Moreover, X is compactly embedded into $L^{p}([0, T])$. So Υ is locally Lipschitz on X. Furthermore, Υ is sequentially weakly upper semicontinuous. For all $u \in X$, by $\left(\mathrm{I}_{1}\right)$,

$$
\int_{0}^{u\left(x_{i}\right)} I_{i}(s) d s<0, \quad i=1,2, \ldots, m
$$

So, we have

$$
\mathcal{N}(u)=\frac{1}{p}\|u\|_{X}^{p}-\sum_{i=1}^{m} \int_{0}^{u\left(x_{i}\right)} I_{i}(s) d s>\frac{1}{p}\|u\|_{X}^{p}
$$

for all $u \in X$. Hence, \mathcal{N} is coercive and $\inf _{X} \mathcal{N}=\mathcal{N}(0)=0$. We want to prove that, under our hypotheses, there exists a sequence $\left\{\bar{u}_{n}\right\} \subset X$ of critical points for the functional $I_{\bar{\lambda}}$, that is, every element \bar{u}_{n} satisfies

$$
I_{\bar{\lambda}}^{\circ}\left(\bar{u}_{n}, v-\bar{u}_{n}\right) \geq 0, \quad \text { for every } v \in X
$$

Now, we claim that $\gamma<+\infty$. To see this, let $\left\{\xi_{n}\right\}$ be a sequence of positive numbers such that $\lim _{n \rightarrow+\infty} \xi_{n}=+\infty$ and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\sup _{|t| \leq \xi_{n}} \min \int_{0}^{t} J(x, s) d s}{\xi_{n}^{p}}=\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} J(x, s) d s}{\xi^{p}} . \tag{3.1}
\end{equation*}
$$

Put

$$
r_{n}:=\frac{1}{p}\left(\frac{2 \xi_{n}}{T^{1 / q}}\right)^{p}, \quad \text { for all } n \in \mathbb{N}
$$

Then, for all $v \in X$ with $\mathcal{N}(v)<r_{n}$, taking into account that $\|v\|_{X}^{p}<p r_{n}$ and $\|v\|_{C^{0}} \leq \frac{1}{2} T^{1 / q}\|v\|_{X}$, one has $|v(x)| \leq \xi_{n}$ for every $x \in[0, T]$. Therefore, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\varphi\left(r_{n}\right) & =\inf _{u \in \mathcal{N}^{-1}((-\infty, r))} \frac{\left(\sup _{v \in \mathcal{N}^{-1}((-\infty, r))} \mathcal{M}(v)\right)-\mathcal{M}(u)}{r-\mathcal{N}(u)} \\
& \leq \frac{\sup _{\|v\|_{X}^{p}<p r_{n}}\left(\mathcal{F}(v)+\frac{\bar{\mu}}{\bar{\lambda}} \mathcal{G}(v)\right)}{r_{n}} \\
& \leq \frac{\sup _{|t| \leq \xi_{n}}\left(\int_{0}^{T} \min \int_{0}^{t} F(s) d s d x+\frac{\overline{\bar{\mu}}}{\bar{\lambda}} \int_{0}^{T} \min \int_{0}^{t} G(x, s) d s d x\right)}{r_{n}} \\
& \leq p\left(\frac{T}{2}\right)^{p}\left[\frac{\sup _{|t| \leq \xi_{n}} \min \int_{0}^{t} F(s) d s}{\xi_{n}^{p}}+\frac{\bar{\mu}}{\bar{\lambda}} \frac{\sup _{|t| \leq \xi_{n}} \min \int_{0}^{t} G(x, s) d s}{\xi_{n}^{p}}\right] .
\end{aligned}
$$

Moreover, from Assumptions (F4) and (G5), we have

$$
\lim _{n \rightarrow+\infty} \frac{\sup _{|t| \leq \xi_{n}} \min \int_{0}^{t} F(s) d s}{\xi_{n}^{p}}+\lim _{n \rightarrow+\infty} \frac{\bar{\mu}}{\bar{\lambda}} \frac{\sup _{|t| \leq \xi_{n}} \min \int_{0}^{t} G(x, s) d s}{\xi_{n}^{p}}<+\infty
$$

which follows

$$
\lim _{n \rightarrow+\infty} \frac{\sup _{|t| \leq \xi_{n}} \min \int_{0}^{t} J(x, s) d s}{\xi_{n}^{p}}<+\infty
$$

Therefore,

$$
\begin{equation*}
\gamma \leq \liminf _{n \rightarrow+\infty} \varphi\left(r_{n}\right) \leq p\left(\frac{T}{2}\right)^{p} \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} J(x, s) d s}{\xi^{p}}<+\infty \tag{3.2}
\end{equation*}
$$

Since

$$
\frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} J(x, s) d s}{\xi^{p}} \leq \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}+\frac{\bar{\mu}}{\bar{\lambda}} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} G(x, s) d s}{\xi^{p}}
$$

and taking (G5) into account, we get

$$
\begin{equation*}
\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} J(x, s) d s}{\xi^{p}} \leq \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}+\frac{\bar{\mu}}{\bar{\lambda}} G_{\infty} \tag{3.3}
\end{equation*}
$$

Moreover, from Assumption (G4) we obtain

$$
\begin{align*}
& \quad \limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} J(x, s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s} \\
& \geq \limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s} . \tag{3.4}
\end{align*}
$$

Therefore, from (3.3) and (3.4), we observe that

$$
\begin{aligned}
\bar{\lambda} \in\left(\nu_{1}, \nu_{2}\right) \subseteq & \left(\frac{1}{\lim \sup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} J(x, s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}},\right. \\
& \left.\frac{1}{\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} J(x, s) d s}{\frac{1}{p}\left(\frac{2 \xi}{T}\right)^{p}}}\right) \\
& \subseteq(0,1 / \gamma) .
\end{aligned}
$$

For the fixed $\bar{\lambda}$, the inequality $(3.2$ ensures that the condition (b) of Theorem 2.6 can be applied and either $I_{\bar{\lambda}}$ has a global minimum or there exists a sequence $\left\{u_{n}\right\}$ of weak solutions of the problem (1.1) such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=+\infty$, The other step is to show that for the fixed $\bar{\lambda}$ the functional $I_{\bar{\lambda}}$ has no global minimum. Let us verify that the functional $I_{\bar{\lambda}}$ is unbounded from below. Since

$$
\begin{aligned}
\frac{1}{\bar{\lambda}} & <\limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s} \\
& \leq \limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} J(x, s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}
\end{aligned}
$$

there exists a sequence $\left\{\eta_{n}\right\}$ of positive numbers and a constant τ such that $\lim _{n \rightarrow+\infty} \eta_{n}=+\infty$ and

$$
\begin{equation*}
\frac{1}{\bar{\lambda}}<\tau<\frac{\int_{0}^{T} \min \int_{0}^{\eta_{n}\left(\frac{T}{2}-x\right)} J(x, s) d s d x}{\frac{1}{p} \eta_{n}^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\eta_{n}\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s} \tag{3.5}
\end{equation*}
$$

for each $n \in \mathbb{N}$ large enough. For all $n \in \mathbb{N}$, set

$$
w_{n}(x):=\eta_{n}\left(\frac{T}{2}-x\right)
$$

For any fixed $n \in \mathbb{N}$, it is easy to see that $w_{n} \in X$ and, in particular, one has

$$
\left\|w_{n}\right\|_{X}^{p}=\eta_{n}^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)
$$

and so

$$
\begin{equation*}
\mathcal{N}\left(w_{n}\right)=\frac{1}{p} \eta_{n}^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\eta_{n}\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s \tag{3.6}
\end{equation*}
$$

By (3.5) and (3.6), we see that

$$
\begin{aligned}
I_{\bar{\lambda}}\left(w_{n}\right)= & \mathcal{N}\left(w_{n}\right)-\bar{\lambda} \mathcal{M}\left(w_{n}\right) \\
= & \frac{1}{p} \eta_{n}^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\eta_{n}\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s \\
& -\bar{\lambda} \int_{0}^{T} \min \int_{0}^{\eta_{n}\left(\frac{T}{2}-x\right)} J(x, s) d s d x \\
< & \left(\frac{1}{p} \eta_{n}^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\eta_{n}\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s\right)(1-\bar{\lambda} \tau)
\end{aligned}
$$

for every $n \in \mathbb{N}$ large enough. Since $\bar{\lambda} \tau>1$ and $\lim _{n \rightarrow+\infty} \eta_{n}=+\infty$, we have

$$
\lim _{n \rightarrow+\infty} I_{\bar{\lambda}}\left(w_{n}\right)=-\infty
$$

Then, the functional $I_{\bar{\lambda}}$ is unbounded from below, and it follows that $I_{\bar{\lambda}}$ has no global minimum. Therefore, from part (b) of Theorem 2.6 , the functional $I_{\bar{\lambda}}$ admits a sequence of critical points $\left\{\bar{u}_{n}\right\} \subset X$ such that $\lim _{n \rightarrow+\infty} \mathcal{N}\left(\bar{u}_{n}\right)=+\infty$. Since \mathcal{N} is bounded on bounded sets, and taking into account that $\lim _{n \rightarrow+\infty} \mathcal{N}\left(\bar{u}_{n}\right)=+\infty$, then $\left\{\bar{u}_{n}\right\}$ has to be unbounded, i.e.,

$$
\lim _{n \rightarrow+\infty}\left\|\bar{u}_{n}\right\|_{X}=+\infty
$$

Moreover, if $\bar{u}_{n} \in X$ is a critical point of $I_{\bar{\lambda}}$, clearly, by definition, one has

$$
I_{\bar{\lambda}}^{\circ}\left(\bar{u}_{n}, v-\bar{u}_{n}\right) \geq 0, \quad \text { for every } v \in X .
$$

Finally, by Lemma 2.12 , the critical points of $I_{\bar{\lambda}}$ are weak solutions for the problem (1.1), and by Lemma 2.10, every weak solution of (1.1) is a solution of (1.1). Hence, the assertion follows.

Remark 3.2. Under the conditions

$$
\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}=0
$$

$$
\limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}=+\infty
$$

from Theorem 3.1, we see that for every $\lambda>0$ and for each $\mu \in\left[0, \frac{2^{p}}{p T^{p} G_{\infty}}\right)$, problem (1.1) admits a sequence of solutions which is unbounded in X. Moreover, if $G_{\infty}=0$, the result holds for every $\lambda>0$ and $\mu \geq 0$.

The following result is a special case of Theorem 3.1 with $\mu=0$.
Theorem 3.3. Assume that (F1)-(F4), (I1) hold. Then, for each

$$
\begin{aligned}
& \lambda \in\left(\frac{1}{\limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}},\right. \\
&\left.\frac{1}{\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\frac{1}{p}\left(\frac{\xi}{T}\right)^{p}}}\right),
\end{aligned}
$$

the problem

$$
\begin{gathered}
-\left(\phi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+M \phi_{p}(u(x)) \in \lambda F(u(x)) \quad \text { in }[0, T] \backslash Q, \\
-\Delta \phi_{p}\left(u^{\prime}\left(x_{k}\right)\right)=I_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \ldots, m, \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T)
\end{gathered}
$$

has an unbounded sequence of solutions in X.
Now, we present the following example to illustrate our results.
Example 3.4. Consider the problem

$$
\begin{gather*}
-\left(\phi_{3}\left(u^{\prime}(x)\right)\right)^{\prime}+\phi_{3}(u(x)) \in \lambda F(u(x)) \quad \text { in }[0,2] \backslash\{1\} \\
-\Delta \phi_{3}\left(u^{\prime}\left(x_{1}\right)\right)=I_{1}\left(u\left(x_{1}\right)\right), \quad x_{1}=1 \tag{3.7}\\
u(0)=-u(2), \quad u^{\prime}(0)=-u^{\prime}(2)
\end{gather*}
$$

where, for $s \in \mathbb{R}$,

$$
F(s)= \begin{cases}\{0\}, & \text { if }|s|<2^{-1 / 3} \\ {[0,1],} & \text { if }|s|=2^{-1 / 3} \\ \left\{s-2^{-1 / 3}+1\right\}, & \text { if } s>2^{-1 / 3} \\ \left\{s+2^{-1 / 3}+1\right\}, & \text { if } s<-2^{-1 / 3}\end{cases}
$$

Simple calculations show that

$$
\sup _{|t| \leq 2^{-1 / 3}} \min \int_{0}^{t} F(s) d s=0
$$

and

$$
\begin{aligned}
& \frac{\int_{0}^{2} \min \int_{0}^{\xi(1-x)} F(s) d s d x}{\frac{5}{6} \xi^{3}-\int_{0}^{\xi\left(1-x_{1}\right)} I_{1}(s) d s} \\
& =\frac{6}{5} \frac{1}{\xi^{3}} \int_{-1}^{1} \min \int_{0}^{\xi x} F(s) d s d x
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{6}{5} \frac{1}{\xi^{3}}\left(\int_{-1}^{-2^{-1 / 3}} \int_{0}^{\xi x} \max F(s) d s d x+\int_{-2^{-1 / 3}}^{0} \int_{0}^{\xi x} \max F(s) d s d x\right. \\
& \left.+\int_{0}^{2^{-1 / 3}} \int_{0}^{\xi x} \max F(s) d s d x+\int_{2^{-1 / 3}}^{1} \int_{0}^{\xi x} \max F(s) d s d x\right)>0
\end{aligned}
$$

for some $\xi \in \mathbb{R}$. So,

$$
\begin{aligned}
& \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\frac{1}{3} \xi^{3}}=0, \\
\limsup _{\xi \rightarrow+\infty} & \frac{\int_{0}^{2} \min \int_{0}^{\xi(1-x)} F(s) d s d x}{\frac{5}{6} \xi^{3}-\int_{0}^{\xi\left(1-x_{1}\right)} I_{1}(s) d s}>0 .
\end{aligned}
$$

Hence, using Theorem 3.3, problem (3.7), for λ lying in a convenient interval, has an unbounded sequence of solutions in $X:=\left\{u \in W^{1,3}([0,2]): u(0)=-u(2)\right\}$.

Here we point out the following consequences of Theorem 3.3, using the assumptions
(F5) $\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}}<\frac{1}{p}\left(\frac{2}{T}\right)^{p}$;
(F6) $\lim \sup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}>1$.
Corollary 3.5. Assume that (F1)-(F3), (F5)-(F6), (I1) hold. Then, the problem

$$
\begin{gathered}
-\left(\phi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+M \phi_{p}(u(x)) \in F(u(x)) \quad \text { in }[0, T] \backslash Q \\
-\Delta \phi_{p}\left(u^{\prime}\left(x_{k}\right)\right)=I_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \ldots, m \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T)
\end{gathered}
$$

has an unbounded sequence of solutions in X.
Remark 3.6. Theorem 1.1 in the Introduction is an immediate consequence of Corollary 3.5 .

Now, we give the following consequence of the main result.
Corollary 3.7. Let $F_{1}: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be an upper semicontinuous multifunction with compact convex values, such that $\min F_{1}, \max F_{1}: \mathbb{R} \rightarrow \mathbb{R}$ are Borel measurable and $|\xi| \leq a\left(1+|s|^{r_{1}-1}\right)$ for all $s \in \mathbb{R}, \xi \in F_{1}(s), r_{1}>1(a>0)$. Furthermore, suppose that
(C1) $\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F_{1}(s) d s}{\xi^{p}}<+\infty$;
(C2) $\lim \sup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F_{1}(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}=+\infty$.
Then, for every multifunction $F_{2}: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ which is upper semicontinuous with compact convex values, $\min F_{2}, \max F_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are Borel measurable and $|\xi| \leq$ $b\left(1+|s|^{r_{2}-1}\right)$ for all $s \in \mathbb{R}, \xi \in F_{2}(s), r_{2}>1(b>0)$, and satisfies the conditions

$$
\sup _{t \in \mathbb{R}} \min \int_{0}^{t} F_{2}(s) d s \leq 0
$$

and

$$
\liminf _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F_{2}(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}>-\infty
$$

for each

$$
\lambda \in\left(0, \frac{1}{\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F_{1}(s) d s}{\frac{1}{p}\left(\frac{2 \xi}{T}\right)^{p}}}\right)
$$

and the problem

$$
\begin{gathered}
-\left(\phi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+M \phi_{p}(u(x)) \in \lambda\left(F_{1}(u(x))+F_{2}(u(x))\right) \quad \text { in }[0, T] \backslash Q \\
-\Delta \phi_{p}\left(u^{\prime}\left(x_{k}\right)\right)=I_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \ldots, m \\
u(0)=-u(T), \quad u^{\prime}(0)=-u^{\prime}(T)
\end{gathered}
$$

has an unbounded sequence of solutions in X.
Proof. Set $F(t)=F_{1}(t)+F_{2}(t)$ for all $t \in \mathbb{R}$. Assumption (C2) along with the condition

$$
\liminf _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F_{2}(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}>-\infty
$$

yield

$$
\begin{aligned}
& \limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s} \\
& =\limsup _{\xi \rightarrow+\infty} \frac{\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F_{1}(s) d s d x+\int_{0}^{T} \min \int_{0}^{\xi\left(\frac{T}{2}-x\right)} F_{2}(s) d s d x}{\frac{1}{p} \xi^{p}\left(T+\frac{2 M}{p+1}\left(\frac{T}{2}\right)^{p+1}\right)-\sum_{i=1}^{m} \int_{0}^{\xi\left(\frac{T}{2}-x_{i}\right)} I_{i}(s) d s}=+\infty .
\end{aligned}
$$

Moreover, Assumption (C1) and the condition

$$
\sup _{t \in \mathbb{R}} \min \int_{0}^{t} F_{2}(s) d s \leq 0
$$

ensure that

$$
\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\xi^{p}} \leq \liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F_{1}(s) d s}{\xi^{p}}<+\infty
$$

Since

$$
\frac{1}{\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F(s) d s}{\frac{1}{p}\left(\frac{2 \xi}{T}\right)^{p}}} \geq \frac{1}{\liminf _{\xi \rightarrow+\infty} \frac{\sup _{|t| \leq \xi} \min \int_{0}^{t} F_{1}(s) d s}{\frac{1}{p}\left(\frac{2 \xi}{T}\right)^{p}}},
$$

by applying Theorem 3.3 we have the desired conclusion.
Remark 3.8. We observe that in Theorem 3.1 we can replace $\xi \rightarrow+\infty$ with $\xi \rightarrow 0^{+}$, and then by the same argument as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.6 instead of (b), problem (1.1) has a sequence of solutions, which strongly converges to 0 in X.

Acknowledgments. Shapour Heidarkhani was supported by a grant 91470046 from IPM.

References

[1] G. Bonanno, G. Molica Bisci; Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Boundary Value Problems, 2009 (2009), 1-20.
[2] G. Bonanno, G. Molica Bisci, V. Rădulescu; Existence of three solutions for a nonhomogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal., 74 (2011), 4785-4795
[3] H. L. Chen; Antiperiodic wavelets, J. Comput. Math., 14 (1996), 32-39.
[4] F. H. Clarke; Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[5] F. J. Delvos, L. Knoche; Lacunary interpolation by antiperiodic trigonometric polynomials, BIT, 39 (1999), 439-450.
[6] P. Djakov, B. Mityagin; Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory, 135 (2005), 70-104.
[7] L. H. Erbe, W. Krawcewicz; Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rocky Mountain J. Math., 22 (1992), 519-539.
[8] M. Frigon and D. O'Regan; First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 233 (1999), 730-739.
[9] A. Iannizzotto; Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Anal., 72 (2010), 1319-1338.
[10] A. Iannizzotto; Three periodic solutions for an ordinary differential inclusion with two parameters, Ann. Polon. Math., 103 (2012), 89-100.
[11] A. Kristály; Infinitely many solutions for a differential inclusion problem in \mathbb{R}^{N}, J. Differential Equations, 220 (2006), 511-530.
[12] A. Kristály, W. Marzantowicz, C. Varga; A non-smooth three critical points theorem with applications in differential inclusions, J. Glob. Optim., 46 (2010), 49-62.
[13] S. A. Marano, D. Motreanu; Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Differential Equations, 182 (2002), 108-120.
[14] D. Motreanu, P.D. Panagiotopoulos; Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, 1999.
[15] B. Ricceri; A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.
[16] Y. Tian, J. Henderson; Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory, Nonlinear Anal., 75 (2012), 6496-6505.

Shapour Heidarkhani
Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran.
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.
Box: 19395-5746, Tehran, Iran
E-mail address: s.heidarkhani@razi.ac.ir
Ghasem A. Afrouzi
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir
Armin Hadjian
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: a.hadjian@umz.ac.ir
Johnny Henderson
Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA
E-mail address: Johnny_Henderson@baylor.edu

[^0]: 2000 Mathematics Subject Classification. 58E05, 49J52, 34A60.
 Key words and phrases. Differential inclusions; impulsive; anti-periodic solution; non-smooth critical point theory.
 (C)2013 Texas State University - San Marcos.

 Submitted January 29, 2013. Published April 16, 2013.

