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INFINITELY MANY SOLUTIONS FOR SUBLINEAR
KIRCHHOFF EQUATIONS IN RN WITH SIGN-CHANGING

POTENTIALS

ANOUAR BAHROUNI

Abstract. In this article we study the Kirchhoff equation

−
“
a + b

Z
RN
|∇u|2dx

”
∆u + V (x)u = K(x)|u|q−1u, in RN ,

where N ≥ 3, 0 < q < 1, a, b > 0 are constants and K(x), V (x) both change

sign in RN . Under appropriate assumptions on V (x) and K(x), the existence
of infinitely many solutions is proved by using the symmetric Mountain Pass

Theorem.

1. Introduction

In this article, we study the existence of infinitely many solutions of the nonlinear
Kirchhoff equation

−
(
a+ b

∫
RN

|∇u|2dx
)

∆u+ V (x)u = K(x)|u|q−1u, in RN ,

u ∈ H1(RN ) ∩ Lq+1(RN ),
(1.1)

where N ≥ 3, 0 < q < 1, a, b are positive constants and K(x), V (x) ∈ L∞(RN )
both change sign in RN and satisfies some conditions specified below.

If in (1.1), we set V (x) = 0 and replace RN by a bounded domain Ω ⊂ RN , then
(1.1) reduces to the problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where f(x, u) ∈ C(RN ×R,R). Problem (1.2) is related to the stationary analogue
of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇xu|2dx
)

∆xu = f(x, u)
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which was proposed by Kirchhoff in 1883 [14] as a generalization of the well-known
d’Alembert’s wave equation

ρ
∂2u

∂2t
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂2x
= f(x, u)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. Some early
classical investigations of Kirchhoff equations can be seen in Bernstein [5] and
Pohoẑaev [18]. Problem (1.1) called the attention of several researchers mainly
after the work of Lions [15], where a functional analysis approach was proposed.
Recently, problems like type (1.1) have been investigated by several authors; see
[1, 2, 7, 9, 10, 11, 12, 16, 17, 19].

Ma and Rivera [16] obtained a positive solutions of (1.2) by using variational
methods. He and Zou [11] showed that problem (1.2) admits infinitely many so-
lutions by using the local minimum methods and the Fountain Theorem. Very
recently, some authors have studied the Kirchhoff equation on the whole space
RN . Since (1.1) is set on RN , it is well known that the Sobolev embedding
H1(RN ) ↪→ Lm(RN ) (2 ≤ m ≤ 2∗ = 2N

N−2 ) is not compact and then it is usu-
ally difficult to prove that a minimizing sequence or a Palais-Smale sequence is
strongly convergent if we seek solution of (1.1) by variational methods. If V (x) is
radial, as in [17, 19] we can avoid the lack of compactness of Sobolev embedding by
looking for solution of (1.1) in the subspace of radial functions of D1,2(RN ) since
the embedding is compact. Nie and Wu [17] studied a Schrödinger-Kirchhoff-type
equation with radial potential and they proved the existence of infinitely many so-
lutions by using a symmetric Mountain Pass Theorem. On the other hand, Alves
and Figueiredo [1] studied a periodic Kirchhoff equation in RN . They proved the
existence of a nontrivial solution when the nonlinearity is in subcritical and critical
case. Liu and He [12] proved the existence of infinitely many high-energy solutions
where V (x) ≥ 0 and the nonlinearity is superlinear. We remark that when a = 1
and b = 0, problem (1.1) can be rewritten as the well-known Schrödinger equation

−∆u+ V (x)u = K(x)|u|q−1u, x ∈ RN . (1.3)

For this equation, there is a large body of literature on the existence and multiplicity
of solutions; we for example [4, 6, 8, 13, 20] and the references therein. Motivated
by the above fact, in this paper our aim is to study the existence of infinitely many
nontrivial solutions for (1.1) when 0 < q < 1 and K(x), V (x) both change sign.
Our tool is the symmetric Mountain Pass Theorem.

To state our main result we require the following assumptions:

(A1) V ∈ L∞(RN ) and there exist β,R0 > 0 such that V (x) ≥ β for all |x| ≥ R0;
(A2) K ∈ L∞(RN ) and there exist α,R1, R2 > 0, y0 = (y1, · · · , yN ) ∈ RN such

that K(x) ≤ −α for all |x| ≥ R1 and K(x) > 0 for all x ∈ B(y0, R2).

Our main result reads as follows.

Theorem 1.1. Under assumptions (A1), (A2), problem (1.1) admits infinitely
many nontrivial solutions.

In the next section we give some notation and preliminary results; and in section
3, we prove theorem (1.1).
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2. Preliminaries

We will us the following notation: Let

‖u‖m =
(∫

RN

|u(x)|mdx
)1/m

, 1 ≤ m < +∞.

Let 2∗ = 2N
N−2 for all N ≥ 3. Let BR denote the ball centred in zero of radius R > 0

in RN and Bc
R = RN\BR. Let F ′(u) : the Fréchet derivative of F at u. For s, be

the Sobolev constant in

‖u‖2∗ ≤ s‖∇u‖2, ∀u ∈ H1(RN ).

Let E = H1(RN ) ∩ Lq+1(RN ), 0 < q < 1, endowed with the norm

‖u‖ = ‖∇u‖2 + ‖u‖q+1,

The space E becomes a reflexive Banach space.
Problem (1.1) has a variational structure. Indeed we consider the functional

I : E → R defined by

I(u) =
b

4

(∫
RN

|∇u|2dx
)2

+
a

2

∫
RN

|∇u|2dx+
1
2

∫
RN

V (x)u2dx− 1
q + 1

∫
RN

K(x)|u|q+1dx.

As is well known, I is of class C1 on E and any critical point of I is a solution of
(1.1).

A functional I is said to satisfy the Palais-Smale condition (PS, for short) if for
very sequence (un) such that

I(un) is bounded, and ‖I ′(un)‖ → 0,

there is a convergent subsequence of (un).
Before proving Theorem (1.1), we give the symmetric Mountain Pass Theorem.

Definition 2.1. Let E be a Banach space and A a subset of E. Set A is said to
be symmetric if u ∈ E implies −u ∈ E. For a closed symmetric set A which does
not contain the origin, we define a genus γ(A) of A by the smallest integer k such
that there exists an odd continuous mapping from A to Rk\{0}. If there does not
exist such a k, we define γ(A) =∞. We set γ(∅) = 0. Let Γk denote the family of
closed symmetric subsets A of E such that 0 /∈ A and γ(A) ≥ k.

Now we give the symmetric Mountain Pass Theorem [2] which improved by
Kajikiya [13] to obtain the following Theorem.

Theorem 2.2. Let E be an infinite dimensional Banach space and I ∈ C1(E,R)
satisfy:

(1) I is even, bounded from below, I(0) = 0 and I satisfies the Palais-Smale
condition.

(2) For each k ∈ N, there exists an Ak ∈ Γk such that

sup
u∈Ak

I(u) < 0.

Then either of the following tow conditions holds:
(i) There exists a sequence (uk) such that I ′(uk) = 0, I(uk) < 0 and (uk)

converges to zero; or
(ii) There exist two sequences (uk) and (vk) such that I ′(uk) = 0, I(uk) = 0,

uk 6= 0, limk→+∞ uk = 0, I ′(vk) = 0, I(vk) < 0, limk→+∞ I(vk) = 0 and
(vk) converges to a non-zero limit.
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3. Proof of Theorem (1.1)

Lemma 3.1. Under assumptions (A1), (A2), the functional I is bounded from
below.

Proof. By (A1), (A2) and Hölder inequality, we have

I(u) =
b

4

(∫
RN

|∇u|2dx
)2

+
a

2

∫
RN

|∇u|2dx+
1
2

∫
RN

V (x)u2dx− 1
q + 1

∫
RN

K(x)|u|q+1dx

≥ b

4
(
∫

RN

|∇u|2dx)2 − 1
2

∫
RN

V −(x)u2dx− 1
q + 1

∫
RN

K+(x)|u|q+1dx

≥ b

4
‖∇u‖42 −

s2

2
‖V −‖N/2‖∇u‖22 − sq+1‖K+‖ 2∗

2∗−q−1
‖∇u‖q+1

2 .

Since 0 < q < 1, we conclude the proof. �

Lemma 3.2. Assume (A1), (A2) hold. Then, any (PS) sequence (un) of I is
bounded in E.

Proof. Let (un) be a (PS) sequence of I. Then, there exists a positive constant
c > 0 such that

c ≥ I(un)

=
b

4

(∫
RN

|∇un|2dx
)2

+
a

2

∫
RN

|∇un|2dx+
1
2

∫
RN

V (x)u2
ndx

− 1
q + 1

∫
RN

K(x)|un|q+1dx

≥ b

4
(
∫

RN

|∇un|2dx)2 − 1
2

∫
RN

V −(x)u2
ndx−

1
q + 1

∫
RN

K+(x)|un|q+1dx

≥ b

4
‖∇un‖42 −

s2

2
‖V −‖N/2‖∇un‖22 − sq+1‖K+‖ 2∗

2∗−q−1
‖∇un‖q+1

2 .

Hence, there exists γ0 > 0 such that

‖∇un‖2 ≤ γ0, ∀n ∈ N. (3.1)

On the other hand, there exists c > 0 such that

c+
‖un‖

4
≥ −1

4
〈I ′(un), un〉+ I(un)

=
a

4

∫
RN

|∇un|2dx+
1
4

∫
RN

V (x)u2
ndx+ (

1
4
− 1
q + 1

)
∫

RN

K(x)|un|q+1dx

≥ (
1

q + 1
− 1

4
)
∫

RN

(K−(x) + χBR1
(x))|un|q+1dx

− (
1

q + 1
− 1

4
)
∫

RN

(K+(x) + χBR1
(x))|un|q+1dx− 1

4

∫
RN

V −(x)u2
ndx

≥ (
1

q + 1
− 1

4
) min(α, 1)

∫
RN

|un|q+1(x)dx−
s2‖V −‖N/2

4
‖∇un‖2

− sq+1(
1

q + 1
− 1

4
)‖K+ + χBR1

‖ 2∗
2∗−q−1

‖∇un‖q+1
2 .

Therefore, by using (3.1), we obtain

‖un‖q+1 ≤ γ1, for some γ1 > 0. (3.2)
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Combining (3.1) and (3.2), we conclude the proof. �

We need the following Lemma to prove that the Palais-Smale condition is satis-
fied for I on E.

Lemma 3.3. Let x and y two arbitrary real numbers, then there exists a constant
c > 0 such that ∣∣|x+ y|q+1 − |x|q+1 − |y|q+1

∣∣ ≤ c|x|qy (3.3)

Proof. If x = 0, the inequality (3.3) is trivial. Suppose that x 6= 0. We consider
the continuous function f defined on R\{0} by

f(t) =
|1 + t|q+1 − |t|q+1 − 1

|t|
.

Note that lim|t|→+∞ f(t) = 0 and limt→0± f(t) = ±(q + 1). Then there exists a
constant c > 0 such that |f(t)| ≤ c, for all t ∈ R\ {0}. In particular |f( y

x )| ≤ c, so∣∣|1 +
y

x
|q+1 − |y

x
|q+1 − 1

∣∣ ≤ c|y
x
|,

multiplying by |x|q+1, we obtain the desired result. �

Lemma 3.4. Assume that (a1), (A2) hold. Then I satisfies the Palais-Smale
condition in E.

Proof. Let (un) be a (PS) sequence. By Lemma (3.2), (un) is bounded in E. Then
there exists a subsequence un ⇀ u in E, un → u in Lp

Loc(RN ) for all 1 ≤ p ≤ 2∗

and un → u a.e in RN .
By [8], it is sufficient to prove that for any ε > 0, there exist R3 > 0 and n0 ∈ N∗

such that ∫
|x|≥R3

(|∇un|2 + |un|q+1)dx ≤ ε, for all R ≥ R3 and n ≥ n0.

Let φR be a cut-off function so that φR = 0 on BR
2

, φR = 1 on Bc
R, 0 < φR < 1

and

|∇φR|(x) ≤ c

R
, for all x ∈ RN . (3.4)

We can easily remark that for any u ∈ E and R ≥ 1,

‖φRu‖ ≤ c‖u‖. (3.5)

Since I ′(un)→ 0 in E′ as n→ +∞, we know that for any ε > 0, there exists n0 > 0
such that

|〈I ′(un), φRun〉| ≤ c‖I ′(un)‖E′‖un‖ ≤
ε

3
, ∀n ≥ n0;

that is, n ≥ n0. Then

(a+ b

∫
RN

|∇un|2dx)
∫

RN

|∇un|2φR(x)dx

+
∫

RN

V (x)|un|2φR(x)dx−
∫

RN

K(x)|un|q+1φR(x)dx ≤ ε

3
.
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Hence, ∫
RN

(a|∇un|2 + (K− + χBR1
)(x)|un|q+1)φR(x)dx

≤
∫

RN

V −(x)u2
nφRdx− a

∫
RN

un∇un∇φRdx

+
∫

RN

(K+ + χBR1
)(x)|un|q+1φRdx+

ε

3
.

(3.6)

By Hölder inequality and (3.4), there exists R4 > 0 such that∫
RN

un∇un∇φRdx ≤
c

R
<
ε

3
, ∀|x| ≥ R4. (3.7)

From (A1) and (A2), there exists R5 > 0 such that∫
RN

V −(x)u2
nφRdx+

∫
RN

(K+ + χBR1
)(x)|un|q+1dx

≤ c‖V −φR‖N/2 + c‖(K+ + χBR1
)φR‖ 2∗

2∗−q−1

≤ ε

3
for |x| ≥ R5.

(3.8)

Put R3 = max(R4, R5). By (3.6), (3.7) and (3.8), we have

min(a,min(α, 1))
∫

RN

(|∇un|2 + |un|q+1)φRdx ≤ ε.

The proof is complete. �

Lemma 3.5. Assume (A1), (A2) hold. Then for each k ∈ N, there exists an
Ak ∈ Γk such that

sup
u∈Ak

I(u) < 0.

Proof. We use the following geometric construction introduced by Kajikiya [13]:
Let R2 and y0 be fixed by assumption (A1) and consider the cube

D(R2) = {(x1, · · · , xN ) ∈ RN : |xi − yi| < R2, 1 ≤ i ≤ N}.

Fix k ∈ N arbitrarily. Let n ∈ N be the smallest integer such that nN ≥ k. We
divide D(R2) equally into nN small cubes, denote them by Di with 1 ≤ i ≤ nN ,
by planes parallel to each face of D(R2). The edge of Di has the length of z = R2

n .
We construct a new cubes Ei in Di such that Ei has the same center as that of Di.
The faces of Ei and Di are parallel and the edge of Ei has the length of z

2 . Then,
we make a function ψi, 1 ≤ i ≤ k, such that

supp(ψi) ⊂ Di, supp(ψi) ∩ supp(ψj) = ∅ (i 6= j),

ψi(x) = 1 for x ∈ Ei, 0 ≤ ψi(x) ≤ 1, ∀x ∈ RN .

We denote

Sk−1 = {(t1, · · · , tk) ∈ Rk : max
1≤i≤k

|ti| = 1}, (3.9)

Wk = {
k∑

i=1

tiψi(x) : (t1, · · · , tk) ∈ Sk−1} ⊂ E. (3.10)
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Since the mapping (t1, . . . , tk) →
∑k

i=1 tiψi from Sk−1 to Wk is odd and homeo-
morphic, then γ(Wk) = γ(Sk−1) = k. Wk is compact in E, then there is a constant
αk > 0 such that

‖u‖2 ≤ αk for all u ∈Wk.

we need to recall the inequality

‖u‖2 ≤ c‖∇u‖r2‖u‖1−r
q+1 ≤ c‖u‖ (3.11)

with r = 2∗(q−1)
2(2∗−q−1) . Then, there is a constant ck > 0 such that

‖u‖22 ≤ ck for all u ∈Wk.

Let z > 0 and u =
∑k

i=1 tiψi(x) ∈Wk,

I(zu) ≤ z4b
α2

k

4
+
az2

2
αk + z2 ‖V ‖∞

2
ck −

1
q + 1

k∑
i=1

∫
Di

K(x)|ztiψi|q+1dx. (3.12)

By (3.9), there exists j ∈ [1, k] such that |tj | = 1 and |ti| ≤ 1 for i 6= j. Then
k∑

i=1

∫
Di

K(x)|ztiψi|q+1dx

=
∫

Ej

K(x)|ztjψj |q+1dx+
∫

Dj\Ej

K(x)|ztjψj |q+1dx+
∑
i 6=j

∫
Di

K(x)|ztiψi|q+1dx .

(3.13)
Since ψj(x) = 1 for x ∈ Ej and |tj | = 1, we have∫

Ej

K(x)|ztjψj |q+1dx = |z|q+1

∫
Ej

K(x)dx. (3.14)

On the other hand by (A1) we obtain∫
Dj\Ej

K(x)|ztjψj |q+1dx+
∑
i 6=j

∫
Di

K(x)|ztiψi|q+1dx ≥ 0. (3.15)

From (3.12), (3.13), (3.14) and (3.15), we obtain

I(zu)
z2

≤ z2 bα
2
k

4
+
aαk

2
+
‖V ‖∞

2
ck −

|z|q+1

z2
inf

1≤i≤k

(∫
Ei

K(x)dx
)
.

It follows that

lim
z→0

sup
u∈Wk

I(zu)
z2

= −∞.

We fix z small such that

sup{I(u), u ∈ Ak} < 0, where Ak = zWk ∈ Γk.

The proof is complete. �

Proof of Theorem (1.1). Evidently, I(0) = 0 and I is an odd functional. Then by
Lemmas (3.1), (3.4) and (3.5), conditions (1) and (2) of Theorem 2.2 are satisfied.
Then, by Theorem 2.2, problem (1.1) admits an infinitely many solutions (uk) ∈ E
which converging to 0 and u0 can be supposed nonnegative since

I(u0) = I(|u0|).
�
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