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PERSISTENCE AND EXTINCTION OF A NON-AUTONOMOUS
LOGISTIC EQUATION WITH RANDOM PERTURBATION

MENG LIU, KE WANG

Abstract. Persistence and extinction of a randomized non-autonomous lo-

gistic equation is studied. Sufficient conditions for extinction, non-persistence
in the mean, weak persistence and stochastic permanence are established. The

critical number between weak persistence and extinction is obtained.

1. Introduction

Logistic system is the most important model in both ecology and mathematical
ecology. Persistence and extinction of this model is an interesting and important
topic owing to its theoretical and practical significance. The deterministic Logistic
equation is usually denoted by:

dx(t)/dt = x(t)[r − ax(t)] (1.1)

for t ≥ 0 with initial value x(0) = x0 > 0, and x(t) is the population density at
time t. r stands for the growth rate and a denotes the intraspecific competition
coefficient; i.e., r/a is the carrying capacity. We refer the reader to May [26] for a
detailed model construction. Model (1.1) describes a single species whose members
compete among themselves for a limited amount of food and living space.

Owing to its theoretical and practical significance, system (1.1) and its gener-
alization form have been extensively studied and many important results on the
global dynamics of solutions have been founded, see e.g. Freedman and Wu [4],
Golpalsamy [8] and Lisena [22] and the references therein. Particularly, the book
by Golpalsamy [8] is a very good reference in this area.

On the other hand, in the real world, population dynamics is inevitably affected
by environmental noise which is an important component in an ecosystem (see
e.g. Gard [5, 6, 7]). May [26] pointed out that due to environmental noise, the
birth rate in the population system should be stochastic. Therefore lots of authors
introduce stochastic perturbation into deterministic models to reveal the effect of
environmental variability on the population dynamics in mathematical ecology (see
e.g. [1, 2, 3], [11]-[23], [27]-[30].

Especially, under the assumption that the the growth rate r in (1.1) is stochas-
tically perturbed, with

r → r + σxθḂ(t),
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Ji, Jiang, Shi and O’Regan [11] studied the stochastic Logistic equation

dx(t) = x(t)[(r − ax(t))dt+ σxθdB(t)], (1.2)

where Ḃ(t) represents the white noise, namely B(t) is a Brownian motion defined
on a complete probability space (Ω,F ,P); σ2 denotes the intensity of the white
noise; θ ∈ (0, 0.5). Ji et al. [11] showed that following lemma.

Lemma 1.1. If r > 0, a > 0, θ ∈ (0, 0.5) and σ > 0, then
(i) Equation (1.2) has a unique and positive solution on t ≥ 0 almost surely

(a.s.) with any given initial value x0 > 0.
(ii) The solution of (1.2) is stochastically persistent; i.e., for any given ε ∈

(0, 1), there are positive constants H1 and H2 such that

lim sup
t→+∞

P{x(t) ≥ H1} ≥ 1− ε, lim sup
t→+∞

P{x(t) ≤ H2} ≥ 1− ε.

Some important and interesting questions are as follows:
(Q1) Since model (1.2) describes a population dynamics, it is critical to find out

when the population is extinctive and when is persistent. Furthermore, can
we find out the critical number between survival and extinction for model
(1.2)?

(Q2) The results of Lemma 1 are based on the conditions θ ∈ (0, 0.5), r > 0 and
σ > 0. What happens if these conditions are not satisfied?

(Q3) Model (1.2) assumes that the growth rate r and the carrying capacity r/a
are independent of time t. However, the natural growth rates of many
populations vary with t in real situation, for example, due to the seasonality.
Thus, do the conclusions of Lemma 1.1 still hold if all the coefficients vary
with t?

In this paper, we shall study the stochastic non-autonomous Logistic model

dx(t) = x(t)[r(t)− a(t)x(t)]dt+ σ(t)x1+θ(t)dB(t), (1.3)

where θ ∈ (0, 1); r(t), a(t) and σ(t) are continuous and boundedness functions on
R+ := [0,+∞) and mint∈R+ a(t) > 0. We have the following results:

(R1) Equation (1.3) has a unique and positive solution on t ≥ 0 a.s. with any
given initial value x0 > 0.

(R2) Define 〈r〉∗ = lim supt→+∞ t−1
∫ t

0
r(s)ds.

(R21) If 〈r〉∗ < 0, then the species, x(t), represented by model (1.3) goes to
extinction a.s., i.e. limt→+∞ x(t) = 0, a.s..

(R22) If 〈r〉∗ = 0, then x(t) is nonpersistent in the mean a.s., i.e.

lim
t→+∞

〈x(t)〉 = lim
t→+∞

t−1

∫ t

0

x(s)ds = 0, a.s..

(R23) If 〈r〉∗ > 0, then x(t) is weakly persistent (see e.g. [1, 9]) a.s.; i.e.,
x∗ = lim supt→+∞ x(t) > 0, a.s.

(R3) Define r∗ = lim inft→+∞ r(s). If r∗ > 0, then x(t) is stochastically perma-
nent; i.e., for any given ε ∈ (0, 1), there are positive constants H1 and H2

such that

lim inf
t→+∞

P{x(t) ≥ H1} ≥ 1− ε, lim inf
t→+∞

P{x(t) ≤ H2} ≥ 1− ε.

The important contributions of this paper is therefore clear.
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Remark 1.2. It is useful to point out that our definition of stochastic permanence
is different from the definition of stochastic persistence given in [11]. It is easy to
see that if x(t) is stochastically permanent, then it is stochastically persistent. But
the converse is not true.

The rest of the paper is organized as follows. In Section 2, we give the proofs
of our main results. In Section 3, we work out some figures to illustrate our main
theorems. The last section gives the conclusions.

2. Proofs

For the sake of convenience, we define the following symbols:

〈f(t)〉 = t−1

∫ t

0

f(s)ds, f∗ = lim sup
t→+∞

f(t), f∗ = lim inf
t→+∞

f(t),

ν̂ = max
t∈R+

ν(t), ν̌ = min
t∈R+

ν(t).

Theorem 2.1. Equation (1.3) has a unique and positive solution on t ≥ 0 with
any given initial value x0 > 0.

Proof. Our proof is motivated by the works of Mao, Marion and Renshaw [25].
Since the coefficients of Eq. (1.3) are locally Lipschitz continuous, then for any
given initial value x(0) ∈ R+, there is a unique maximal local solution x(t) on
t ∈ [0, τe], where τe is the explosion time (see e.g. [24]). To show this solution is
global, we only need to show that τe =∞. For this end, let n0 > 0 be so large that
x0 lying within the interval [1/n0, n0]. For each integer n > n0, define the stopping
times

τn = inf{t ∈ [0, τe] : x(t) /∈ (1/n, n)}.
Clearly, τn is increasing as n → ∞. Let τ∞ = limn→+∞ τn, whence τ∞ ≤ τe a.s.
Now, we only need to show τ∞ = ∞. If this statement is false, there is a pair of
constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ <∞} > ε

Consequently, there exists an integer n1 ≥ n0 such that

P{τn < T} > ε, n > n1. (2.1)

Define
V (x) =

√
x− 1− 0.5 lnx.

If x(t) ∈ R+, in view of Itô’s formula (see e.g. [24]), we have

dV (x) = Vxdx+ 0.5Vxx(dx)2

= 0.5x−0.5(1− x−0.5)
[
x(r(t)− a(t)x)dt+ σ(t)x1+θdB(t)

]
+ 0.5(−0.25x−1.5 + 0.5x−2)σ2(t)x2+2θdt

=
[
− 0.125σ2(t)x0.5+2θ + 0.25σ2(t)x2θ − 0.5a(t)x1.5 + 0.5a(t)x

+ 0.5r(t)x0.5 − 0.5r(t)
]
dt+ 0.5σ(t)xθ(x0.5 − 1)dB(t).

(2.2)

Note that mint∈R+ a(t) > 0, then there is clearly a constant G1 > 0 such that

−0.25σ2(t)x2θ(0.5x0.5 − 1)− 0.5a(t)x1.5 + 0.5a(t)x+ 0.5r(t)x0.5 − 0.5r(t) < G1.
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Substituting this inequality into (2.2), we see that

dV (x(t)) ≤ G1dt+ 0.5σ(t)xθ(x0.5 − 1)dB(t),

which implies that∫ τn∧T

0

dV (x(t)) ≤
∫ τn∧T

0

G1dt+
∫ τn∧T

0

0.5σ(s)xθ(s)(x0.5(s)− 1)dB(s),

where ρ∧ % = min{ρ, %}. Taking expectation on both sides of the above inequality,
we can derive that

EV (x(τn ∧ T )) ≤ V (x0) +G1E(τn ∧ T ) ≤ V (x0) +G1T (2.3)

Set Ωn = {τn ≤ T}, then by inequality (2.1) we have P(Ωn) ≥ ε. Note that for
every ω ∈ Ωn, x(τn, ω) equals either n or 1/n, hence V (x(τn, ω)) is no less than

min{
√
n− 1− 0.5 lnn, 1/

√
n− 1 + 0.5 lnn}.

It then follows from (2.3) that

V (x0) +G1T ≥ E[1Ωn
(ω)V (x(τn))] ≥ εmin{

√
n− 1− 0.5 lnn, 1/

√
n− 1 + 0.5 lnn}

where 1Ωn
is the indicator function of Ωn. Letting n→∞ leads to the contradiction

∞ > V (x0) +G1T =∞,
which completes the proof. �

Theorem 2.2. If 〈r〉∗ < 0, then the species, x(t), represented by model (1.3) goes
to extinction a.s.

Proof. Applying Itô’s formula to (1.3), it gives

d lnx =
dx

x
− (dx)2

2x2
= [r(t)− a(t)x− 0.5σ2(t)x2θ]dt+ σ(t)xθdB(t).

In other words,

lnx(t)− lnx0 =
∫ t

0

[r(s)− a(s)x(s)− 0.5σ2(s)x2θ(s)]ds+M(t), (2.4)

where M(t) =
∫ t

0
σ(s)xθ(s)dB(s) is a local martingale, whose quadratic variation

is

〈M(t),M(t)〉 =
∫ t

0

σ2(s)x2θ(s)ds.

In view of the exponential martingale inequality (see e.g. [24]), for any positive
constants T, α and β, we have

P
{

sup
0≤t≤T

[
M(t)− α

2
〈M(t),M(t)〉

]
> β

}
≤ exp{−αβ}. (2.5)

Choose T = n, α = 1, β = 2 lnn, then it follows that

P
{

sup
0≤t≤n

[
M(t)− 1

2
〈M(t),M(t)〉

]
> 2 lnn

}
≤ 1/n2.

Using Borel-Cantalli Lemma [24] leads to that for almost all ω ∈ Ω, there is a
random integer n0 = n0(ω) such that for n ≥ n0,

sup
0≤t≤n

[
M(t)− 1

2
〈M(t),M(t)〉

]
≤ 2 lnn.
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That is to say

M(t) ≤ 2 lnn+
1
2
〈M(t),M(t)〉 = 2 lnn+ 0.5

∫ t

0

σ2(s)x2θ(s)ds

for all 0 ≤ t ≤ n, n ≥ n0 almost surely. Substituting the above inequality into
(2.4), it results in

lnx(t)− lnx0 ≤
∫ t

0

r(s)ds−
∫ t

0

a(s)x(s)ds+ 2 lnn ≤
∫ t

0

r(s)ds+ 2 lnn (2.6)

for all 0 ≤ t ≤ n, n ≥ n0 almost surely. In other words, we have shown that for
0 < n− 1 ≤ t ≤ n,

t−1{lnx(t)− lnx0} ≤ 〈r(t)〉+
2 lnn
n− 1

,

which means that [t−1 lnx(t)]∗ ≤ 〈r〉∗. That is to say, if 〈r〉∗ < 0, one can see that
limt→+∞ x(t) = 0. �

Theorem 2.3. If 〈r〉∗ = 0, then x(t) is nonpersistent in the mean a.s.

Proof. For any given ε > 0, there exists a T1 such that

t−1

∫ t

0

r(s)ds ≤ 〈r〉∗ + ε/2 = ε/2, t ≥ T1.

Substituting this inequality into (2.6), one can see that

lnx(t)− lnx0 ≤
∫ t

0

r(s)ds−
∫ t

0

a(s)x(s)ds+ 2 lnn ≤ εt/2− ǎ
∫ t

0

x(s)ds+ 2 lnn

for all T1 ≤ t ≤ n, n ≥ n0 almost surely. Note that there exists a T > T1 such that
for all T ≤ n− 1 ≤ t ≤ n and n ≥ n0 we have (lnn)/t ≤ ε/4. In other words, we
have already shown that

lnx(t)− lnx0 ≤ εt− ǎ
∫ t

0

x(s)ds

for sufficiently large t > T . Let g(t) =
∫ t

0
x(s)ds, then we obtain

ln(dg/dt) < εt− ǎg(t) + ln x0, t > T,

which means that

exp(ǎg(t))(dg/dt) < x0 exp(εt), t > T.

Integrating this inequality from T to t gives

ǎ−1
[

exp(ǎg(t))− exp(ǎg(T ))
]
< x0ε

−1
[

exp(εt)− exp(εT )
]
.

Rewriting this inequality one then sees that

exp(ǎg(t)) < exp(ǎg(T )) + x0ǎε
−1 exp(εt)− x0ǎε

−1 exp(εT ).

Taking the logarithm of both sides leads to

g(t) < ǎ−1 ln
{
x0ǎε

−1 exp(εt) + exp(ǎg(T ))− x0ǎε
−1 exp(εT )

}
.

In other words, we have already shown that{
t−1

∫ t

0

x(s)ds
}∗
≤ ǎ−1

{
t−1 ln

[
x0ǎε

−1 exp(εt)+exp(ǎg(T ))−x0ǎε
−1 exp(εT )

]}∗
.
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An application of the L’Hopital’s rule, one can derive

〈x〉∗ ≤ ǎ−1
{
t−1 ln

[
x0ǎε

−1 exp(εt)
]}∗

= ε/ǎ.

Since ε is arbitrary, we get 〈x〉∗ ≤ 0, which is the required assertion. �

Theorem 2.4. If 〈r〉∗ > 0, then x(t) is weakly persistent a.s.

Proof. First, let us show that

[t−1 lnx(t)]∗ ≤ 0 a.s. (2.7)

In fact, applying Itô’s formula to (1.3), it results in

d(exp(t) lnx) = exp(t) lnxdt+ exp(t)d lnx

= exp(t)[lnx+ r(t)− a(t)x− 0.5σ2(t)x2θ]dt+ exp(t)σ(t)xθdB(t).

Thus, we have shown that

exp(t) lnx(t)−lnx0 =
∫ t

0

exp(s)[lnx(s)+r(s)−a(s)x(s)−0.5σ2(s)x2θ(s)]ds+N(t),

(2.8)
where N(t) =

∫ t
0

exp(s)σ(s)xθ(s)dB(s) is a martingale with the quadratic form

〈N(t), N(t)〉 =
∫ t

0

exp(2s)σ2(s)x2θ(s)ds.

It then follows from the exponential martingale inequality (2.5), by choosing T =
γk, α = exp(−γk) and β = θ exp(γk) ln k, that

P
{

sup
0≤t≤γk

[
N(t)− 0.5 exp(−γk)〈N(t), N(t)〉

]
> θ exp(γk) ln k

}
≤ k−θ,

where θ > 1 and γ > 1. By virtue of the famous Borel-Cantelli lemma, for almost
all ω ∈ Ω, there exists k0(ω) such that for every k ≥ k0(ω),

N(t) ≤ 0.5 exp(−γk)〈N(t), N(t)〉+ θ exp(γk) ln k, 0 ≤ t ≤ γk.

Substituting the above inequality into (2.8) yields

exp(t) lnx(t)− lnx0

≤
∫ t

0

exp(s)
[

lnx(s) + r(s)− a(s)x(s)− 0.5σ2(s)x2θ(s)
]
ds

+ 0.5 exp(−γk)
∫ t

0

exp(2s)σ2(s)x2θ(s)ds+ θ exp(γk) ln k

=
∫ t

0

exp(s)
[

lnx(s) + r(s)− a(s)x(s)

− 0.5σ2(s)x2θ(s)[1− exp(s− γk)]
]
ds+ θ exp(γk) ln k.

It is easy to see that for any 0 ≤ s ≤ γk and x > 0, since mint∈R+ a(t) > 0, then
there exists a constant C independent of k such that

lnx+ r(s)− a(s)x− 0.5σ2(s)x2θ[1− exp(s− γk)] ≤ C.

In other words, for any 0 ≤ t ≤ γk, we have

exp(t) lnx(t)− lnx0 ≤ C[exp(t)− 1] + θ exp(γk) ln k.
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That is to say

lnx(t) ≤ exp(−t) lnx0 + C[1− exp(−t)] + θ exp(−t) exp(γk) ln k.

If γ(k − 1) ≤ t ≤ γk and k ≥ k0(ω), we have

lnx(t)/t ≤ exp(−t) lnx0/t+ C[1− exp(−t)]/t+ θ exp(−γ(k − 1)) exp(γk) ln k/t,

which becomes the desired assertion (2.7) by letting t→ +∞.
Now suppose that 〈r〉∗ > 0, we prove that x∗ > 0 a.s.. If this assertion is not

true, let S be the set S = {x∗ = 0}, then P(S) > 0. It follows from (2.4) that

t−1[lnx(t)− lnx(0)] = 〈r(t)〉 − 〈a(t)x(t)〉 − 0.5〈σ2(t)x2θ(t)〉+M(t)/t. (2.9)

On the other hand, for for all ω ∈ S, we have limt→+∞ x(t, ω) = 0, then the law of
large numbers for local martingales (see e.g. [24]) implies that limt→+∞M(t)/t = 0.
Substituting the above inequality into (2.9) gives

[lnx(t, ω)/t]∗ = 〈r(t)〉∗ > 0.

Then P
(

[lnx(t)/t]∗ > 0
)
> 0, this contradicts (2.7). �

Theorem 2.5. If r∗ > 0, then species x(t) represents by model (1.3) will be stochas-
tically permanent.

Proof. First we demonstrate that for any given 0 < ε < 1, there exists constant
H1 > 0 such that P∗{x(t) ≥ H1} ≥ 1− ε. Define

V1(x) = 1/x1+θ

for x ∈ R+. Applying Itô’s formula to equation (1.3) we can obtain

dV1(x(t)) = −(1 + θ)x−2−θdx+ 0.5(1 + θ)(2 + θ)x−3−θ(dx)2

= (1 + θ)V1(x)[a(t)x− r(t)]dt+ 0.5(1 + θ)(2 + θ)σ2(t)xθ−1dt

− (1 + θ)σ(t)x−1dB(t).

Define
V2(x) = (1 + V1(x))κ,

where 0 < κ < 1. Applying Itô’s formula again leads to

dV2(x(t)) = κ(1 + V1(x(t)))κ−1dV1 + 0.5κ(κ− 1)(1 + V1(x(t)))κ−2(dV1)2

= κ(1 + V1(x))κ−2
{

(1 + V1(x))
[
(1 + θ)V1(x)[a(t)x− r(t)]

+ 0.5(1 + θ)(2 + θ)σ2(t)xθ−1
]

+ 0.5(κ− 1)(1 + θ)2σ2(t)x−2
}
dt

− κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

= κ(1 + θ)(1 + V1(x))κ−2
{
− r(t)V 2

1 (x)− r(t)V1(x) + a(t)V1(x)x−θ

+ a(t)x−θ + 0.5(2 + θ)σ2(t)xθ−1

+ 0.5(2 + θ)σ2(t)x−2 + 0.5(κ− 1)(1 + θ)σ2(t)x−2
}
dt

− κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

≤ κ(1 + θ)(1 + V1(x))κ−2
{
−
(
r∗ − ε

)
V 2

1 (x)

+ âV1(x)x−θ + âx−θ + 1.5σ̂2xθ−1 + 1.5σ̂2x−2
}
dt
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− κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

for sufficiently large t. In the last inequality, we have used the facts that r∗ > 0,
θ < 1 and κ < 1. Now, choose η > 0 sufficiently small to satisfy

0 <
η

κ(1 + θ)
< r∗ − ε.

Define V3(x) = exp{ηt}V2(x). By Itô’s formula,

dV3(x(t))

= η exp{ηt}V2(x)dt+ exp{ηt}dV2(x)

≤ (1 + θ)κ exp{ηt}(1 + V1(x))κ−2
{η(1 + V1(x))2

κ(1 + θ)

− (r∗ − ε)V 2
1 (x) + âV1(x)x−θ + âx−θ + 1.5σ̂2xθ−1 + 1.5σ̂2x−2

}
dt

− exp{ηt}κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

= (1 + θ)κ exp{ηt}(1 + V1(x))κ−2
{
−
(
r∗ − ε−

η

κ(1 + θ)

)
V 2

1 (x)

+
2η

κ(1 + θ)
V1(x) +

η

κ(1 + θ)
+ âV1(x)x−θ + âx−θ + 1.5σ̂2xθ−1 + 1.5σ̂2x−2

}
dt

− exp{ηt}κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

= exp{ηt}J(x)dt− exp{ηt}κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

for sufficiently large t, where

J(x) = (1 + θ)κ(1 + V1(x))κ−2
{
−
(
r∗ − ε−

η

κ(1 + θ)

)
V 2

1 (x) +
2η

κ(1 + θ)
V1(x)

+
η

κ(1 + θ)
+ âV1(x)x−θ + âx−θ + 1.5σ̂2xθ−1 + 1.5σ̂2x−2

}
.

(2.10)
Now, let us show that J(x) is upper bounded in R+. To prove this, without loss of
generality, let us suppose that σ̂2 > 0. Set

K = min
{

1,
(r∗ − ε− η/[κ(1 + θ)]

3σ̂2

)−2θ}
.

(a) If x ≥ K, then it follows from the definition of V1(x) that J(x) is upper
bounded, namely, there exists a positive number J1 such that supx≥K J(x) < J1.

(b) If x < K, then making use of x < 1 and 0 < θ < 1 lead to that

x−θ ≤ x−0.5−0.5θ = V 0.5
1 (x), xθ−1 = x2θx−θ−1 ≤ V1(x). (2.11)

At the same time, it follows from x <
(
r∗−ε−η/[κ(1+θ)]

3σ̂2

)−2θ

that

− 0.5
(
r∗ − ε−

η

κ(1 + θ)

)
V 2

1 (x) + 1.5σ̂2x−2 < 0. (2.12)

Substituting (2.11) and (2.12) into (2.10) gives

J(x) ≤ (1 + θ)κ(1 + V1(x))κ−2
{
− 0.5

(
r∗ − ε−

η

κ(1 + θ)

)
V 2

1 (x) +
2η

κ(1 + θ)
V1(x)

+
η

κ(1 + θ)
+ âV 1.5

1 (x) + âV 0.5
1 (x) + 1.5σ̂2V1(x)

}
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= (1 + θ)κ(1 + V1(x))κ−2
{
− 0.5

(
r∗ − ε−

η

κ(1 + θ)

)
V 2

1 (x) + âV 1.5
1 (x)

+ [
2η

κ(1 + θ)
+ 1.5σ̂2]V1(x) + âV 0.5

1 (x) +
η

κ(1 + θ)

}
=: (1 + θ)κ(1 + V1(x))κ−2H(x).

Note that r∗ − ε− η
κ(1+θ) > 0, then there is a positive constant x0 ≤ K such that

if x ≤ x0, then H(x) ≤ 0. Therefore if 0 < x ≤ x0, then J(x) ≤ 0. On the other
hand, if x0 ≤ x ≤ K, by the continuity of (1 + θ)κ(1 + V1(x))κ−2H(x), there is a
positive number J2 such that supx0≤x≤K J(x) < J2. In other words, we have shown
that if x ≤ K, then supx≤K J(x) < J2. Consequently, J(x) is upper bounded in
R+, namely J3 := supx∈R+

J(x) < +∞. Therefore,

dV3(x(t)) ≤ J3 exp{ηt}dt− exp{ηt}κ(1 + V1(x))κ−1(1 + θ)σ(t)x−1dB(t)

for sufficiently large t. Integrating both sides of the above inequality and then
taking expectations give

E
[

exp{ηt}
(

1 + V1(x(t))
)κ]
≤
(

1 + V1(x(T ))
)κ

+ J3(exp{ηt} − exp{ηT})/η.

That is to say

lim sup
t→+∞

E[V κ1 (x(t))] ≤ lim sup
t→+∞

E[(1 + V1(x(t)))κ] ≤ J3/η.

In other words, we have already shown that

lim sup
t→+∞

E[x−κ(1+θ)(t)] ≤ J3/η =: J4.

Thus for any given ε > 0, let H1 = ε−κ(1+θ)/J
−κ(1+θ)
4 , by Chebyshev’s inequality,

we can derive that

P{x(t) < H1} = P{x−κ(1+θ)(t) > H
−κ(1+θ)
1 } ≤ Hκ(1+θ)

1 E[x−κ(1+θ)(t)],

that is to say lim supt→+∞ P{x(t) < H1} ≤ Hκ(1+θ)
1 J4 = ε. Consequently

lim inf
t→+∞

P{x(t) ≥ H1} ≥ 1− ε.

Next we show that for arbitrary fixed ε > 0, there exists H2 > 0 such that P∗(x(t) ≤
H2) ≥ 1 − ε. The following proof is motivated by the works of Luo and Mao [23].
Define

V (x) = xq

for x ∈ R+, where 0 < q < 1. Then it follows from Itô’s formula that

dV (x) = qxq−1dx+
q(q − 1)

2
xq−2(dx)2

= qxq−1
{
x[r(t)− a(t)x] + σ(t)x1+θdB(t)

}
+
q − 1

2
xq−2σ2(t)x2+2θdt

= qxq
[
r(t)− a(t)x− 1− q

2
σ2(t)x2θ

]
dt+ qσ(t)xq+θdB(t).

Let k0 > 0 be so large that x0 lying within the interval [1/k0, k0]. For each integer
k ≥ k0, define the stopping time

τk = inf{t ≥ 0 : x(t) /∈ (1/k, k)}.
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Clearly τk → ∞ almost surely as k → ∞. Applying Itô’s formula again to
exp{t}V (x) gives

d(exp{t}V (x)) = exp{t}V (x)dt+ exp{t}dV (x)

= exp{t}
[
xq + qxq(r(t)− a(t)x− 1− q

2
σ2(t)x2θ)

]
dt+ exp{t}qσ(t)xq+θdB(t)

≤ exp{t}[xq + qxq(r(t)− a(t)x)]dt+ exp{t}qσ(t)xq+θdB(t)

≤ exp{t}M5 + exp{t}qσ(t)xq+θdB(t),

where M5 is a positive constant. Integrating this inequality and then taking expec-
tations on both sides, one can see that

E
[

exp{t ∧ τk}xq(t ∧ τk)
]
− xq0 ≤ E

∫ t∧τk

0

exp{s}M5ds ≤M5(exp{t} − 1),

Letting k →∞ yields

exp{t}E[xq(t)] ≤ xq0 +M5(exp{t} − 1),

which indicates that
lim sup
t→+∞

E[xq(t)] ≤M5.

Then the desired assertion follows from Chebyshev’s inequality. �

3. Numerical simulations

In this section we shall use the Milstein method mentioned in Higham [10] to
illustrate the analytical results. Consider the discretization equation

xk+1 = xk + xk[r(k ∆t)− a(k ∆t)xk]∆t+ σ(k∆t)x1+θ
k

√
∆tξk

+ 0.5σ2(k ∆t)x2+2θ
k (ξ2

k∆t−∆t),

where ξk, k = 1, 2, . . . , n are Gaussian random variables.
In Figure 1, we choose θ = 0.8, a(t) = 0.3 + 0.1 sin(2t) and σ2(t) = 8. The

only difference between conditions of Figure 1(a), Figure 1(b), Figure 1(c) and
Figure 1(d) is that the representation of r(t) is different. In Figure 1(a), we choose
r(t) = −0.001 + 0.2 sin t. Then we have 〈r(t)〉∗ < 0. In view of Theorem 2, x
goes to extinction. Figure 1(a) confirms this. In Figure 1(b), we choose r(t) =
0.2 sin t. Then it is easy to obtain 〈r(t)〉∗ = 0. It follows from Theorem 3 that x
is non-persistence in the mean. See Figure 1(b). In Figure 1(c), we choose r(t) =
0.001 + 0.2 sin t. Then 〈r(t)〉∗ > 0. By virtue of Theorem 4, one can obtain that
x is weakly persistent. This can be seen from Figure 1(c). In Figure 1(d), we
choose r(t) = 0.12 + 0.02 sin t. Then lim inft→+∞ r(t) > 0. By Theorem 5, x is
stochastically permanent. Figure 1(d) confirms this.

4. Concluding remarks

For a stochastic non-autonomous Logistic equation we obtained sufficient condi-
tions for extinction, non-persistence in the mean, weak persistence and stochastic
permanence. The critical number between weak persistence and extinction was ob-
tained initially. The behavior of the model for several coefficient cases was studied.
More precisely,

(I) If 〈r〉∗ < 0, then x(t) is extinctive with probability one.
(II) If 〈r〉∗ = 0, then x(t) is non-persistence in the mean with probability one.



EJDE-2013/99 PERSISTENCE AND EXTINCTION 11

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
x(t)

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
<x(t)>/t

(a) (b)

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
x(t)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
x(t)

(c) (d)

Figure 1. Solutions of system (1.3) for θ = 0.8, a(t) = 0.3 +
0.1 sin(2t), σ2(t) = 8, x(0) = 0.4, step size ∆t = 0.001. The
horizontal axis represents the time t. (a) with r(t) = −0.001 +
0.2 sin t; (b) with r(t) = 0.2 sin t; (c) with r(t) = 0.001 + 0.2 sin t;
(d) with r(t) = 0.12 + 0.2 sin t

(III) If 〈r〉∗ > 0, then x(t) is be weakly persistent with probability one.
(IV) If r∗ > 0, then x(t) is stochastically permanent.

Our key contributions in this article are:

(A) We obtained the critical number between weak persistence and extinction
for the first time, which is neglected by all the existing papers.

(B) Our conditions of Theorem 5 are much weaker than (ii) in Lemma 1.1. And
our results are stronger than (ii) in Lemma 1.1 (see Remark 1 above).

(C) This article deals with the non-autonomous stochastic logistic model, while
[11] considered the autonomous case.
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tant and valuable comments. The authors were supported by grants 11171081 and
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