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MONOTONICITY AND UNIQUENESS OF TRAVELING WAVES
IN BISTABLE SYSTEMS WITH DELAY

YUN-RUI YANG, NAI-WEI LIU

Abstract. This article establishes the monotonicity, uniqueness and Lia-

punov stability of traveling waves for bistable systems with delay. We use an
elementary super-subsolution comparison method and a moving plane tech-

nique. Also an example is given to illustrate our results.

1. Introduction

In this article, we are concerned with the monotonicity, Liapunov stability and
uniqueness of traveling wave solutions of the bistable reaction-diffusion systems
with delay

∂ui(x, t)
∂t

= Di
∂2ui(x, t)
∂x2

+ F i
(
u1(x, t− τ), . . . , ui−1(x, t− τ), ui(x, t),

ui+1(x, t− τ), . . . , un(x, t− τ)
)
, (x, t) ∈ R× (0,∞), ui ∈ R,

ui(x, s) = u0i(x, s), x ∈ R, s ∈ [−τ, 0].

(1.1)

In the previous paper [23, 24], based on the assumption of monotone traveling waves,
we established the globally exponential asymptotic stability of traveling waves of
system (1.1) by using the squeezing technique developed by Chen [7]. Generally, the
comparison principle can not be used if there is no monotonicity of traveling waves
for the investigated systems. Thus, the monotonicity of traveling waves is important
and necessary in this method. Here, we give the full detail proofs that the traveling
waves of (1.1) are monotone, which could be as a kind of continuity for our work in
[23]. Moreover, we also investigated Liapunov stability and uniqueness of traveling
waves of system (1.1) by using an elementary super-subsolution comparison method
and a moving plane technique.

It is well known that traveling wave solutions of reaction-diffusion systems have
been applied to several subjects, such as ecology, chemistry, biology, and so on. See
for example [7, 11, 12, 13, 15, 16, 17, 18, 20, 21, 24]. There are many works for the
existence, uniqueness and stability of traveling waves in this field. For example, by
using squeezing technique, Chen [7] established the global asymptotic exponential
stability of traveling waves for nonlocal evolution equations, and then proved the
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uniqueness of traveling waves by a moving plane technique. He also established the
existence of traveling waves of this problem based on the asymptotic behavior of so-
lutions obtained from the stability, combining with the monotonicity and uniqueness
of traveling waves. For the uniqueness of traveling waves, see [1, 2, 3, 4, 5, 6, 9, 27].
In the classical paper, Diekmann and Kaper [9] studied a particular monostable
nonlocal model. Recently, Chen and Guo [5] obtained a complete uniqueness result
for a generalized discrete version of the nonlocal monostable equations. The above
uniqueness results are based on the method of a moving plane, see also [2]. Later,
Carr and Chmaj [3] extended the method in [9]. In another paper, Chen and Guo
[5] established the uniqueness result of traveling waves by constructing a Laplace
transform representation of a solution and using the powerful Tauberian-Ikerhara’s
Theorem developed in [9, 10, 19]. For the delayed scalar equations, Schaff [13]
studied the existence of monotone traveling wave solutions and uniqueness of wave
speeds by a phase plane method. Smith and Zhao [15] established globally expo-
nential stability and uniqueness of monotone traveling waves. For one-dimension
systems, Volpert et al. [17, 18] obtained the existence of traveling waves by topolog-
ical methods. Recently, Tsai [16] studied globally exponential stability of traveling
waves in monotone bistable systems with partial diffusion coefficients being zero.

However, there are few results relatively about traveling waves of reaction-
diffusion systems with delay, one can be referred to [12, 20, 21, 24, 25, 26]. Wu
and Zou [21] obtained the existence of traveling waves in quasi-monotone and non-
quasi-monotone reaction-diffusion systems with delay via the monotone iteraction
method. Ou and Wu [12] established existence results of non-monotone traveling
waves in monostable and bistable cases without quasi-monotonicity for a nonlocal
reaction-diffusion system with delay. Recently, we established the globally expo-
nential asymptotic stability results of traveling waves of the bistable system (1.1)
with delay in [23]. Motivated by Chen [7], we studied the monotonicity, Liapunov
stability and uniqueness of traveling waves for system (1.1) in this article.

The rest of this article is organized as follows. In Section 3, we give and prove
the monotonicity result of traveling wave solutions of (1.1). And then based on
the stability result of traveling wave solutions in [23], we establish and prove the
Liapunov stability and uniqueness (up to translation) of traveling wave solutions
in Section 4. Before doing these, we introduce some assumptions and notations in
Section 2. Finally, as application, we give an example in the last Section.

2. Preliminaries

Our main results in this paper depend strongly on the construction of super-sub
solutions of (1.1) and the comparison principle, we first state some assumptions
and definitions of super-sub solutions of (1.1) as follows.

The following assumptions are made and the standard notation Rn is used, see
[24].

(H1) Positive diffusion coefficients: Di > 0 for i = 1, 2, . . . , n;
(H2) Monotone system: the reaction term

F(u) = (F1(u), . . . ,Fn(u)),
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is defined on a bounded domain Ω ⊂ Rn and class C1 in u = (u1, u2, . . . , un).
We also require that F satisfy

∂F i

∂uj
(u) ≥ 0 for u ∈ Ω and 1 ≤ i 6= j ≤ n;

(H3) Bistable nonlinearity: F has two stable equilibrium points 0 � 1; i.e.
F(0) = F(1) = mathbf0 and all the eigenvalues of F′(0) and F′(1) lie in
the open left-half complex plane. We also assume that the matrixes F′(0)
and F′(1) are irreducible.

By (H2)-(H3) and Perron-Frobenius Theorem (see [14, page61, Remark 3.1]), we
know that there exists a small enough vector d0 > 0 such that F i(−d0) � 0 and
F i(1 + d0) � 0. Namely, v+ = 1 + d0 and v− = −d0 are an ordered pair of
super- and subsolutions of (1.1) on [0,∞). Here −d0 = (−d0,−d0, . . . ,−d0) and
1 + d0 = (1 + d0, 1 + d0, . . . , 1 + d0).

Let C = C([−τ, 0], X) be the Banach space of continuous functions from [−τ, 0]
into X with the supremum norm, where X = BUC(R,Rn) be the Banach space of
all bounded and uniformly continuous functions from R into Rn with the the usual
supremum norm. Let X+ = {Λ ∈ X; Λ(x) ≥ 0, x ∈ R} and C+ = {Λ ∈ C; Λ(s) ∈
X+, s ∈ [−τ, 0]}. We can see that X+ is a closed cone of X and C+ is a positive
cone of C. We can similarly define X0 = BUC(R,R) and X+

0 . For convenience,
we identify an element Λ ∈ C as a function from R × [−τ, 0] into Rn defined by
Λ(x, s) = (Λ(s))(x), and Λ = (Λi)ni=1, i = 1, 2, . . . , n. For any continuous vector
function Γ(·) : [−τ, b]→ X, b > 0, we define Γt ∈ C, t ∈ [0, b) by Γt(s) = Γ(t+ s),
s ∈ [−τ, 0]. It is then easy to see that t 7→ Γt is a continuous vector function from
[0, b) to C. For any Λ ∈ [−d0, 1 + d0]nC = {Λ ∈ C; Λi(x, s) ∈ [−d0, 1 + d0], x ∈
R, s ∈ [−τ, 0], i = 1, 2, . . . , n}, define

f i(Λ(s))(x) = F i
(
Λ1(x,−τ), . . . ,Λi−1(x,−τ),Λi(x, 0),

Λi+1(x,−τ), . . . ,Λn(x,−τ)
)
,

where x ∈ R; therefore,

f i(Λt(s))(x) = F i
(
Λ1(x, t− τ), . . . ,Λi−1(x, t− τ),Λi(x, t),

Λi+1(x, t− τ), . . . ,Λn(x, t− τ)
)
,

where

[−d0, 1 + d0]nC = [−d0, 1 + d0]C × [−d0, 1 + d0]C × · · · × [−d0, 1 + d0]C︸ ︷︷ ︸
n times

.

By the global Lipschitz continuity of F i(·) (because F ∈ C1 in u) on [−d0, 1 +
d0]n, we can verify that f(Λ) = (f1(Λ), . . . , fn(Λ)) ∈ X and globally Lipschitz
continuous.

We are interested in traveling wave solutions U(·) of (1.1) connecting the two
equilibria 0 and 1. More precisely, functions U(ξ) = (U1(ξ), U1(ξ), . . . , Un(ξ)) ∈
C2(R) are said to be a traveling wave solution of (1.1), if for some c ∈ R,u(x, t) =
U(x− ct) = U(ξ) is a solution of (1.1) with the property that

U(−∞) = 0, and U(+∞) = 1. (2.1)

Here c is the so-called wave speed associated with the profile of the traveling wave
U. Without generality, we always assume c > 0 throughout this paper. Therefore,
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U(ξ) satisfies the following ordinary functional differential system

DiÜi+cU̇i+F i(U1(ξ+cτ), . . . , Ui−1(ξ+cτ), Ui(ξ), Ui+1(ξ+cτ), . . . , Un(ξ+cτ)) = 0,
(2.2)

where ξ = x− ct ∈ R, for i = 1, 2, . . . , n, where “·” denotes d
dξ .

Definition 2.1. A continuous function v = (v1, v2, . . . , vn) : [−τ, b]→ X, b > 0, is
called a supersolution (subsolution) of (1.1) on [0, b) if

vi(t) ≥ (≤)Ti(t− s)vi(s) +
∫ t

s

Ti(t− r)f i(vr)dr (2.3)

for 0 ≤ s < t < b and i = 1, 2 . . . , n. If v is both a supersolution and a subsolution
on [0, b), then we call it a mild solution of (1.1).

We note that T(t) = (Ti(t))n1 is a strongly continuous analytic semigroup on
X generated by the X-realization D∆X of D∆ with the help of [8, Theorem 1.5].
Moreover, by the explicit expression of solutions of the heat equation

∂ui
∂t

= Di∆ui, x ∈ R, t > 0, i = 1, 2, . . . , n,

ui(x, 0) = u0,i(x), x ∈ R,

we have

Ti(t)u0,i(x) =
1√

4πDi

∫ +∞

−∞
exp

(
− (x− y)2

4Dit

)
u0,i(y)dy,

for x ∈ R, t > 0, u0,i(·) ∈ BUC(R,R).
We have another definition that is equivalent to the one above.

Definition 2.2. Assume that there is a v = (vi)n1 ∈ BUC(R× [−τ, b),Rn), b > 0
such that vi is C2 in x ∈ R, C1 in t ∈ [0, b) for i = 1, 2 . . . , n, and vi satisfies

∂vi
∂t
≥ (≤)Di∆vi + F i

(
v1(x, t− τ), . . . , vi−1(x, t− τ), vi(x, t), vi+1(x, t− τ),

. . . , vn(x, t− τ)
)
, x ∈ R, t ∈ (0, b), i = 1, 2 . . . , n,

(2.4)
and that |∂vi∂t −Di∆vi−F i(v1(x, t−τ), . . . , vi−1(x, t−τ), vi(x, t), vi+1(x, t−τ), . . . ,
vn(x, t− τ))| is bounded on R× [0, b), and that −d0 ≤ vi(x, t) ≤ 1 + d0 for (x, t) ∈
R× [0, b), i = 1, 2 . . . , n. Then v is a supersolution (subsolution) of (1.1) on [0, b).

By the positivity of the linear semigroup T(t) : X → X, it easily follows that
(2.3) holds. Therefore, Definition 2.2 is equivalent to Definition 2.1.

Now, we give the comparison principle for (1.1), proved in [23, 24].

Theorem 2.3. Assume (H1)–(H3) hold. Then for any u0 ∈ [−d0, 1 + d0]nC , Equa-
tion (1.1) has a unique mild solution u(x, t,u0) on [0,∞) and it is a classical
solution to (1.1) for (x, t) ∈ R × (τ,∞). Furthermore, for any pair of superso-
lution u1(x, t) and subsolution u2(x, t) of (1.1) on [0,∞) with u1(x, t),u2(x, t) ∈
[−d0, 1 + d0]n, x ∈ R, t ∈ [−τ,∞) and u1(x, s) ≥ u2(x, s), x ∈ R, s ∈ [−τ, 0], then
there holds u1(x, t) ≥ u2(x, t), x ∈ R, t ≥ 0, where u1 = (u1,i)ni=1,u2 = (u2,i)ni=1.
At the same time, there exists

u1,i(x, t)− u2,i(x, t) ≥ θi(J, t− t0)
∫ z+1

z

(
u1,i(y, t0)− u2,i(y, t0)

)
dy



EJDE-2014/02 MONOTONICITY AND UNIQUENESS OF TRAVELING WAVES 5

for any J ≥ 0, x ∈ R, z ∈ R with |x− z| ≤ J and t > t0 ≥ 0, where

θi(J, t) =
1√

4πDit
exp

{
− Lit−

(J + 1)2

4Dit

}
, J ≥ 0, t > 0,

Li = max{|∂jF i(u)| : u ∈ [−d0, 1 + d0]n}, i, j = 1, 2, . . . , n.

Before giving some lemmas about the construction of super- and subsolution
of (1.1), we need some preparations: First, we use the traveling wave solution
U and a positive bounded vector function p to construct super- and subsolution
of (1.1). By the hypotheses (H2)-(H3) and Perron-Frobenius Theorem, we know
that the principal eigenvalues (the eigenvalue with the maximal real part) of F′(0)
and F′(1) are negative and the corresponding eigenvectors are positive. Therefore,
there exist irreducible constant matrixes M± = (α±ij) such that ∂F i

∂uj
(0) < α−ij and

∂F i

∂uj
(1) < α+

ij for i, j = 1, 2, . . . , n, and that the principal eigenvalues of M± are
negative. Then we can choose positive vectors p± = (p±1 , p

±
2 , . . . , p

±
n ) and p−i < p+

i ,
i = 1, 2, . . . , n, such that p± are positive eigenvectors corresponding to the principal
eigenvalues of M±. Define

ν(s) =
1
2

(
1 + tanh

s

2

)
and let the positive vector function p(ξ) = (p1(ξ), p2(ξ), . . . , pn(ξ)) defined by

pi(ξ) = ν(ξ)p+
i + (1− ν(ξ))p−i , i = 1, 2, . . . , n.

It is easy to check p(ξ) satisfies the following conditions:

pi(·) ∈
[

min{p−i , p
+
i },max{p−i , p

+
i }
]

= [p−i , p
+
i ] on R,

min
1≤j≤n

inf
ξ∈R

pj(ξ) > 0, p′i(ξ) > 0, ξ ∈ R,

pi(ξ)→ p±i and p′i(ξ)→ 0 as ξ → ±∞ for i = 1, 2, . . . , n.

Thus the needed pair of super- and sub-solution of (1.1) can be constructed in the
following lemma (see [23, 24]).

Lemma 2.4. There exist positive constants β0, σ0 and d̃0 ∈ (0, 1
2 ) such that for

any δ ∈ (0, d̃0] and every ξ0 ∈ R, the following functions w± defined by

w±(x, t) = U(x− ct+ ξ0 ± σ0δ(1− e−β0t))± δp(x− ct)e−β0t (2.5)

are a super-solution and a sub-solution respectively of (1.1), here

w± = (w±1 , w
±
2 , . . . , w

±
1 ).

In the sequel, we still keep the notation β0, σ0, d̃0 and p(·).

3. Monotonicity of traveling waves

In this section, we establish the monotonicity of a traveling wave solution U(·)
of (1.1). We show that U(·) is strictly monotone in the following theorem.

Theorem 3.1. If u(x, t) = U(x−ct) is a traveling wave solution of (1.1) satisfying
limx→+∞U(x) = 1 and limx→−∞U(x) = 0 with 0 ≤ U(·) ≤ 1, then U is strictly
increasing and U′(x) > 0 for almost all x ∈ R.
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Proof. As mentioned before, let

pmin = min{p−i , p
+
i }, p− =

(
p−1 , . . . , p

−
i , . . . , p

−
n

)
, i = 1, 2, . . . , n,

pmax = max{p−i , p
+
i }, p+ =

(
p+
1 , . . . , p

+
i , . . . , p

+
n

)
, i = 1, 2, . . . , n,

and let β0 be a positive constant satisfying

β0 ≤
3
4
γeβ0τ , (3.1)

where γ > 0. Let ζ0(x) be a smooth function such that

ζ0(x) = 0 for x ≤ −2, ζ0(x) = 1 for x ≥ 2,

0 ≤ ζ ′0(x) ≤ 1 and |ζ ′′0 (x)| ≤ 1 for all x ∈ R.

Define
bi(x, t) = [

(
1− ζ0(x)

)
p−i + ζ0(x)p+

i ]e−β0t. (3.2)

Then, we divide the proof into three steps.
Step 1. It is obvious that 1 and 0 are super-solution and sub-solution of (1.1),
respectively. By the comparison principle, we have

0 < U(x) < 1 (3.3)

for all x ∈ R.
Step 2. We claim that, for some z∗ large enough,

0 < U(x− z) < U(x) (3.4)

for all x ∈ R and z ∈ R with z ≥ z∗.
Let bi be defined as in (3.2) and let

vαi (x, t− τ) = Ui(x+ cτ) + αbi(x, t− τ), i = 1, 2, . . . , n, (3.5)

where the constant τ is the delay in (1.1). If τ = 0 in (3.5), then

vαi (x, t) = Ui(x) + αbi(x, t), i = 1, 2, . . . , n,

where Ui(·) is the traveling wave solutions of (2.2). Hence vαit = αbit, v
α
ix =

Uix(x) + αbix, v
α
ixx = Uixx(x) + αbixx.

Now, we claim that there exists ξ∗ � 1 and α∗ > 0 such that, for all 0 < α < α∗,

Lvαi (x, t) = vαit −Div
α
ixx − cvαix − F i

(
vα1 (x, t− τ), . . . , vαi (x, t), . . . , vαn(x, t− τ)

)
≥ 0

(3.6)
for all x ∈ R with |x| > ξ∗ and all t ∈ R+. In fact,

Lvαi (x, t) = F i
(
U1(x+ cτ), . . . , Ui(x), . . . , Un(x+ cτ)

)
− F i

(
vα1 (x, t− τ), . . . , vαi (x, t), . . . , vαn(x, t− τ)

)
+ α(bit −Dibixx − cbix).

(3.7)

Since limx→+∞U(x) = 1 and limx→−∞U(x) = 0, we have

F i
(
U1(x+ cτ), . . . , Ui(x), . . . , Un(x+ cτ)

)
− F i

(
vα1 (x, t− τ), . . . ,

vαi (x, t), . . . , vαn(x, t− τ)
)

= F i
(
U1(x+ cτ), . . . , Ui(x), . . . , Un(x+ cτ)

)
− F i

(
U1(x+ cτ) + αb1(x, t− τ), . . . ,

Ui(x) + αbi(x, t), . . . , Un(x+ cτ) + αbn(x, t− τ)
)
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= −α
∑

1≤i 6=j≤n

∂F i

∂uj

(
U1(x+ cτ) + θ1αb1(x, t− τ), . . . , Ui(x) + θiαbi(x, t), . . . ,

Un(x+ cτ) + θnαbn(x, t− τ)
)
· bj(x, t− τ)

− α∂F
i

∂ui

(
U1(x+ cτ) + θ1αb1(x, t− τ), . . . , Ui(x) + θiαbi(x, t), . . . ,

Un(x+ cτ) + θnαbn(x, t− τ)
)
· bi(x, t)

≥ −α
∑

1≤i 6=j≤n

α±ijbj(x, t− τ)− αα±iibi(x, t)

≥ −α
∑

1≤i 6=j≤n

α±ijbj(x, t− τ)− αα±iibi(x, t− τ)

(
because α±ii ≥ 0 and bi(x, t) ≤ bi(x, t− τ)

)
= −α

n∑
j=1

α±ijbj(x, t− τ)

≥ αγbi(x, t− τ)

= αγ[
(
1− ζ0(x)

)
p−i + ζ0(x)p+

i ]e−β0(t−τ) → αγeβ0τp+
i e
−β0t

uniformly in t as x→∞ and α→ 0. Therefore, there exist ξ1 > 2 and α0 > 0 such
that

F i
(
U1(x+ cτ), . . . , Ui(x), . . . , Un(x+ cτ)

)
− F i

(
vα1 (x, t− τ), . . . , vαi (x, t), . . . , vαn(x, t− τ)

)
>

3
4
αγeβ0τp+

i e
−β0t

(3.8)

for all t ∈ R+, x ∈ R with x > ξ1 and 0 < α < α0.
For x > 2, bix = 0 and bixx = 0, therefore, from (3.7)-(3.8),

Lvαi (x, t)

= F i
(
U1(x+ cτ), . . . , Ui(x), . . . , Un(x+ cτ)

)
− F i

(
vα1 (x, t− τ), . . . , vαi (x, t), . . . , vαn(x, t− τ)

)
+ α(bit −Dibixx − cbix)

>
3
4
αγeβ0τp+

i e
−β0t + α(−β0)e−β0tp+

i

= αe−β0tp+
i

(3
4
γeβ0τ − β0

)
≥ 0

(by (3.1)). Choose α∗ = α0 and ξ∗ = ξ1, then, when 0 < α < α∗ and x > ξ∗, we
have

Lvαi (x, t) ≥ 0.

This proves the claim (3.6) for x near +∞. Similarly we can prove the claim for x
near −∞.

We assume that (3.6) holds. Since limx→+∞U(x) = 1 and limx→−∞U(x) = 0,
there exists z∗ > 0 such that

U(x− z) ≤

{
U(x), x ∈ [−ξ∗, ξ∗]
U(x) + α∗p−, x∈̄[−ξ∗, ξ∗]
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for all z ∈ R with z ≥ z∗, where p− =
(
p−1 , . . . , p

−
i , . . . , p

−
n

)
, i = 1, 2, . . . , n. We

claim that (3.4) holds with this choice of z∗. In fact, vα∗i (x, t) in (3.5) satisfies

vα∗i (x, t) ≥ Ui(x) ≥ Ui(x− z)
for all x ∈ [−ξ∗, ξ∗], t ∈ R and

vα∗i (x, 0) ≥ Ui(x) + α∗p
−
i ≥ Ui(x− z)

for all x ∈ R. Applying the comparison principle to vα∗i (x, t)− Ui(x− z), we have

Ui(x− z) ≤ Ui(x) + α∗bi(x, t) (3.9)

for all x ∈ R, t ∈ R. Let t→ +∞, we get (3.4).
Step 3. We prove that (3.4) holds for all z ≥ 0. Let

z0 = inf{z̃ ≥ 0 : Ui(x− z) ≤ Ui(x), ∀z ≥ z̃, x ∈ R}, (3.10)

we prove that
Ui(x− z0) = Ui(x) (3.11)

for all x ∈ R. Otherwise, by the comparison principle we have

Ui(x− z0) < Ui(x) (3.12)

for all x ∈ R. There exists ε∗ such that

U(x− z) ≤

{
U(x), for x ∈ [−ξ∗, ξ∗]
U(x) + α∗p−, for x∈̄[−ξ∗, ξ∗]

for all z ∈ R and z ≥ z0 − ε∗. By a similar argument to that in Step 2, one can
show that (3.4) holds for all z ≥ z0 − ε∗, which contradicts the choice of z0.

Since limx→+∞U(x) = 1 and limx→−∞U(x) = 0, we deduce from (3.11) that
z0 = 0. Therefore, (3.4) holds for all z ≥ 0. Hence U′(x) ≥ 0 for almost all x ∈ R.
By the comparison principle, we have U′(x) > 0 for almost all x ∈ R. �

4. Liapunov stability and uniqueness of traveling waves

In this section, based on the monotonicity result obtained in Section 3 and on
the globally asymptotic exponential stability with phase shift of monotone traveling
wave solutions of (1.1) in [24], we establish the Liapunov stability and uniqueness up
to translation of traveling wave solutions combining suitably constructed super-sub
solutions comparison and a moving plane method.

Theorem 4.1 ([24]). Suppose (H1)–(H3) hold and (1.1) has a monotone trav-
eling wave solution U(x − ct) = (U1(x − ct), U2(x − ct), . . . , Un(x − ct)). Let
u = (u1, u2, . . . , un) be the solution of (1.1) with the initial data u(x, s) = u0(x, s),
x ∈ R, s ∈ [−τ, 0]. For any u0,i ∈ [0, 1]C , i = 1, 2, . . . , n and u0 = (u0,i)ni=1, if

ε(u0(x, s)) := sup
{

lim sup
x→−∞

‖u0(x, s)− 0‖, lim sup
x→+∞

‖u0(x, s)− 1‖
}
, s ∈ [−τ, 0]

is small enough, then U(x−ct) is globally exponential stable with phase in the sense
that there exists a positive constant k > 0 such that the solution u(x, t,u0) of (1.1)
satisfies

|ui(x, t,u0)− Ui(x− ct+ ξ)| ≤ Ke−kt, x ∈ R, t ≥ 0,
for some K = K(u0) and ξ = ξ(u0).

As a direct consequence of Theorem 4.1, we have the other main result in this
paper.
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Theorem 4.2. Every monotone traveling wave solution of (1.1) is Liapunov stable.
If (1.1) has a monotone traveling wave solution U(x − ct) = (U1(x − ct), U2(x −
ct), . . . , Un(x − ct)), then the traveling wave solutions of (1.1) are unique up to a
translation in the sense that for any traveling wave solution Ū(x − c̄t) = (Ū1(x −
c̄t), Ū2(x − c̄t), . . . , Ūn(x − c̄t)), with 0 ≤ Ūi(ξ) ≤ 1, ξ ∈ R, i = 1, 2, . . . , n, we have
c̄ = c and Ūi(·) = Ui(ξ0 + ·) for some ξ0 = ξ0(Ū) ∈ R, i = 1, 2, . . . , n.

Proof. Let U(x − ct) = (U1(x − ct), U2(x − ct), . . . , Un(x − ct)) be a monotone
traveling wave solutions of (1.1). By the uniform continuity of Ui(·) on R, it follows
that for any ε > 0, there exists a δ3 = δ3(ε) > 0 such that for all |y| ≤ δ3, there is

|Ui(x− ct+ y)− Ui(x− ct)| <
ε

2
, x ∈ R, t ≥ 0. (4.1)

We then choose a δ = δ(ε) > 0 such that δ < min{ ε
2p+i

, δ3e
−β0τ

σ0
, d̃0}, where β0, σ0

and d̃0 are as in Lemma 2.4. For any u0 ∈ C([−τ, 0], X) with |u0,i(x, s) − Ui(x −
cs)| < δ for s ∈ [−τ, 0] and x ∈ R, i = 1, 2, . . . , n, we have

Ui(x− cs+ σ0δ(1− eβ0τ )− σ0δ(1− e−β0s))− δpi(x− cs)e−β0s

≤ u0,i(x, s)

≤ Ui(x− cs+ σ0δ(eβ0τ − 1) + σ0δ(1− e−β0s)) + δpi(x− cs)e−β0s

(4.2)

By Lemma 2.4 and Theorem 2.3, it follows that

Ui(x− ct+ σ0δ(1− eβ0τ )− σ0δ(1− e−β0t))− δpi(x− ct)e−β0t

≤ ui(x, t,u0)

≤ Ui(x− ct+ σ0δ(eβ0τ − 1) + σ0δ(1− e−β0t)) + δpi(x− ct)e−β0t

for x ∈ R, t ≥ 0, i = 1, 2, . . . , n. By the fact that pi(·) ∈ [p−i , p
+
i ] on R, we have

Ui(x− ct+ σ0δ(1− eβ0τ )− σ0δ(1− e−β0t))− δp+
i e
−β0t

≤ ui(x, t,u0)

≤ Ui(x− ct+ σ0δ(eβ0τ − 1) + σ0δ(1− e−β0t)) + δp+
i e
−β0t.

(4.3)

By the choice of δ = δ(ε), we have that for all t ≥ 0,

|σ0δ(1− eβ0τ )− σ0δ(1− e−β0t)| ≤ σ0δ(eβ0τ − 1) + σ0δ(1− e−β0t)

≤ σ0δe
β0τ < δ3(ε),

and

|σ0δ(eβ0τ − 1) + σ0δ(1− e−β0t)| ≤ σ0δ(eβ0τ − 1) + σ0δ(1− e−β0t)

≤ σ0δe
β0τ < δ3(ε).

Then by (4.1) and (4.3), it follows that Ui(x−ct)−ε ≤ ui(x, t,u0) ≤ Ui(x−ct)+ε,
for x ∈ R, t ≥ 0, i = 1, 2, . . . , n. That is to say, |ui(x, t,u0) − Ui(x − ct)| < ε, for
x ∈ R, t ≥ 0, i = 1, 2, . . . , n. Therefore, Ui(x − ct), i = 1, 2, . . . , n. is Liapunov
stable; i.e. U(x− ct) is Liapunov stable.

We are ready to prove the uniqueness of traveling wave solutions. Let U(x −
ct) = (U1(x − ct), U2(x − ct), . . . , Un(x − ct)), be the given monotone traveling
wave solution of (1.1), and let Ū(x− c̄t) = (Ū1(x− c̄t), Ū2(x− c̄t), . . . , Ūn(x− c̄t)),
with 0 ≤ Ūi(ξ) ≤ 1, ξ ∈ R, i = 1, 2, . . . , n, be any traveling wave solution of
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(1.1) with 0 ≤ Ūi ≤ 1 on R, i = 1, 2, . . . , n. Since limx→∞ Ūi(x − c̄s) = 1 and
limx→−∞ Ūi(x− c̄s) = 0 uniformly for s ∈ [−τ, 0], i = 1, 2, . . . , n, thus there exists

ε(Ūi(x, s)) := sup
{

lim sup
x→−∞

‖Ūi(x− c̄s)− 0‖, lim sup
x→+∞

‖Ūi(x− c̄s)− 1‖
}
, s ∈ [−τ, 0]

(4.4)
is small enough. Then, by Theorem 4.1, there exist K̄ = K̄(Ū) > 0, and ξ0 =
ξ0(Ū) ∈ R such that

|Ūi(x− c̄t)− Ui(x− ct+ ξ0)| ≤ K̄e−kt, x ∈ R, t ≥ 0, i = 1, 2, . . . , n. (4.5)

Let ξ̄ ∈ R such that 0 < Ūi(ξ̄) < 1, and define L(ξ̄) := {(x, t)|x ∈ R, t ≥ 0, x− c̄t =
ξ̄}. Then, by (4.5), we have

Ui(ξ̄ + ξ0 + (c̄− c)t)− K̄e−kt ≤ Ūi(ξ̄) ≤ Ui(ξ̄ + ξ0 + (c̄− c)t) + K̄e−kt, (4.6)

for all (x, t) ∈ L(ξ̄), i = 1, 2, . . . , n. Since Ui(+∞) = 1 and Ui(−∞) = 0, i =
1, 2, . . . , n, letting t → ∞ in (4.6), we obtain that c̄ ≤ c from the left inequality
and that c̄ ≥ c from the right inequality. Therefore c̄ = c. For any ξ ∈ R, again by
(4.5), we then have

|Ūi(ξ)− Ui(ξ + ξ0)| ≤ K̄e−kt (4.7)

for all (x, t) ∈ L(ξ̄), i = 1, 2, . . . , n. Naturally, letting t→∞ in (4.7), we get Ūi(ξ) =
Ui(ξ + ξ0) for all ξ ∈ R, i = 1, 2, . . . , n. That is Ūi(·) = Ui(ξ0 + ·), i = 1, 2, . . . , n.
Therefore, the traveling wave solutions of (1.1) are unique up to a translation. This
completes the proof. �

5. Applications

As an application, we consider the epidemic model with delay

∂

∂t
u1(t, x) = d

∂2

∂x2
u1(t, x)− a11u1(t, x) + a12u2(t− τ, x),

∂

∂t
u2(t, x) = d̃

∂2

∂x2
u2(t, x)− a22u2(t, x) + g(u1(t− τ, x)),

(5.1)

where g satisfies the following conditions:

(A1) g ∈ C2(I), where I is an open interval in R. g(0) = 0, g′(0) ≥ 0, g′(z) > 0,
for all z > 0, limz→∞ g(z) = 1, and there exists a ς > 0 such that g′′(z) > 0
for z ∈ (0, ς) and g′′(z) < 0 for z > ς.

(A2) g′(0) < γ1 = a11a22
a12

< γ∗1 , where the equation g(z) = γ1z has one and only
one root when γ1 = γ∗1 .

Obviously, system (5.1) has three non-negative equilibria E− = (0, 0), E0 =
(a, a11a

a12
) and E+ = (e+1 , e

+
2 ) = (b, a11b

a12
), (E+ may not be the point (1, 1)), where a

and b satisfy 0 < a < b are the two positive roots of the equation g(x) = a11a22
a12

x.
In this case, E0 is a saddle point, E− and E+ are both stable nodes. Therefore we
investigate the bistable waves, see [22].

Moreover, it is easy to verify assumptions (H1)–(H3) hold. As a result, we obtain
the following theorems.

Theorem 5.1 (Stability). Suppose (A1)–(A2) hold and (5.1) has a monotone trav-
eling wave solution U(x − ct) = (U1(x − ct), U2(x − ct)). Let u = (u1, u2) be the



EJDE-2014/02 MONOTONICITY AND UNIQUENESS OF TRAVELING WAVES 11

solution of (5.1) with the initial data u(x, s) = u0(x, s), x ∈ R, s ∈ [−τ, 0]. For
any u0,i ∈ [0, 1]C , i = 1, 2 and u0 = (u0,i)ni=1, if

ε(u0(x, s)) := sup
{

lim sup
x→−∞

‖u0(x, s)−E−‖, lim sup
x→+∞

‖u0(x, s)−E+‖
}
, s ∈ [−τ, 0]

is small enough, then U(x− ct) is globally exponential stable in the sense that there
exists a positive constant k > 0 such that the solution u(x, t,u0) of (5.1) satisfies

|ui(x, t,u0)− Ui(x− ct+ ξ)| ≤ Ke−kt, x ∈ R, t ≥ 0, i = 1, 2

for some K = K(u0) and ξ = ξ(u0).

Theorem 5.2 (Monotonicity). If u(x, t) = U(x−ct) = (U1(ξ), U2(ξ)) is a traveling
wave solution of (5.1) satisfying limξ→+∞U(ξ) = E+ and limξ→−∞U(ξ) = E−

with E− ≤ U(·) ≤ E+, then U is strictly increasing and U′(ξ) > 0 for almost all
ξ ∈ R.

Next we have Liapunov stability and uniqueness.

Theorem 5.3. Every monotone traveling wave solution of (5.1) is Liapunov stable.
If (5.1) has a monotone traveling wave solution U(x−ct) = (U1(x−ct), U2(x−ct)),
then the traveling wave solutions of (1.1) are unique up to a translation in the
sense that for any traveling wave solution Ū(x− c̄t) = (Ū1(x− c̄t), Ū2(x− c̄t)), with
0 ≤ Ūi(ξ) ≤ 1, ξ ∈ R, i = 1, 2, we have c̄ = c and Ūi(·) = Ui(ξ0 + ·) for some
ξ0 = ξ0(Ū) ∈ R, i = 1, 2.

Acknowledgments. Yun-Rui Yang was supported by the NSF of China (11301241)
and Institutions of higher learning scientific research project of Gansu Province of
China (2013A-044). Yun-Rui Yang was also supported by grant 2011029 from the
Young Scientists Foundation at the Lanzhou Jiaotong University of China. This
author also wants to thank the work unit for her training and support at Lanzhou
Jiaotong University, where young teachers are encouraged to do scientific research.

Nai-Wei Liu was Supported by NSF of China (11201402).

References

[1] P. W. Bates, F. Chen; Periodic traveling waves for a nonlocal integro-differential model,

Electronic J. Differential Equations, 17 (2004), 313-346.
[2] H. Berestycki, L. Nirenberg; On the method of moving planes and the sliding method, Bol.

Soc. Bras. Mat., 22 (1991),1-37.
[3] J. Carr, A. Chmaj; Uniqueness of traveling waves for nonlocal monostable equations, Pro-

ceeding of the American Math. Society, 132(8) (2004), 2433-2439.

[4] F. X. Chen; Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal-
ysis, 50 (2002),807-838.

[5] F. X. Chen, J.-S. Guo; Uniqueness and existence traveling waves for discrete quasilinear

monostable dynamics, Mathematische Annalen, 326 (2003),123-146.
[6] F. X. Chen; Stability and uniqueness of traveling waves for system of nonlocal evolution

equations with bistable nonlinearity, Discrete. Contin. Dyn. Syst., 3 (2009), 659-673.

[7] X. Chen; Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evo-
lution equations, Adv. Differential Equations, 2 (1997), 125-160.

[8] D. Daners, P. K. Medina; Abstracet Evolution Equations, Periodic Problems and Applications

Pitman Res. Notes Math. Ser. 279, Longman Scientific and Technical, Harlow, 1994.
[9] O. Diekmann, H. G. Kaper; On the bounded solutions of a nonlinear convolution equation,

Nonlinear Analysis, 2 (1978), 721-737.

[10] William Ellison, F. Ellison; Prime Numbers, A Wiley-Interscience Publication John Wiley
and Sons, New York, Hermann, Paris, 1985.



12 Y.-R. YANG, N.-W. LIU EJDE-2014/02

[11] N. W. Liu, W. T. Li, Z.C. Wang; Entire solutions of reaction-advection-diffusion equations

with bistable nonlinearity in cylinders, J. Differential Equations, 246 (2009) 4249-4267.

[12] C. Ou, J. Wu; Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J.
Differential Equations, 235 (2007), 219-261.

[13] K. W. Schaaf; Asymptotic behavior and traveling wave solutions for parabolic functional-

differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.
[14] H. L. Smith; Monotone Dynamical Systems: An introduction to the theore of competitive

and cooperatice systems, Mathematical Surveys and Monographs, vol.41, Amer. Math. Soc.,

Providence, RI, 1995.
[15] H. Smith, X. Q. Zhao; Global asymptotic stability of the traveling waves in delayed reaction-

diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.

[16] J. C. Tsai; Global exponential stability of traveling waves in monotone bistable systems,
Discrete Cont. Dyn. Systems, 21 (2008), 601-623.

[17] A. I. Volpert, V.A. Volpert; Application of the theory of the rotation of vector fields to the
investigation of wave solutions of parabolic equations, Trans. Moscow Math. Soc., 52 (1990),

59-108.

[18] A. I. Volpert, V. A. Volpert, V. A. Volpert; Traveling wave Solutions of Parabolic Systems,
Translations of Mathematical Monographs 140, American Mathematical Society, Province,

RI, 1994.

[19] D. V. Widder; The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.
[20] S. L. Wu, W.T. Li; Global asymptotic stability of bistable travelling fronts in reaction-

diffusion systems and their applications to population models, Chaos, Solitons and Fractals,

40 (2009), 1229-1239.
[21] J. Wu, X. Zou; Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam.

Differential Equations, 13 (2001), 651-687. Erratum, J. Dynam. Differential Equations, 16

(2004), 679-707.
[22] D. Xu, X.Q. Zhao; Bistable waves in an epidemic model, J. Dynam. Differential Equations,

16 (2004), 679-707. Erratum, J. Dynam. Differential Equations, 17 (2005), 219-247.
[23] Y. R. Yang, W.T. Li, S.L. Wu; Global stability of bistable fronts in monotone systems

with delay, Chinese Ann. Math., 31A(4) (2010), 451-462; Chinese Journal of Contemporary

Mathematics, 31(3) (2010), 249-262.
[24] Y. R. Yang; Stability of traveling wave solutions of reaction-diffusion equations with delay,

Ph.D. Thesis, LanZhou University, 2010.

[25] Y. R. Yang, W. T. Li, S. L. Wu; Exponential stability of traveling fronts in a diffusion
epidemic system with delay, Nonlinear Analysis RWA,12 (2011), 1223-1234.

[26] Y. R. Yang, W. T. Li, S. L. Wu; Stability of traveling waves in a monostable delayed system

without quasi-monotonicity, Nonlinear Analysis RWA, 14 (2013), 1511-1526.
[27] P. A. Zhang, W. T. Li; Monotonicity and uniqueness of traveling waves for a reaction-diffusion

model with a quiescent stage, Nonlinear Analysis TMA, 72(5) (2010), 2178-2189.

Yun-Rui Yang
School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, Gansu
730070, China

E-mail address: lily1979101@163.com

Nai-Wei Liu

School of Mathematics and Information Science, Yantai University, YanTai, Shandong
264005, China.

School of Mathematics, Shandong University, Jinan, Shandong 250100, China
E-mail address: liunaiwei@yahoo.com.cn


	1. Introduction
	2. Preliminaries
	3. Monotonicity of traveling waves
	4. Liapunov stability and uniqueness of traveling waves
	5. Applications
	Acknowledgments

	References

