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EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A
QUASILINEAR SCHRÖDINGER EQUATIONS WITH

SIGN-CHANGING POTENTIAL

XIANG-DONG FANG, ZHI-QING HAN

Abstract. In this article we consider the quasilinear Schrödinger equation

where the potential is sign-changing. We employ a mountain pass argument

without compactness conditions to obtain the existence of a nontrivial solution.

1. Introduction

In this paper we are concerned with the existence of a nontrivial solution for the
quasilinear Schrödinger equation

−∆u+ V (x)u−∆(u2)u = f(x, u), x ∈ RN (1.1)

These type of equations come from the study of the standing wave solutions of
quasilinear Schrödinger equations derived as models for several physical phenomena;
see [12]. The case infRN V (x) > 0 has been extensively studied in recent years.
However, to our best knowledge, there is no result for the other important case
infRN V (x) < 0. The various methods developed for the quasilinear Schrödinger
equations do not seem to apply directly in this case.

In this article, we assume that the potential is sign-changing and the nonlinearity
is more general than in other articles. Some authors recover the compactness by
assuming that the potential V (x) is either coercive or has radial symmetry, see
[4, 9, 11, 12]. Here we do not need the compactness, but we assume the potential
bounded from above, but may be unbounded from below. We consider the case
N ≥ 3. This work is motivated by the ideas in [3, 14, 15, 18].

First we consider the problem

−∆u+ V (x)u−∆(u2)u = g(x, u) + h(x), u ∈ H1(RN ). (1.2)

We suppose that V and g satisfy the following assumptions:
(G1) g is continuous, and |g(x, u)| ≤ a(1 + |u|p−1) for some a > 0 and 4 < p <

2 · 2∗, where 2∗ := 2N/(N − 2).
(G2) g(x, u) = o(u) uniformly in x as u→ 0.
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(G3) There exists θ > 4 such that 0 < θG(x, u) ≤ g(x, u)u, for x ∈ RN , u ∈
R\{0}, where G(x, u) :=

∫ u
0
g(x, s)ds.

(V1) V (x) is sign-changing, V +(x) ∈ L∞(RN ), lim|x|→∞ V +(x) = a0 > 0 and
|V −|LN/2(RN ) <

θ−4
S(θ−2) , where V ±(x) := max{±V (x), 0}, and S denotes

the Sobolev optimal constant.
(V2)

∫
RN |∇u|2 + V (x)u2 > 0 for every u ∈ E \ {0}.

(H1) h 6= 0 and |h|L2N/(N+2) < S−1/2kρ, where k and ρ are given in Lemma 3.2.
We remark that (V2) means that either V − is small or V − has a small support. It
is also easy to give a concrete condition on V − satisfying (V2). Note that (H1) is
similar to condition (H8) in [18]. Let

E :=
{
u ∈ H1(RN ) :

∫
RN

V +(x)u2dx <∞
}
,

with norm ‖u‖ :=
( ∫

RN |∇u|2 +V +(x)u2
)1/2. It is obvious that ‖·‖ is an equivalent

norm with the standard one by (V1). In Section 3 we prove one of the main result
of this article:

Theorem 1.1. Suppose that (V1), (V2), (G1)–(G3), (H1) are satisfied. Then (1.1)
has a nontrivial solution.

Remark 1.2. Under stronger conditions on V , we can derive the existence of a
nontrivial solution without the small perturbation term h. For example, if V is
continuous, 1-periodic in xi, 1 ≤ i ≤ N , and there exists a constant a0 > 0 such
that V (x) ≥ a0 for all x ∈ RN . It is obvious that the condition in Theorem 1.1
is satisfied, so we have a bounded (C)c sequence by the proof of Theorem 1.1.
Similarly as in [14, Lemma 1.2], under a translation if necessary, we get a nontrivial
solution.

Also, we consider the problem

−∆u+ V (x)u−∆(u2)u = g(u), u ∈ H1(RN ), (1.3)

where the nonlinearity g satisfies (G1)–(G3). We assume that
(V1’) V (x) is sign-changing, lim|x|→∞ V +(x) = V +(∞) > 0, V +(x) ≤ V +(∞)

on RN and |V −|LN/2(RN ) < (θ − 4)/(S(θ − 2)).
Note that (V1’) implies (V1). The second main result of this paper, which we prove
in Section 4, is the following.

Theorem 1.3. Suppose that (V1’), (V2) are satisfied. Then (1.3) admits a non-
trivial solution.

Remark 1.4. We would like to point out that (V1’) is weaker than the assumptions
(V0) and (V1) in [3]. But they obtain the existence of a positive solution, while we
do not.

Positive constants will be denoted by C,C1, C2, . . . , while |A| will denote the
Lebesgue measure of a set A ⊂ RN .

2. Preliminary results

We observe that (1.1) is the Euler-Lagrange equation associated with the energy
functional

J(u) :=
1
2

∫
RN

(1 + 2u2)|∇u|2 +
1
2

∫
RN

V (x)u2 −
∫

RN

(G(x, u) + h(x)u). (2.1)
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To use the usual argument, we make a change of variables v := f−1(u), where f is
defined by

f ′(t) =
1

(1 + 2f2(t))1/2
on [0,+∞) and f(t) = −f(−t)on (−∞, 0].

Below we summarize the properties of f , whose can be found in [3, 6, 7].

Lemma 2.1. The function f satisfies the following properties:
(1) f is uniquely defined, C∞ and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)/t→ 1 as t→ 0;
(5) f(t)/

√
t→ 21/4 as t→ +∞;

(6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t ∈ R;
(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(8) f2(t)− f(t)f ′(t)t ≥ 0 for all t ∈ R;
(9) there exists a positive constant C such that |f(t)| ≥ C|t| for |t| ≤ 1 and
|f(t)| ≥ C|t|1/2 for |t| ≥ 1;

(10) |f(t)f ′(t)| < 1/
√

2 for all t ∈ R.

Consider the functional

I(v) :=
1
2

∫
RN

|∇v|2 +
1
2

∫
RN

V (x)f2(v)−
∫

RN

(G(x, f(v)) + h(x)f(v)).

Then I is well-defined on E and I ∈ C1(E,R) under the hypotheses (V1), (G1)
and (G2). It is easy to see that

〈I ′(v), w〉 =
∫

RN

∇v∇w +
∫

RN

V (x)f(v)f ′(v)w −
∫

RN

(g(x, f(v)) + h(x))f ′(v)w

for all v, w ∈ E and the critical points of I are weak solutions of the problem

−∆v + V (x)f(v)f ′(v) = (g(x, f(v)) + h(x))f ′(v), v ∈ E.

If v ∈ E is a critical point of the functional I, then u = f(v) ∈ E and u is a solution
of (1.1) (cf: [3]).

3. Proof of Theorem 1.1

In the following we assume that (V1), (V2), (G1)–(G3) and (H1) are satisfied.
First, (G1) and (G2) imply that for each ε > 0 there is Cε > 0 such that

|g(x, u)| ≤ ε|u|+ Cε|u|p−1 for all u ∈ R. (3.1)

Lemma 3.1. There exist ξ, α > 0 such that
∫

RN |∇u|2 +
∫

RN V (x)f2(u) ≥ α‖u‖2,
if ‖u‖ = ξ.

Proof. Arguing by contradiction, there exist un → 0 in E, such that∫
RN

|∇vn|2 + V (x)
f2(un)
u2
n

v2
n → 0.

where vn := un

‖un‖ . We have that un → 0 in L2(RN ), un → 0 a.e., vn ⇀ v in E,
vn → v in L2

loc, vn → v a.e. up to a subsequence.
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If v 6= 0, then we claim that

lim inf
n→∞

∫
RN

|∇vn|2 + V (x)
f2(un)
u2
n

v2
n ≥

∫
RN

|∇v|2 + V (x)v2.

Indeed, we have

lim inf
n→∞

∫
RN

V +(x)
f2(un)
u2
n

v2
n ≥

∫
RN

V +(x)v2

due to Fatou’s lemma and Lemma 2.1-(4). Since v2
n ⇀ v2 in LN/(N−2) and V −(x) ∈

LN/2, we obtain∫
RN

V −(x)
f2(un)
u2
n

v2
n ≤

∫
RN

V −(x)v2
n →

∫
RN

V −(x)v2

by Lemma 2.1(3) and the definition of the weak convergence. We have a contra-
diction to (V2).

The other case is v = 0. Note that limn→∞
∫

RN V −(x) f
2(un)
u2

n
v2
n = 0, then∫

RN

(|∇vn|2 + V +(x)v2
n) +

∫
RN

V +(x)
(f2(un)

u2
n

− 1
)
v2
n → 0.

We use a similar argument as in [8, Lemma 3.3]. Since un → 0 in L2(RN ), for every
ε > 0, |{x ∈ RN : |un(x)| > ε}| → 0 as n → ∞. We have by (V1), Lemma 2.1(3)
and the Hölder inequality,∣∣ ∫

|un|>ε
V +(x)

(f2(un)
u2
n

− 1
)
v2
n

∣∣ ≤ C ∫
|un|>ε

v2
n

≤ |{x ∈ RN : |un(x)| > ε}|2/N |vn|22∗ → 0.

Now it follows from Lemma 2.1(4) and
∫

RN V +(x)v2
n ≤ C1 that∫

|un|<ε
V +(x)

(f2(un)
u2
n

− 1
)
v2
n

is small as ε is small. So vn → 0 in E which contradicts to ‖vn‖ = 1. We finish the
proof. �

Lemma 3.2. There exist k, ρ > 0(small) such that inf‖u‖=ρ I1(u) ≥ kρ2, where
I1(u) := I(u) +

∫
RN h(x)f(u).

Proof. Due to (G1) and (G2), we have for each ε > 0, there exists Cε > 0, such
that |g(x, u)| ≤ ε|u|+Cε|u|p−1. So it follows from a standard argument by Lemma
(2.1)(3),(7) and Lemma 3.1 that I1(u) ≥ k‖u‖2 = kρ2. �

Lemma 3.3. For the above ρ, inf‖u‖=ρ I(u) > 0.

Proof. By Lemma 3.2 and Lemma 2.1-(3), we derive

I(u) ≥ k‖u‖2 −
∫

RN

h(x)f(u)

≥ k‖u‖2 − |h|L2N/(N+2)S1/2
(∫

RN

|∇u|2
)1/2

≥ k‖u‖2 − |h|L2N/(N+2)S1/2‖u‖

= ‖u‖(k‖u‖ − |h|L2N/(N+2)S1/2) > 0
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�

Lemma 3.4. There exists u0 6= 0, such that I(u0) ≤ 0.

Proof. We have by condition (G3) and Lemma 2.1(3),∫
u6=0

G(x, f(tu))
t4

=
∫
u6=0

G(x, f(tu))
f4(tu)

f4(tu)
t4u4

u4 →∞.

Hence limt→∞
I(tu)
t4 = −∞. �

Since the functional I satisfies the mountain pass geometry, the (C)c sequence
exists, where c := infr∈Γ maxt∈[0,1] I(r(t)) and Γ := {r ∈ C([0, 1], E) : r(0) =
0, r(1) = u0}.

Lemma 3.5. The (C)c sequence (un) is bounded.

Proof. We employ a similar argument as in [14, Lemma 3.3]. First we claim∫
RN

|∇un|2 +
∫

RN

V +(x)f2(un) ≤ C1.

Indeed, we have

I(un) =
1
2

∫
RN

|∇un|2 + V (x)f2(un)−
∫

RN

(G(x, f(un)) + h(x)f(un))→ c ,

I ′(un)un =
∫

RN

|∇un|2 + V (x)f(un)f ′(un)un

−
∫

RN

(g(x, f(un)) + h(x))f ′(un)un → 0 .

Hence
I(un)− 2

θ
I ′(un)un = c+ o(1).

By Lemma 2.1(6),(3) and (G3) we obtain

C2 + C3

(∫
RN

|∇un|2
)1/2

≥ C2 + (1− 1
θ

)
∫

RN

h(x)f(un)

≥ (
1
2
− 2
θ

)
(∫

RN

|∇un|2 + V +(x)f2(un)
)
− (

1
2
− 1
θ

)
∫

RN

V −(x)f2(un)

≥ (
1
2
− 2
θ

)
(∫

RN

|∇un|2 + V +(x)f2(un)
)
− (

1
2
− 1
θ

)
∫

RN

V −(x)u2
n

≥ (
1
2
− 2
θ

)
(∫

RN

|∇un|2 + V +(x)f2(un)
)
− (

1
2
− 1
θ

)|V −|LN/2S

∫
RN

|∇un|2.

It follows from (V1) that ( 1
2 −

2
θ )− ( 1

2 −
1
θ )|V −|LN/2S > 0. The claim is proved.

To prove that (un) is bounded in E, we only need to show that
∫

RN V +(x)u2
n is

bounded. Due to Lemma 2.1(9), (V1) and the Sobolev embedding theorem, there
exists C > 0 such that∫

|un|≤1

V +(x)u2
n ≤

1
C2

∫
|un|≤1

V +(x)f2(un) ≤ C3
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and ∫
|un|≥1

V +(x)u2
n ≤ C4

∫
|un|≥1

u2∗

n ≤ C4

(∫
RN

|∇un|2
)2∗/2

≤ C5.

�

Proof of Theorem 1.1. Assume that (un) is a (C)c sequence. Then (un) is bounded
by Lemma 3.5. Going if necessary to a subsequence, un ⇀ u in E. It is obvious
that I ′(u) = 0, and u 6= 0. The proof is complete. �

4. Proof of Theorem 1.3

In this section we look for nontrivial critical points of the functional I1 : E → R
given by

I1(u) :=
1
2

∫
RN

|∇u|2 +
1
2

∫
RN

V (x)f2(u)−
∫

RN

G(f(u)),

where G(u) :=
∫ u

0
g(s)ds. And we also denote the corresponding limiting functional

Ĩ1(u) :=
1
2

∫
RN

|∇u|2 +
1
2

∫
RN

V +(∞)f2(u)−
∫

RN

G(f(u)).

Lemma 4.1. If {vn} ⊂ E is a bounded Palais-Smale sequence for I1 at level c > 0,
then, up to a subsequence, vn ⇀ v 6= 0 with I ′1(v) = 0.

Proof. Since {vn} is bounded, going if necessary to a subsequence, vn ⇀ v in E. It
is obvious that I ′1(v) = 0. If v 6= 0, then the proof is complete.

If v = 0, we claim that {vn} is also a Palais-Smale sequence for Ĩ1. Indeed,

Ĩ1(vn)− I1(vn) =
∫

RN

(V +(∞)− V +(x))f2(vn) +
∫

RN

V −(x)f2(vn)→ 0,

by (V1’), Lemma 2.1(3) and v2
n ⇀ 0 in LN/(N−2). Similarly we derive

sup
‖u‖≤1

|〈Ĩ ′1(vn)− I ′1(vn), u〉| = sup
‖u‖≤1

∣∣∣ ∫
RN

(V +(∞)− V +(x))f(vn)f ′(vn)u
∣∣∣

+ sup
‖u‖≤1

∣∣∣ ∫
RN

V −(x)f(vn)f ′(vn)u
∣∣∣→ 0.

In the following we use a similar argument as in [3, lemma 4.3]. If

lim
n→∞

sup
y∈RN

∫
BR(y)

v2
ndx = 0

for all R > 0, then we obtain a contradiction with the fact that I1(vn)→ c > 0. So
there exist α > 0, R <∞ and {yn} ⊂ RN such that

lim
n→∞

∫
BR(yn)

v2
ndx ≥ α > 0.

Denote ṽn(x) = vn(x + yn), then {ṽn(x)} is also a Palais-Smale sequence for Ĩ1.
We have that ṽn ⇀ ṽ and Ĩ1(ṽ) = 0 with ṽ 6= 0. We obtain

c = lim sup
n→∞

[Ĩ(ṽn)− 1
2
Ĩ ′(ṽn)ṽn] ≥ Ĩ(ṽ)− 1

2
Ĩ ′(ṽ)ṽ = Ĩ(ṽ),
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by Fatou’s lemma. We could find a path r(t) ∈ Γ such that r(t)(x) > 0 for all
x ∈ RN , and all t ∈ (0, 1], ω̃ ∈ r([0, 1]) and maxt∈[0,1] Ĩ1(r(t)) = Ĩ1(ω̃) ≤ c. Thus
I1(r(t)) < Ĩ1(r(t)) for all t ∈ (0, 1], and then

c ≤ max
t∈[0,1]

I1(r(t)) < max
t∈[0,1]

Ĩ1(r(t)) ≤ c,

a contradiction. �

Proof of Theorem 1.3. The argument is the same as in [3]. By Lemmas 3.2 and
3.4, the functional I1 has a mountain pass geometry. So the (C)c-sequence {un}
exists, where c := infr∈Γ maxt∈[0,1] I1(r(t)) and Γ := {r ∈ C([0, 1], E) : r(0) =
0, I1(r(1)) < 0}. It follows from Lemma 3.5 that {un} is bounded. Hence {un} is a
bounded Palais-Smale sequence for I1 at level c > 0. Due to Lemma 4.1, we have
I ′1(v) = 0 and v 6= 0. �
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