Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 05, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

XIANG-DONG FANG, ZHI-QING HAN

ABSTRACT. In this article we consider the quasilinear Schrödinger equation where the potential is sign-changing. We employ a mountain pass argument without compactness conditions to obtain the existence of a nontrivial solution.

1. INTRODUCTION

In this paper we are concerned with the existence of a nontrivial solution for the quasilinear Schrödinger equation

$$-\Delta u + V(x)u - \Delta(u^2)u = f(x, u), \quad x \in \mathbb{R}^N$$
(1.1)

These type of equations come from the study of the standing wave solutions of quasilinear Schrödinger equations derived as models for several physical phenomena; see [12]. The case $\inf_{\mathbb{R}^N} V(x) > 0$ has been extensively studied in recent years. However, to our best knowledge, there is no result for the other important case $\inf_{\mathbb{R}^N} V(x) < 0$. The various methods developed for the quasilinear Schrödinger equations do not seem to apply directly in this case.

In this article, we assume that the potential is sign-changing and the nonlinearity is more general than in other articles. Some authors recover the compactness by assuming that the potential V(x) is either coercive or has radial symmetry, see [4, 9, 11, 12]. Here we do not need the compactness, but we assume the potential bounded from above, but may be unbounded from below. We consider the case $\mathbb{N} \geq 3$. This work is motivated by the ideas in [3, 14, 15, 18].

First we consider the problem

$$-\Delta u + V(x)u - \Delta(u^2)u = g(x, u) + h(x), \quad u \in H^1(\mathbb{R}^N).$$

$$(1.2)$$

We suppose that V and g satisfy the following assumptions:

- (G1) g is continuous, and $|g(x,u)| \le a(1+|u|^{p-1})$ for some a > 0 and $4 , where <math>2^* := 2N/(N-2)$.
- (G2) g(x, u) = o(u) uniformly in x as $u \to 0$.

Cerami sequences.

²⁰⁰⁰ Mathematics Subject Classification. 35A01, 35A15, 35Q55.

 $Key\ words\ and\ phrases.\ Quasilinear\ Schrödinger\ equation;\ sign-changing\ potential;$

^{©2014} Texas State University - San Marcos.

Submitted September 13, 2013. Published January 3, 2014.

- (G3) There exists $\theta > 4$ such that $0 < \theta G(x, u) \leq g(x, u)u$, for $x \in \mathbb{R}^N$, $u \in \mathbb{R} \setminus \{0\}$, where $G(x, u) := \int_0^u g(x, s) ds$.
- (V1) V(x) is sign-changing, $V^+(x) \in L^{\infty}(\mathbb{R}^N)$, $\lim_{|x|\to\infty} V^+(x) = a_0 > 0$ and $|V^-|_{L^{N/2}(\mathbb{R}^N)} < \frac{\theta-4}{S(\theta-2)}$, where $V^{\pm}(x) := \max\{\pm V(x), 0\}$, and S denotes the Sobolev optimal constant.
- (V2) $\int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2 > 0$ for every $u \in E \setminus \{0\}$.
- (H1) $h \neq 0$ and $|h|_{L^{2N/(N+2)}} < S^{-1/2}k\rho$, where k and ρ are given in Lemma 3.2.

We remark that (V2) means that either V^- is small or V^- has a small support. It is also easy to give a concrete condition on V^- satisfying (V2). Note that (H1) is similar to condition (H8) in [18]. Let

$$E := \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} V^+(x) u^2 dx < \infty \right\},$$

with norm $||u|| := \left(\int_{\mathbb{R}^N} |\nabla u|^2 + V^+(x)u^2\right)^{1/2}$. It is obvious that $||\cdot||$ is an equivalent norm with the standard one by (V1). In Section 3 we prove one of the main result of this article:

Theorem 1.1. Suppose that (V1), (V2), (G1)–(G3), (H1) are satisfied. Then (1.1) has a nontrivial solution.

Remark 1.2. Under stronger conditions on V, we can derive the existence of a nontrivial solution without the small perturbation term h. For example, if V is continuous, 1-periodic in x_i , $1 \le i \le N$, and there exists a constant $a_0 > 0$ such that $V(x) \ge a_0$ for all $x \in \mathbb{R}^N$. It is obvious that the condition in Theorem 1.1 is satisfied, so we have a bounded $(C)_c$ sequence by the proof of Theorem 1.1. Similarly as in [14, Lemma 1.2], under a translation if necessary, we get a nontrivial solution.

Also, we consider the problem

$$-\Delta u + V(x)u - \Delta(u^2)u = g(u), \quad u \in H^1(\mathbb{R}^N),$$
(1.3)

where the nonlinearity g satisfies (G1)–(G3). We assume that

(V1') V(x) is sign-changing, $\lim_{|x|\to\infty} V^+(x) = V^+(\infty) > 0, V^+(x) \le V^+(\infty)$ on \mathbb{R}^N and $|V^-|_{L^{N/2}(\mathbb{R}^N)} < (\theta - 4)/(S(\theta - 2)).$

Note that (V1') implies (V1). The second main result of this paper, which we prove in Section 4, is the following.

Theorem 1.3. Suppose that (V1'), (V2) are satisfied. Then (1.3) admits a nontrivial solution.

Remark 1.4. We would like to point out that (V1') is weaker than the assumptions (V0) and (V1) in [3]. But they obtain the existence of a positive solution, while we do not.

Positive constants will be denoted by C, C_1, C_2, \ldots , while |A| will denote the Lebesgue measure of a set $A \subset \mathbb{R}^N$.

2. Preliminary results

We observe that (1.1) is the Euler-Lagrange equation associated with the energy functional

$$J(u) := \frac{1}{2} \int_{\mathbb{R}^N} (1+2u^2) |\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x) u^2 - \int_{\mathbb{R}^N} (G(x,u) + h(x)u).$$
(2.1)

 $\mathbf{2}$

EJDE-2014/05

To use the usual argument, we make a change of variables $v := f^{-1}(u)$, where f is defined by

$$f'(t) = \frac{1}{(1+2f^2(t))^{1/2}}$$
 on $[0, +\infty)$ and $f(t) = -f(-t)$ on $(-\infty, 0]$.

Below we summarize the properties of f, whose can be found in [3, 6, 7].

Lemma 2.1. The function f satisfies the following properties:

- (1) f is uniquely defined, C^{∞} and invertible;
- (2) $|f'(t)| \leq 1$ for all $t \in \mathbb{R}$;
- (3) $|f(t)| \leq |t|$ for all $t \in \mathbb{R}$;
- (4) $f(t)/t \to 1 \text{ as } t \to 0;$
- (5) $f(t)/\sqrt{t} \rightarrow 2^{1/4}$ as $t \rightarrow +\infty$;
- (6) $f(t)/2 \le tf'(t) \le f(t)$ for all $t \in \mathbb{R}$;
- (7) $|f(t)| \leq 2^{1/4} |t|^{1/2}$ for all $t \in \mathbb{R}$;
- (8) $f^2(t) f(t)f'(t)t \ge 0$ for all $t \in \mathbb{R}$;
- (9) there exists a positive constant C such that $|f(t)| \ge C|t|$ for $|t| \le 1$ and $|f(t)| \ge C|t|^{1/2}$ for $|t| \ge 1$;
- (10) $|f(t)f'(t)| < 1/\sqrt{2}$ for all $t \in \mathbb{R}$.

Consider the functional

$$I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x) f^2(v) - \int_{\mathbb{R}^N} (G(x, f(v)) + h(x)f(v)).$$

Then I is well-defined on E and $I \in C^1(E, \mathbb{R})$ under the hypotheses (V1), (G1) and (G2). It is easy to see that

$$\langle I'(v), w \rangle = \int_{\mathbb{R}^N} \nabla v \nabla w + \int_{\mathbb{R}^N} V(x) f(v) f'(v) w - \int_{\mathbb{R}^N} (g(x, f(v)) + h(x)) f'(v) w$$

for all $v, w \in E$ and the critical points of I are weak solutions of the problem

$$\Delta v + V(x)f(v)f'(v) = (g(x, f(v)) + h(x))f'(v), \quad v \in E.$$

If $v \in E$ is a critical point of the functional I, then $u = f(v) \in E$ and u is a solution of (1.1) (cf: [3]).

3. Proof of Theorem 1.1

In the following we assume that (V1), (V2), (G1)–(G3) and (H1) are satisfied. First, (G1) and (G2) imply that for each $\varepsilon > 0$ there is $C_{\varepsilon} > 0$ such that

$$|g(x,u)| \le \varepsilon |u| + C_{\varepsilon} |u|^{p-1} \quad \text{for all } u \in \mathbb{R}.$$
(3.1)

Lemma 3.1. There exist $\xi, \alpha > 0$ such that $\int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} V(x) f^2(u) \ge \alpha ||u||^2$, if $||u|| = \xi$.

Proof. Arguing by contradiction, there exist $u_n \to 0$ in E, such that

$$\int_{\mathbb{R}^N} |\nabla v_n|^2 + V(x) \frac{f^2(u_n)}{u_n^2} v_n^2 \to 0$$

where $v_n := \frac{u_n}{\|u_n\|}$. We have that $u_n \to 0$ in $L^2(\mathbb{R}^N)$, $u_n \to 0$ a.e., $v_n \rightharpoonup v$ in E, $v_n \to v$ in L^2_{loc} , $v_n \to v$ a.e. up to a subsequence.

If $v \neq 0$, then we claim that

$$\liminf_{n \to \infty} \int_{\mathbb{R}^N} |\nabla v_n|^2 + V(x) \frac{f^2(u_n)}{u_n^2} v_n^2 \ge \int_{\mathbb{R}^N} |\nabla v|^2 + V(x) v^2.$$

Indeed, we have

$$\liminf_{n\to\infty}\int_{\mathbb{R}^N}V^+(x)\frac{f^2(u_n)}{u_n^2}v_n^2\geq\int_{\mathbb{R}^N}V^+(x)v^2$$

due to Fatou's lemma and Lemma 2.1-(4). Since $v_n^2 \rightharpoonup v^2$ in $L^{N/(N-2)}$ and $V^-(x) \in L^{N/2}$, we obtain

$$\int_{\mathbb{R}^N} V^{-}(x) \frac{f^2(u_n)}{u_n^2} v_n^2 \le \int_{\mathbb{R}^N} V^{-}(x) v_n^2 \to \int_{\mathbb{R}^N} V^{-}(x) v^2$$

by Lemma 2.1(3) and the definition of the weak convergence. We have a contradiction to (V2).

The other case is v = 0. Note that $\lim_{n \to \infty} \int_{\mathbb{R}^N} V^-(x) \frac{f^2(u_n)}{u_n^2} v_n^2 = 0$, then

$$\int_{\mathbb{R}^N} (|\nabla v_n|^2 + V^+(x)v_n^2) + \int_{\mathbb{R}^N} V^+(x) \Big(\frac{f^2(u_n)}{u_n^2} - 1\Big)v_n^2 \to 0.$$

We use a similar argument as in [8, Lemma 3.3]. Since $u_n \to 0$ in $L^2(\mathbb{R}^N)$, for every $\varepsilon > 0$, $|\{x \in \mathbb{R}^N : |u_n(x)| > \varepsilon\}| \to 0$ as $n \to \infty$. We have by (V1), Lemma 2.1(3) and the Hölder inequality,

$$\left| \int_{|u_n| > \varepsilon} V^+(x) \left(\frac{f^2(u_n)}{u_n^2} - 1 \right) v_n^2 \right| \le C \int_{|u_n| > \varepsilon} v_n^2 \\ \le |\{x \in \mathbb{R}^N : |u_n(x)| > \varepsilon\}|^{2/N} |v_n|_{2^*}^2 \to 0.$$

Now it follows from Lemma 2.1(4) and $\int_{\mathbb{R}^N} V^+(x) v_n^2 \leq C_1$ that

$$\int_{|u_n|<\varepsilon} V^+(x) \Big(\frac{f^2(u_n)}{u_n^2} - 1\Big) v_n^2$$

is small as ε is small. So $v_n \to 0$ in E which contradicts to $||v_n|| = 1$. We finish the proof.

Lemma 3.2. There exist $k, \rho > 0$ (small) such that $\inf_{\|u\|=\rho} I_1(u) \ge k\rho^2$, where $I_1(u) := I(u) + \int_{\mathbb{R}^N} h(x) f(u)$.

Proof. Due to (G1) and (G2), we have for each $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$, such that $|g(x,u)| \leq \varepsilon |u| + C_{\varepsilon} |u|^{p-1}$. So it follows from a standard argument by Lemma (2.1)(3),(7) and Lemma 3.1 that $I_1(u) \geq k ||u||^2 = k\rho^2$.

Lemma 3.3. For the above ρ , $\inf_{\|u\|=\rho} I(u) > 0$.

Proof. By Lemma 3.2 and Lemma 2.1-(3), we derive

$$\begin{split} I(u) &\geq k \|u\|^2 - \int_{\mathbb{R}^N} h(x) f(u) \\ &\geq k \|u\|^2 - |h|_{L^{2N/(N+2)}} S^{1/2} \Big(\int_{\mathbb{R}^N} |\nabla u|^2 \Big)^{1/2} \\ &\geq k \|u\|^2 - |h|_{L^{2N/(N+2)}} S^{1/2} \|u\| \\ &= \|u\| (k\|u\| - |h|_{L^{2N/(N+2)}} S^{1/2}) > 0 \end{split}$$

EJDE-2014/05

 $\mathbf{5}$

Lemma 3.4. There exists $u_0 \neq 0$, such that $I(u_0) \leq 0$.

Proof. We have by condition (G3) and Lemma 2.1(3),

$$\int_{u\neq 0} \frac{G(x,f(tu))}{t^4} = \int_{u\neq 0} \frac{G(x,f(tu))}{f^4(tu)} \frac{f^4(tu)}{t^4 u^4} u^4 \to \infty.$$

$$t \to \infty \frac{I(tu)}{t^4} = -\infty.$$

Hence $\lim_{t \to t}$

Since the functional I satisfies the mountain pass geometry, the $(C)_c$ sequence exists, where $c := \inf_{r \in \Gamma} \max_{t \in [0,1]} I(r(t))$ and $\Gamma := \{r \in C([0,1], E) : r(0) = (r \in C([0,1], E)) : r(0) = (r \in C([0,1], E)) \}$ $0, r(1) = u_0$.

Lemma 3.5. The $(C)_c$ sequence (u_n) is bounded.

Proof. We employ a similar argument as in [14, Lemma 3.3]. First we claim

$$\int_{\mathbb{R}^N} |\nabla u_n|^2 + \int_{\mathbb{R}^N} V^+(x) f^2(u_n) \le C_1$$

Indeed, we have

$$\begin{split} I(u_n) &= \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u_n|^2 + V(x) f^2(u_n) - \int_{\mathbb{R}^N} (G(x, f(u_n)) + h(x) f(u_n)) \to c \,, \\ I'(u_n) u_n &= \int_{\mathbb{R}^N} |\nabla u_n|^2 + V(x) f(u_n) f'(u_n) u_n \\ &- \int_{\mathbb{R}^N} (g(x, f(u_n)) + h(x)) f'(u_n) u_n \to 0 \,. \end{split}$$

Hence

$$I(u_n) - \frac{2}{\theta}I'(u_n)u_n = c + o(1).$$

By Lemma 2.1(6),(3) and (G3) we obtain

$$\begin{split} C_{2} &+ C_{3} \Big(\int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} \Big)^{1/2} \\ &\geq C_{2} + (1 - \frac{1}{\theta}) \int_{\mathbb{R}^{N}} h(x) f(u_{n}) \\ &\geq (\frac{1}{2} - \frac{2}{\theta}) \Big(\int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} + V^{+}(x) f^{2}(u_{n}) \Big) - (\frac{1}{2} - \frac{1}{\theta}) \int_{\mathbb{R}^{N}} V^{-}(x) f^{2}(u_{n}) \\ &\geq (\frac{1}{2} - \frac{2}{\theta}) \Big(\int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} + V^{+}(x) f^{2}(u_{n}) \Big) - (\frac{1}{2} - \frac{1}{\theta}) \int_{\mathbb{R}^{N}} V^{-}(x) u_{n}^{2} \\ &\geq (\frac{1}{2} - \frac{2}{\theta}) \Big(\int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} + V^{+}(x) f^{2}(u_{n}) \Big) - (\frac{1}{2} - \frac{1}{\theta}) |V^{-}|_{L^{N/2}} S \int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2}. \end{split}$$

It follows from (V1) that $(\frac{1}{2} - \frac{2}{\theta}) - (\frac{1}{2} - \frac{1}{\theta})|V^-|_{L^{N/2}}S > 0$. The claim is proved. To prove that (u_n) is bounded in E, we only need to show that $\int_{\mathbb{R}^N} V^+(x)u_n^2$ is bounded. Due to Lemma 2.1(9), (V1) and the Sobolev embedding theorem, there exists C > 0 such that

$$\int_{|u_n| \le 1} V^+(x) u_n^2 \le \frac{1}{C^2} \int_{|u_n| \le 1} V^+(x) f^2(u_n) \le C_3$$

and

 $\mathbf{6}$

$$\int_{|u_n| \ge 1} V^+(x) u_n^2 \le C_4 \int_{|u_n| \ge 1} u_n^{2^*} \le C_4 \Big(\int_{\mathbb{R}^N} |\nabla u_n|^2 \Big)^{2^*/2} \le C_5.$$

Proof of Theorem 1.1. Assume that (u_n) is a $(C)_c$ sequence. Then (u_n) is bounded by Lemma 3.5. Going if necessary to a subsequence, $u_n \rightharpoonup u$ in E. It is obvious that I'(u) = 0, and $u \neq 0$. The proof is complete. \Box

4. Proof of Theorem 1.3

In this section we look for nontrivial critical points of the functional $I_1: E \to R$ given by

$$I_1(u) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x) f^2(u) - \int_{\mathbb{R}^N} G(f(u)),$$

where $G(u) := \int_0^u g(s) ds$. And we also denote the corresponding limiting functional

$$\tilde{I}_1(u) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V^+(\infty) f^2(u) - \int_{\mathbb{R}^N} G(f(u))$$

Lemma 4.1. If $\{v_n\} \subset E$ is a bounded Palais-Smale sequence for I_1 at level c > 0, then, up to a subsequence, $v_n \rightharpoonup v \neq 0$ with $I'_1(v) = 0$.

Proof. Since $\{v_n\}$ is bounded, going if necessary to a subsequence, $v_n \rightarrow v$ in E. It is obvious that $I'_1(v) = 0$. If $v \neq 0$, then the proof is complete.

If v = 0, we claim that $\{v_n\}$ is also a Palais-Smale sequence for I_1 . Indeed,

$$\tilde{I}_1(v_n) - I_1(v_n) = \int_{\mathbb{R}^N} (V^+(\infty) - V^+(x)) f^2(v_n) + \int_{\mathbb{R}^N} V^-(x) f^2(v_n) \to 0,$$

by (V1'), Lemma 2.1(3) and $v_n^2 \rightharpoonup 0$ in $L^{N/(N-2)}$. Similarly we derive

$$\sup_{\|u\| \le 1} |\langle \tilde{I}'_1(v_n) - I'_1(v_n), u \rangle| = \sup_{\|u\| \le 1} \left| \int_{\mathbb{R}^N} (V^+(\infty) - V^+(x)) f(v_n) f'(v_n) u \right| + \sup_{\|u\| \le 1} \left| \int_{\mathbb{R}^N} V^-(x) f(v_n) f'(v_n) u \right| \to 0.$$

In the following we use a similar argument as in [3, lemma 4.3]. If

$$\lim_{n \to \infty} \sup_{y \in \mathbb{R}^N} \int_{B_R(y)} v_n^2 dx = 0$$

for all R > 0, then we obtain a contradiction with the fact that $I_1(v_n) \to c > 0$. So there exist $\alpha > 0$, $R < \infty$ and $\{y_n\} \subset \mathbb{R}^N$ such that

$$\lim_{n \to \infty} \int_{B_R(y^n)} v_n^2 dx \ge \alpha > 0.$$

Denote $\tilde{v}_n(x) = v_n(x+y_n)$, then $\{\tilde{v}_n(x)\}$ is also a Palais-Smale sequence for I_1 . We have that $\tilde{v}_n \rightarrow \tilde{v}$ and $\tilde{I}_1(\tilde{v}) = 0$ with $\tilde{v} \neq 0$. We obtain

$$c = \limsup_{n \to \infty} [\tilde{I}(\tilde{v}_n) - \frac{1}{2}\tilde{I}'(\tilde{v}_n)\tilde{v}_n] \ge \tilde{I}(\tilde{v}) - \frac{1}{2}\tilde{I}'(\tilde{v})\tilde{v} = \tilde{I}(\tilde{v}),$$

EJDE-2014/05

by Fatou's lemma. We could find a path $r(t) \in \Gamma$ such that r(t)(x) > 0 for all $x \in \mathbb{R}^N$, and all $t \in (0,1]$, $\tilde{\omega} \in r([0,1])$ and $\max_{t \in [0,1]} \tilde{I}_1(r(t)) = \tilde{I}_1(\tilde{\omega}) \leq c$. Thus $I_1(r(t)) < \tilde{I}_1(r(t))$ for all $t \in (0,1]$, and then

$$c \le \max_{t \in [0,1]} I_1(r(t)) < \max_{t \in [0,1]} I_1(r(t)) \le c,$$

a contradiction.

Proof of Theorem 1.3. The argument is the same as in [3]. By Lemmas 3.2 and 3.4, the functional I_1 has a mountain pass geometry. So the $(C)_c$ -sequence $\{u_n\}$ exists, where $c := \inf_{r \in \Gamma} \max_{t \in [0,1]} I_1(r(t))$ and $\Gamma := \{r \in C([0,1], E) : r(0) = 0, I_1(r(1)) < 0\}$. It follows from Lemma 3.5 that $\{u_n\}$ is bounded. Hence $\{u_n\}$ is a bounded Palais-Smale sequence for I_1 at level c > 0. Due to Lemma 4.1, we have $I'_1(v) = 0$ and $v \neq 0$.

Acknowledgements. The first author would like to thank Andrzej Szulkin for valuable suggestions about the draft of the paper. The authors are supported by NSFC 11171047.

References

- M. J. Alves, P.C. Carrião, O. H. Miyagaki; Non-autonomous perturbations for a class of quasilinear elliptic equations on R, J. Math. Anal. Appl. 344 (2008), 186–203.
- M. Colin; Stability of standing waves for a quasilinear Schrödinger equation in space dimension 2, Adv. Diff. Eq. 8 (2003), 1–28.
- [3] M. Colin, L. Jeanjean; Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal. 56 (2004), 213–226.
- [4] Y. B. Deng, S. J. Peng, J. X. Wang; Infinitely many sign-changing solutions for quasilinear Schrödinger equations in R^N, Comm. Math. Sci. 9 (2011), 859–878.
- Y. H. Ding, A. Szulkin; Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. 29 (2007), 397–419.
- [6] J. M. do Ó, U. Severo; Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal. 8 (2009), 621–644.
- [7] J. M. do Ó, U. Severo; Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. 38 (2010), 275–315.
- [8] X. D. Fang, A. Szulkin; Multiple solutions for a quasilinear Schrödinger equation, J. Diff. Eq. 254 (2013), 2015–2032.
- J. Q. Liu, Y. Q. Wang, Z. Q. Wang; Soliton solutions for quasilinear Schrödinger equations, II, J. Diff. Eq. 187 (2003), 473–493.
- [10] J. Q. Liu, Y. Q. Wang, Z. Q. Wang; Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. PDE 29 (2004), 879–901.
- [11] J. Q. Liu, Z. Q. Wang; Soliton solutions for quasilinear Schrödinger equations, I, Proc. Amer. Math. Soc. 131 (2003), 441–448.
- [12] M. Poppenberg, K. Schmitt, Z. Q. Wang; On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. 14 (2002), 329–344.
- [13] P. H. Rabinowitz; Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986.
- [14] E. A. Silva, G. G. Vieira; Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonl. Anal. 72 (2010), 2935–2949.
- [15] A. Szulkin, M. Willem; Eigenvalue problems with indefinite weight, Studia Math. 135 (1999), no.2, 191–201.
- [16] Y. J. Wang, W. M. Zou; Bound states to critical quasilinear Schrödinger equations, Nonl. Diff. Eq. Appl. 19 (2012), 19–47.
- [17] M. Willem; Minimax Theorems, Birkhäuser, Boston, 1996.

[18] Z. H. Zhang, R. Yuan; Homoclinic solutions for some second order non-autonomous Hamiltonian systems without the globally superquadratic condition, Nonl. Anal. 72 (2010), 1809– 1819.

XIANG-DONG FANG

School of Mathematical Sciences, Dalian University of Technology, 116024 Dalian, China

E-mail address: fangxd0401@gmail.com, Phone +86 15840980504

Zhi-Qing Han (Corresponding Author)

School of Mathematical Sciences, Dalian University of Technology, 116024 Dalian, China

 $E\text{-}mail \ address: \texttt{hanzhiq@dlut.edu.cn}$