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ASYNCHRONOUS EXPONENTIAL GROWTH OF A
BACTERIAL POPULATION

MOHAMED BOULANOUAR

Dedicated to Samir Noui Mehidi who died prematurely

Abstract. In this work, we complete a study started earlier in [1, 2] wherein
a model of growing bacterial population has been the matter of a mathemati-

cal analysis. We show that the full model is governed by a strongly continuous

semigroup. Beside the positivity and the irreducibility of the generated semi-
group, we describe its asymptotic behavior in the uniform topology which leads

to the asynchronous exponential growth of the bacterial population.

1. Introduction

In this work, we continue a study started earlier in [1, 2] wherein a model of
growing bacterial population, originally proposed in [6], has been the matter of a
mathematical analysis. We have then considered a bacterial population in which,
each bacteria is distinguished by its degree of maturity 0 ≤ µ ≤ 1 and its maturation
velocity 0 < v < ∞. The degree of maturity of a daughter bacteria is µ = 0 while
the degree of maturity of a mother bacteria is µ = 1. If f = f(t, µ, v) denotes
the bacterial density with respect to the degree of maturity µ and the maturation
velocity v at time t, then

∂f

∂t
= −v ∂f

∂µ
− σ(µ, v)f +

∫ ∞
0

r(µ, v, v′)f(t, µ, v′)dv′ (1.1)

where, r(µ, v, v′) stands for the transition rate at which bacteria change their ve-
locity from v′ to v, while σ(µ, v) denotes the bacterial mortality rate or bacteria
loss due to causes other than division.

In most observed bacterial populations, there is often a correlation between the
maturation velocity of a bacteria mother v′ and that of its bacteria daughter v. So,
let us consider a correlation whose kernel is α(v)β(v′). The bacterial mitotic obeys
then to the biological transition law mathematically described by

vf(t, 0, v) = pα(v)
∫ ∞

0

β(v′)f(t, 1, v′)v′dv′ (1.2)

where, p ≥ 0 denotes the average number of bacteria daughter viable per mitotic.
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In this article, we focus on the full model (1.1),(1.2). We consider then the
suitable framework L1 := L1(Ω) (Ω := (0, 1)× (0,∞)) whose norm

‖f(t, ·, ·)‖1 =
∫ 1

0

∫ ∞
0

|f(t, µ, v)| dµ dv

denotes the bacteria number at time t. We firstly show that the full model (1.1),(1.2)
is governed by a strongly continuous semigroup UK = (UK(t))t≥0 on L1. Beside
the positivity and the irreducibility of the generated semigroup, we also prove that
ωess(UK) < ω0(UK). Consequently, a lot of interesting properties of the generated
semigroup UK = (UK(t))t≥0 can be listed. The most interesting one is the asymp-
totic behavior described in the uniform topology of L1 and therefore for any initial
data into L1 as follows.

Lemma 1.1 ([4, Theorems 9.10 and 9.11]). Let U = (U(t))t≥0 be a positive and
irreducible strongly continuous semigroup, on the Banach lattice space X, satisfying
the inequality ωess(U) < ω0(U). Then, there exist a rank one projector P into X
and an ε > 0 such that : for any η ∈ (0, ε), there exists Mη ≥ 1 satisfying

‖e−ω0(U)tU(t)− P‖L(X) ≤Mηe
−ηt t ≥ 0.

Thanks to [4, Thereom 8.7], the projector P can be written as Pϕ = 〈ϕ,ϕ∗0〉ϕ0,
where, ϕ0 ∈ X+ is a quasi-interior vector and ϕ∗0 ∈ (X∗)+ is a strictly positive
functional such that 〈ϕ0, ϕ

∗
0〉 = 1. A strongly continuous semigroup U = (U(t))t≥0

fulfilling Lemma 1.1 possesses the asynchronous exponential growth property with
the intrinsic growth density ϕ∗0. Moreover, Lemma 1.1 describes the bacterial profile
whose privileged direction is mathematically interpreted by the quasi-interior vector
ϕ0. This is what the biologist observes in his laboratory.

2. Preliminaries

Let Y1, Z1 and Zω∞ (ω ≥ 0) be the following Banach spaces

Y1 := L1(R+, vdv) whose norm is ‖ψ‖Y1 =
∫ ∞

0

|ψ(v)|v dv

Z1 := L1(R+, dv) whose norm is ‖ψ‖Z1 =
∫ ∞

0

|ψ(v)| dv

Zω∞ := L∞(ω,∞) whose norm is ‖ψ‖Zω∞ = ess supv≥ω |ψ(v)|
and let K be the following linear operator

Kψ(v) := p
α(v)
v

∫ ∞
0

β(v′)ψ(v′)v′dv′

where, p ≥ 0 and α and β are subject to the following assumptions
(H1

α,β) ‖α‖Z1 <∞ and ‖β‖Z0
∞
<∞

(H ′1α,β) There exists ω0 ≥ 0 such that p‖α‖Z1‖β‖Zω0
∞
< 1

(H2
α,β) α ≥ 0 and β ≥ 0

(H ′2α,β) α(v) > 0 and β(v) > 0 for almost all v ≥ 0.
The most interesting properties of the operator K are listed as follows.

Lemma 2.1. Suppose that p ≥ 0. If (H1
α,β) holds, then K is a compact linear

operator from Y1 into itself, whose norm is

‖K‖L(Y1) = p‖α‖Z1‖β‖Z0
∞
. (2.1)
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Furthermore,
(1) If (H ′1α,β) holds, then ‖KIωψ‖Y1 < 1 for all ω > ωα,β, where, Iω denotes

the characteristic function of the set (ω,∞) and

ωα,β := inf
{
ω ≥ 0 : p‖α‖Z1‖β‖Zω∞ < 1

}
. (2.2)

(2) If (H2
α,β) holds, then K is a positive operator on Y1.

(3) If (H ′2α,β) holds and p > 0, then K is a strongly positive operator; i.e., for
all ψ ∈ (Y1)+ and ψ 6= 0, we have Kψ(v) > 0 for almost all v > 0.

Proof. Let ψ ∈ Y1. Writhing,

Kψ(v) = p
α(v)
v︸ ︷︷ ︸
f

∫ ∞
0

β(v′)ψ(v′)v′dv′︸ ︷︷ ︸
Cψ

Note that f ∈ Y1 because

‖f‖Y1 =
∫ ∞

0

|pα(v)
v
|v dv = p‖α‖Z1 <∞

and Cψ is a finite constant because

|Cψ| ≤
∫ ∞

0

|β(v′)||ψ(v′)|v′ dv′ =
[

ess supv′≥0 |β(v′)|
]
‖ψ‖Y1 = ‖β‖Z0

∞
‖ψ‖Y1 <∞.

then K is obviously a rank one operator into Y1 and therefore compact. Further-
more,

‖Kψ‖Y1 =
∫ ∞

0

∣∣∣pα(v)
v

∫ ∞
0

β(v′)ψ(v′)v′dv′
∣∣∣v dv

= p
[ ∫ ∞

0

|α(v)|dv
]∣∣∣ ∫ ∞

0

β(v′)ψ(v′)v′ dv′
∣∣∣

and therefore,

‖K‖L(Y1) = p
[ ∫ ∞

0

|α(v)|dv
][

ess supv′≥0 |β(v′)|
]

= p‖α‖Z1‖β‖Z0
∞
.

(1) Firstly, (2.2) is well defined because of (H ′1α,β). Next, for all ω > ωα,β ,

‖KIωψ‖Y1 =
∫ ∞

0

∣∣∣pα(v)
v

∫ ∞
0

β(v′)Iω(v′)ψ(v′)v′dv′
∣∣∣vdv

≤ p
[ ∫ ∞

0

|α(v)|dv
] ∫ ∞

ω

|β(v′)||ψ(v′)|v′dv′

≤ p
[ ∫ ∞

0

|α(v)|dv
][

ess supv′≥ω |β(v′)|
] ∫ ∞

ω

|ψ(v′)|v′dv′

= p‖α‖Z1‖β‖Zω∞‖ψ‖Y1

and therefore ‖KIω‖L(Y1) ≤ p‖α‖Z1‖β‖Zω∞ < 1.
Items (2) and (3) are obvious; we omit their proofs. �

Let Kλ be the linear operator

Kλψ(v) := p
α(v)
v

∫ ∞
0

e−λ/v
′
β(v′)ψ(v′)v′ dv′. (2.3)

Some of its properties are as follows.
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Lemma 2.2. Suppose that p ≥ 0. If (H1
α,β) holds, then Kλ (λ ≥ 0) is a compact

linear operator from Y1 into itself. Furthermore,
(1) If (H2

α,β) holds, then Kλ is a positive operator on Y1

(2) If (H ′2α,β) holds and p > 0, then Kλ is a strongly positive operator.

Proof. Let λ ≥ 0. As Kλ = K ◦ Eλ where, Eλψ = e−
λ
• ψ with ‖Eλ‖L(Y1) ≤ 1, then

the compactness of Kλ follows from that of the operator K (Lemma 2.1). Then
items (1) and (2) are obvious. �

3. Full model (1.1), (1.2)

The goal of this section is to prove that the full model (1.1), (1.2) is well-posed.
So, let TK be the unbounded linear operator

TKϕ = −v ∂ϕ
∂µ

on D(TK) =
{
ϕ ∈W1 : ϕ(0, ·) = Kϕ(1, ·)

}
, (3.1)

where,

W1 =
{
ϕ ∈ L1 : v

∂ϕ

∂µ
∈ L1 and vϕ ∈ L1

}
whose norm is ‖ϕ‖W1 = ‖vϕ‖1 + ‖v ∂ϕ∂µ‖1. The generation property of TK is given
by the lemma.

Lemma 3.1. Suppose that (H1
α,β) holds and let p ≥ 0. If (H ′1α,β) holds, then TK

generates, on L1, a strongly continuous semigroup TK = (TK(t))t≥0 defined by

TK(t) = T0(t) + TK(t) t ≥ 0, (3.2)

where

T0(t)ϕ(µ, v) :=

{
ϕ(µ− tv, v) if µ ≥ tv
0 if µ < tv

(3.3)

and

TK(t)ϕ(µ, v) :=

{
0 if µ ≥ tv
pα(v)

v

∫∞
0
β(v′)TK

(
t− µ

v

)
ϕ(1, v′)v′dv′ if µ < tv.

(3.4)

Furthermore,
(1) If p‖α‖Z1‖β‖Z0

∞
< 1, then TK = (TK(t))t≥0 is contractive.

(2) If (H2
α,β) holds, then TK = (TK(t))t≥0 is positive.

(3) If (H ′2α,β) holds and p > 0, then TK = (TK(t))t≥0 is irreducible.

Proof. Firstly, according to [3, Theorem 2.2] we have that ϕ → ϕ(0, ·) and ϕ →
ϕ(1, ·) are bounded linear mappings from W1 into Y1 and therefore (3.1) is well
defined.

Next, by [1, Remark 3.1] and by Lemma 2.1(1), we have that K is an admissible
operator whose abscissa is (2.2). Hence we infer, by [1, Theorem 3.2], that TK
generates, on L1, a strongly continuous semigroup satisfying

‖TK(t)‖L(L1) ≤ δα,βe(ωα,β ln δα,β)t (3.5)

where, ωα,β is given by (2.2) and δα,β = max{p‖α‖Z1‖β‖Z0
∞
, 1}.

(1) If p‖α‖Z1‖β‖Z0
∞
< 1, then δα,β = 1 and

p‖α‖Z1‖β‖Zω∞ ≤ p‖α‖Z1‖β‖Z0
∞
< 1 for all ω ≥ 0
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and therefore ωα,β = 0 because of (2.2). Now, it suffices to put δα,β = 1 and
ωα,β = 0 into (3.5).

(2) This follows from Lemma 2.1(2) together with [1, Proposition 6.1(1)].
(3) This follows from Lemma 2.1(3) together with [1, Proposition 6.1(2)]. �

Now, let us define two perturbation operators:

Sϕ(µ, v) = −σ(µ, v)ϕ(µ, v)

Rϕ(µ, v) =
∫ ∞

0

r(µ, v, v′)ϕ(µ, v′)dv′

where, σ and r are subject to the following assumptions:
(Hσ) σ ∈

(
L∞(Ω)

)
+

,
(H1

r ) r := ess sup(µ,v′)∈Ω

∫∞
0
|r(µ, v, v′)|dv <∞,

(H2
r ) r is positive,

(Hσ−r)
∫∞

0
|r(µ, v′, v)|dv′ ≤ σ(µ, v) for almost all (µ, v) ∈ Ω

Lemma 3.2. (1) If (Hσ) holds, then S is a bounded linear operator from L1

into itself. Furthermore, −S is a positive operator.
(2) If (H1

r ) holds, then R is a bounded linear operator from L1 into itself.
Furthermore, if (H2

r ), then R is a positive operator.
(3) Suppose that (Hσ) and (H1

r ) hold. If (Hσ−r) holds, then S + R is a dissi-
pative operator on L1.

Proof. Firstly, −S and R are obviously positive operators. Let ϕ ∈ L1. On the one
hand,

‖Sϕ‖1 =
∫

Ω

|σ(µ, v)ϕ(µ, v)| dµ dv

≤
[

ess sup(µ,v)∈Ω |σ(µ, v)|
] ∫

Ω

|ϕ(µ, v)| dµ dv

= ‖σ‖∞‖ϕ‖1
which proves (1). On the other hand,

‖Rϕ‖1 =
∫

Ω

∣∣∣ ∫ ∞
0

r(µ, v, v′)ϕ(µ, v′)dv′
∣∣∣ dµ dv

≤
∫ 1

0

∫ ∞
0

[ ∫ ∞
0

|r(µ, v, v′)|dv
]
|ϕ(µ, v′)| dµ dv′

≤
[

ess sup(µ,v′)∈Ω

∫ ∞
0

|r(µ, v, v′)|dv
] ∫

Ω

|ϕ(µ, v′)| dµ dv′

= r‖ϕ‖1
which proves (2). Finally,

〈sgnϕ, (S +R)ϕ〉

=
∫

Ω

sgnϕ(µ, v) (Sϕ(µ, v) +Rϕ(µ, v)) dµ dv

= −
∫

Ω

σ(µ, v)|ϕ(µ, v)| dµ dv +
∫

Ω

sgnϕ(µ, v)
[ ∫ ∞

0

r(µ, v, v′)ϕ(µ, v′)dv′
]
dµ dv

≤ −
∫

Ω

σ(µ, v)|ϕ(µ, v)| dµ dv +
∫

Ω

[ ∫ ∞
0

|r(µ, v, v′)|dv
]
|ϕ(µ, v′)| dµ dv′
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≤ −
∫

Ω

σ(µ, v)|ϕ(µ, v)| dµ dv +
∫

Ω

σ(µ, v′)|ϕ(µ, v′)| dµ dv′ = 0

which proves (3). �

Now, let VK be the first linear perturbation of (3.1); i.e.,

VK := TK + S on D(VK) = D(TK). (3.6)

The generation property of VK is as follows.

Lemma 3.3. Suppose that (H1
α,β) holds and let p ≥ 0 be such that (H ′1α,β) holds.

If (Hσ) holds, then VK generates, on L1, a strongly continuous semigroup VK =
(VK(t))t≥0 whose essential type,

ωess(VK) ≤ −σ, (3.7)

where
σ := ess inf(µ,v)∈Ω |σ(µ, v)|. (3.8)

Furthermore,
(1) If (H2

α,β) holds, then VK = (VK(t))t≥0 is positive,

0 ≤ VK(t) ≤ TK(t) t ≥ 0 (3.9)

−σ + ω0 (TK) ≤ ω0(VK) (3.10)

where
σ := ess sup(µ,v)∈Ω |σ(µ, v)|. (3.11)

(2) If (H ′2α,β) holds and p > 0, then VK = (VK(t))t≥0 is irreducible.

Proof. Lemma 2.1(1) implies that K is an admissible operator in the sense of [1,
Remark 3.1]. Therefore, the generation property of VK follows from [1, Theorem
5.1] while (3.7) follows from [2, (5.18)]

(1) The positivity of VK = (VK(t))t≥0 follows from Lemma 2.1(2) together with
[1, Theorem 6.1(1)]. Furthermore, Trotter Formula leads to

VK(t)ϕ = lim
n→∞

[
e

“
t
nS

”
TK( tn )

]n
ϕ t ≥ 0 (3.12)

for all ϕ ∈ L1. However, if ϕ ∈ (L1)+ then for all integers n,

0 ≤
[
e
t
nSTK( tn )

]n
ϕ ≤ [TK( tn )]nϕ = TK (t)ϕ.

Passing to the limit n→∞ and using (3.12), we infer (3.9).
Rewriting [1, (6.9)]; i.e.,

e−σtTK(t) ≤ VK(t) t ≥ 0

we obtain

−σ +
ln ‖TK(t)‖L(L1)

t
≤

ln ‖VK(t)‖L(L1)

t
t > 0.

Passing to the limit t→∞, the desired (3.10) follows.
(3) This follows from Lemma 2.1(3) together with [1, Theorem 6.1(2)]. �

To study the well posedness of the full model (1.1), (1.2), we consider the un-
bounded linear operator

UK := VK + S = TK + S +R on D(UK) = D(TK). (3.13)
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Theorem 3.4. Suppose that (H1
α,β) and (Hσ) hold and let p ≥ 0 be such that (H ′1α,β)

holds. If (H1
r ) holds, then UK generates, on L1, a strongly continuous semigroup

UK = (UK(t))t≥0. Furthermore,

(1) If (Hσ−r) holds and p‖α‖Z1‖β‖Z0
∞
< 1, then

‖UK(t)‖L(L1) ≤ 1 t ≥ 0. (3.14)

(2) If (H2
α,β) and (H2

r ) hold, then UK = (UK(t))t≥0 is positive and

0 ≤ VK(t) ≤ UK(t) t ≥ 0. (3.15)

(3) If (H ′2α,β) and (H2
r ) hold and p > 0, then UK = (UK(t))t≥0 is irreducible.

Proof. Due to the boundedness of the linear operator R (Lemma 3.2(2)), we in-
fer that UK = VK + R is a bounded linear perturbation of the generator VK
(Lemma 3.3). Hence, UK is itself a generator, on L1 of a strongly continuous
semigroup UK = (UK(t))t≥0.

(1) Lemma 3.1 (1) implies that TK is a dissipative generator. Thanks to Lemma
3.2 (3), the generator UK = TK + (S+R) appears then as a 0-bounded linear dissi-
pative perturbation of the dissipative generator TK and therefore UK = (UK(t))t≥0

is contractive.
(2) Let ϕ ∈ L1. According to Trotter Formula, we have

UK(t)ϕ = lim
n→∞

[
e

“
t
nR

”
VK( tn )

]n
ϕ t ≥ 0

which leads, by virtue of the positivity of VK = (VK(t))t≥0 (Lemma 3.2(1))
and that of the operator R (Lemma 3.3(2)), to the desired positivity of UK =
(UK(t))t≥0. Now, Duhamel Formula implies, for all t ≥ 0, that

UK(t) = VK(t) +
∫ t

0

UK(s)RVK(t− s)ds ≥ VK(t) ≥ 0

which proves (3.15).
(3) This follows from Lemma 3.3(2) together with (3.15). �

4. Asynchronous Growth Property

The aim of this section is to describe the asymptotic behavior of the generated
semigroup UK = (UK(t))t≥0 like in Lemma 1.1, which leads to the asynchronous
exponential growth of the studied bacterial population. According to the positivity
and to the irreducibility of the generated semigroup UK = (UK(t))t≥0 (see Theo-
rem 3.4(2) and Theorem 3.4(3)), it remains to prove that ωess(UK) < ω0(UK). So,
let us consider

(H3
r ) r̃ = ess sup(µ,v,v′)∈(0,1)×R+×R+

( 1
µ |r(µ, v, v

′)|) <∞.

Let us recall the following useful results.

Lemma 4.1 ([5]). Let A and B be linear and bounded operators on L1(Ω).

(1) If A is weakly compact and 0 ≤ A ≤ B, then B is weakly compact.
(2) If A and B are weakly compact, then AB is compact.
(3) The set of all weakly compact operators is norm-closed subset in L1(Ω).
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Lemma 4.2 ([7]). Let R ∈ L(L1(Ω)) and let V = (V(t))t≥0 and W = (W(t))t≥0

be two strongly continuous semigroups on L1(Ω) whose generators are V and V +
R. Suppose that RV(t1)R · · ·RV(tn)R is compact for all t1, · · · , tn > 0 (for some
integer n). Then, ωess(W) = ωess(V).

Proposition 4.3. Suppose that (H1
α,β), (H2

α,β), (Hσ), (H1
r ) and (H2

r ) hold and let
p ≥ 0 be such that (H ′1α,β) holds. If (H3

r ) holds, then

ωess (UK) ≤ −σ (4.1)

where, σ is defined by (3.8).

Proof. Let us divide the proof in several steps.
Step I. Let t > 0 and let ϕ ∈ (L1)+. Using (3.3), easy computations show, for

all (µ, v) ∈ Ω, that

RT0(t)Rϕ(µ, v) =
∫ µ/t

0

∫ ∞
0

r(µ, v, v′)r(µ− tv′, v′, v′′)ϕ(µ− tv′, v′′)dv′′ dv′.

Due to (H3
r ), it follows that r ∈ L∞((0, 1)× R+ × R+) and therefore

RT0(t)Rϕ(µ, v) ≤ ‖r‖2∞
∫ µ/t

0

∫ ∞
0

ϕ(µ− tv′, v′′)dv′′ dv′.

The change of variables (µ′ = µ− tv′) yields

RT0(t)Rϕ(µ, v) ≤ ‖r‖
2
∞
t

∫
Ω

ϕ(µ′, v′′)dv′′ dµ′

which can be written as

RT0(t)R ≤ ‖r‖
2
∞
t

1⊗ 1 (4.2)

where, 1⊗ 1ϕ =
[ ∫

Ω
ϕ(µ, v) dµ dv

]
1, with, 1(µ, v) = 1 for all (µ, v) ∈ Ω.

Step II. Suppose that α ∈ Cc(R+) ⊂ Z1. There exists 0 < b <∞ such that

supp(α) ⊂ (0, b). (4.3)

Let t > 0 and let ϕ ∈ (L1)+. Using (3.4), easy computations show, for almost all
(µ, v) ∈ Ω, that

RTK(t)Rϕ(µ, v)

= p

∫ ∞
µ
t

r(µ, v, v′)
α(v′)
v′

∫ ∞
0

β(v′′)TK
(
t− µ

v′

)
Rϕ(1, v′′)µv′′dv′′dv′

which by (4.3) and (H1
α,β) and (H3

r ), lead to

RTK(t)Rϕ(µ, v) ≤ pbr̃‖α‖Z0
∞
‖β‖Z0

∞

∫ b

µ
t

∫ ∞
0

|TK
(
t− µ

v′

)
Rϕ(1, v′′)| µ

v′2
v′′dv′′ dv′

:= C

∫ b

µ
t

∫ ∞
0

|TK
(
t− µ

v′

)
Rϕ(1, v′′)| µ

v′2
v′′dv′′ dv′

where, C := pbr̃‖α‖Z0
∞
‖β‖Z0

∞
is obviously a finite constant. The following change

of variables (s = t− µ
v′ ) yields that

RTK(t)Rϕ(µ, v) ≤ C
∫ t

0

∫ ∞
0

TK(s)Rϕ(1, v′′)v′′dv′′ds
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= C

∫ t

0

‖TK(s)Rϕ(1, ·)‖Y1ds

and therefore, for all ω ≥ 0,

RTK(t)Rϕ(µ, v) ≤ C
∫ t

0

eωse−ωs‖TK(s)Rϕ(1, ·)‖Y1ds

≤ Ceωt
∫ ∞

0

e−ωs‖TK(s)Rϕ(1, ·)‖Y1ds.

(4.4)

However, if ω > 0 is large, then, by [2, (3.11) and (4.1)], there exists a constant cω
(0 < cω <∞) such that∫ ∞

0

e−ωt‖TK(t)ϕ(1, ·)‖Y1dt ≤ cω‖ϕ‖1.

Accordingly, (4.4) becomes

RTK(t)Rϕ(µ, v) ≤ Ceωtcω‖Rϕ‖1 ≤ Ceωtcω‖R‖L(L1)

∫
Ω

ϕ(µ′, v′)dv′dµ′

which can be written as

RTK(t)R ≤ Ceωtcω‖R‖1⊗ 1 (4.5)

where, 1⊗ 1 is already defined in Step I.
Finally, according to (3.2) we have

0 ≤ RTK(t)R = RT0(t)R+RTK(t)R

in which we put (4.2) together with (4.5) to infer that

0 ≤ RTK(t)R ≤
(‖r‖2∞

t
+ Ceωtcω‖R‖

)
︸ ︷︷ ︸

C′t

1⊗ 1 (4.6)

where, C ′t is obviously a finite constant. As 1 ⊗ 1 is a rank one operator into L1,
then Lemma 4.1(1) leads us to say that: if α ∈ Cc(R+), then RTK(t)R is weakly
compact, into L1, for all t > 0.

Step III. Due to α ∈ Z1 (because of (H1
α,β)), there exists (αn)n ⊂ Cc(R+) such

that
lim
n→∞

‖αn − α‖Z1 = 0. (4.7)

Let then Kn be defined as operator

Knψ(v) := p
αn(v)
v

∫ ∞
0

β(v′)ψ(v′)v′ dv′.

Accordingly,
‖Kn −K‖L(Y1) ≤ p‖αn − α‖Z1‖β‖Z0

∞

which leads, by (4.7), to

lim
n→∞

‖Kn −K‖L(Y1) = 0. (4.8)

Now, let ε be such that

0 < ε <
1− p‖α‖Z1‖β‖Zω0

∞

p‖β‖Zω0
∞
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where, ω0 is given in (H ′1α,β). There exists then an integer N such that

‖αn‖Z1 ≤ ‖α‖Z1 + ε for all n > N

and therefore (H1
αn,β

) holds for all n > N . On the other hand,

p‖αn‖Z1‖β‖Zω0
∞
≤ p (‖α‖Z1 + ε) ‖β‖Zω0

∞

< p‖α‖Z1‖β‖Zω0
∞

+ p
1− p‖α‖Z1‖β‖Zω0

∞

p‖β‖Zω0
∞

‖β‖Zω0
∞

= p‖α‖Z1‖β‖Zω0
∞

+ 1− p‖α‖Z1‖β‖Zω0
∞

= 1

and therefore (H ′1αn,β) holds true for all n > N . Thanks to Lemma 3.1, we infer
that TKn (n > N) generates, on L1, a strongly continuous semigroup TKn =
(TKn(t))t≥0. Furthermore, Step II implies that RTKn(t)R is a weakly compact,
into L1, for all t > 0 because of αn ∈ Cc(R+). On the other hand, [2, Theorem 4.1]
together with (4.8) imply that

lim
n→∞

‖TKn(t)− TK(t)‖L(L1) = 0

which leads to

‖RTK(t)R−RTKn(t)R‖L(L1) ≤ ‖R‖2L(L1)‖TK(t)− TKn(t)‖L(L1) → as n→∞0.

Finally, thanks to Lemma 4.1(3) we can say that: RTK(t)R is a weakly compact
operator, into L1, for all t > 0.

Step IV. According to the positivity of the operator R (Lemma 3.2(2)) together
with (3.9), we obtain

0 ≤ RVK(t)R ≤ RTK(t)R t ≥ 0. (4.9)

However, as RTK(t)R is weakly compact for all t > 0 (Step III), then Lemma 4.1(2)
together with (4.9) imply that RVK(t)R is also weakly compact for all t > 0.
Accordingly,

RVK(t1)RVK(t2)RVK(t3)R =
(
RVK(t1)R

)
VK(t2)

(
RVK(t3)R

)
is a compact operator, into L1, for all t1, t2, t3 > 0, because of Lemma 4.1(3).
Finally, Lemma 4.2 and (3.7) lead to

ωess(WK) = ωess(VK) ≤ −σ

which proves (4.1) and completes the proof. �

Proposition 4.4. Suppose that (H1
α,β), (H ′2α,β), (Hσ), (H1

r ) and (H2
r ) hold and let

p ≥ 0 be such that (H ′1α,β) holds. If the spectral radius

ρ(Kσ−σ) > 1

then
− σ < ω0 (UK) (4.10)

where, the operator Kσ−σ is defined by (2.3) and σ and σ are given by (3.8) and
(3.11).

Proof. Firstly, due to Lemma 2.2 we infer that Kσ−σ is a positive, irreducible and
compact operator and therefore its spectral radius ρ(Kσ−σ) 6= 0. It suffices then to
find suitable assumptions on α and β such that ρ(Kσ−σ) > 1.
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Next. On one hand, (3.15) leads to

lim
t→∞

ln ‖VK(t)‖L(L1)

t
≤ lim
t→∞

ln ‖UK(t)‖L(L1)

t

which is nothing else but ω0(VK) ≤ ω0 (UK) and by (3.10) we infer that

− σ + ω0 (TK) ≤ ω0 (UK) . (4.11)

On the other hand, Lemma 2.1 means that K is a positive, irreducible and compact
operator. Hence, all the required conditions of [1, Theorem 7.1] are fulfilled and
therefore [1, (7.18)] holds; i.e.,

− σ < −σ + ω0 (TK) . (4.12)

Finally, the desired (4.10) obviously follows from (4.11) and (4.12). �

Now, we are ready to describe the asymptotic behaviour of the generated semi-
group UK = (UK(t))t≥0 like in Lemma 1.1 and to get, by the way, the asynchronous
exponential growth property of the full model (1.1), (1.2).

Before we start, we notice that the full model (1.1),(1.2) is well posed because
of Theorem 3.4 and therefore the unique solution f is given by

f(t, ·, ·) = UK(t)f(0, ·, ·) t ≥ 0 (4.13)

for all initial data f(0, ·, ·) ∈ L1.
Hence, if p (the average number of bacteria daughter viable per mitotic) is small

enough (i.e., p < ‖α‖−1
Z1
‖β‖−1

Z0
∞

), then the bacterial density (4.13) is decreasing and
therefore the full model (1.1),(1.2) becomes biologically uninteresting. Indeed, for
all t and all s with t > s, (4.13) and (3.14) lead to

‖f(t, ·, ·)‖1 = ‖UK(t)f(0, ·, ·)‖1
= ‖UK(t− s)UK(s)f(0, ·, ·)‖1
≤ ‖UK(s)f(0, ·, ·)‖1
≤ ‖f(s, ·, ·)‖1.

We understand then that p‖α‖Z1‖β‖Z0
∞
> 1 is closely related to an increasing

number of bacteria during each mitotic. This situation is the most biologically
observed for which the asynchronous exponential growth property is given by the
following theorem.

Theorem 4.5. Suppose that (H1
α,β), (H ′2α,β), (Hσ), (H1

r ), (H2
r ) and (H3

r ) hold and
let p ≥ 0 be such that (H ′1α,β) holds. Suppose also that ρ

(
Kσ−σ

)
> 1 where, σ and

σ are given by (3.8) and (3.11). There exist then a rank one projector P into L1

and an ε > 0 such that: for every η ∈ (0, ε) there exist Mη ≥ 1 satisfying

‖e−ω0(UK)tUK(t)− P‖L(L1) ≤Mηe
−ηt t ≥ 0. (4.14)

Proof. The generated semigroup UK = (UK(t))t≥0 exists because of Theorem 3.4.
Moreover, it is positive (Theorem 3.4(2)) and irreducible (Theorem 3.4(3)). Finally,
(4.1) and (4.10) lead to ωess (UK) < ω0 (UK). Now, all the required conditions of
Lemma 1.1 are fulfilled. �
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Remark 4.6. Thanks to [4, Thereom 8.7], there exist a quasi-interior vector ϕ0 ∈
X+ and a strictly positive functional ϕ∗0 ∈ (X∗)+ with 〈ϕ0, ϕ

∗
0〉 = 1 such that

Pϕ = 〈ϕ,ϕ∗0〉ϕ0. Hence, (4.14) together with (4.13) lead to∥∥e−ω0(UK)tf(t, ·, ·)− 〈f(0, ·, ·), ϕ∗0〉ϕ0

∥∥
L1
≤Mηe

−ηt‖f(0, ·, ·)‖L1 t ≥ 0.

for all initial data f(0, ·, ·) ∈ L1.

We noticed that there are some mistakes in [1, 2], but they do not have any
consequence for the main results. An addendum are already published on June 24,
2013.
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Addendum posted on October 29, 2014

The author would like to make the following changes in the Proof of Proposition
4.3:
1. Assumption (H3

r ) must be replaced by

r̃(µ, v) :=
1
µ

ess sup
v′∈(0,∞)

|r(µ, v, v′)| ∈ L1(Ω) ∩ L∞(Ω).

2. Operator 1⊗ 1 must be replaced by

1⊗ 1ϕ :=
[ ∫

Ω

ϕ(µ, v) dµ dv
]
r̃,

which is rank one into L1(Ω).
3. Step I must be updated. Formula (4.2) becomes

RT0(t)R ≤ ‖r‖∞
t

1⊗ 1.

4. Step II: take C := pb‖α‖Z0
∞
‖β‖Z0

∞
and update (4.6) because of (4.2).

End of addendum.
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