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ESTIMATES ON POTENTIAL FUNCTIONS AND BOUNDARY
BEHAVIOR OF POSITIVE SOLUTIONS FOR SUBLINEAR

DIRICHLET PROBLEMS

RAMZI ALSAEDI, HABIB MÂAGLI, NOUREDDINE ZEDDINI

Abstract. We give global estimates on some potential of functions in a

bounded domain of the Euclidean space Rn (n ≥ 2). These functions may
be singular near the boundary and are globally comparable to a product of a

power of the distance to the boundary by some particularly well behaved slowly

varying function near zero. Next, we prove the existence and uniqueness of a
positive solution for the integral equation u = V (auσ) with 0 ≤ σ < 1, where

V belongs to a class of kernels that contains in particular the potential kernel of
the classical Laplacian V = (−∆)−1 or the fractional laplacian V = (−∆)α/2,

0 < α < 2.

1. Introduction

Let D be a C1,1-bounded domain in Rn, n ≥ 2. It is well known that [5, 13, 17]
the Green function GD of the Dirichlet Laplacian (−∆) in D satisfies

GD(x, y) ≈ H(x, y) =

{
1

|x−y|n−2 min
(
1, δ(x)δ(y)|x−y|2

)
, if n ≥ 3,

log
(
1 + δ(x)δ(y)

|x−y|2
)
, if n = 2,

(1.1)

where δ(x) denotes the Euclidean distance from x to the boundary of D. Here and
throughout the paper, for two nonnegative function f and g defined on a set S,
we denote f(t) ≈ g(t) and we say that f and g are comparable, if there exists a
constant C > 1 such that 1

C f(t) ≤ g(t) ≤ Cf(t) for all t ∈ S.
On the other hand, if 0 < α < 2 and n ≥ 2, then the Green function GαD of the
operator (−∆)α/2 in D with Dirichlet conditions, see [4], satisfies

GαD(x, y) ≈ Hα(x, y) =
1

|x− y|n−α
min

(
1,
(δ(x)δ(y)
|x− y|2

)α/2)
. (1.2)

So, we remark that, if 0 < α ≤ 2, then the Green function of the operator (−∆)α/2

in D with Dirichlet conditions is comparable to the function

1
|x− y|n−α

h
((δ(x)δ(y)
|x− y|2

)α/2)
,
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where h(t) is either min(1, t) or Log(1 + t). These global estimates on GαD have
been exploited by many authors, see [3, 9, 16], to derive estimates on the solutions
of the Dirichlet problem

(−∆)α/2u = a(x)uσ, in D,

lim
x→∂D

(δ(x))1−
α
2 u(x) = 0 ,

(1.3)

where σ < 1 and a is a nonnegative measurable function that may be singular at
the boundary of D. For instance for α = 2, Mâagli in [9] considered the case where
a ∈ Cγloc(D), 0 < γ < 1 such that

a(x) ≈ (δ(x))−λL(δ(x)) , (1.4)

where λ ≤ 2 and L belongs to the class K of Karamata functions defined by

L(t) = c exp
(∫ η

t

z(s)
s

ds
)
,

where η > 0, c > 0 and z ∈ C([0, η]) with z(0) = 0. Then, he showed in particular
the following.

Proposition 1.1. Let λ ≤ 2, L ∈ K such that
∫ η
0
t1−λL(t) dt < ∞ and assume

that a satisfies (1.4). Then the Green potential

GDa(x) :=
∫
D

GD(x, y)a(y) dy

is comparable to the function ψ(δ(x)), where

ψ(t) =


∫ t
0
L(s)
s ds if λ = 2 ,

t2−λL(t) if 1 < λ < 2 ,
t
∫ η
t
L(s)
s ds if λ = 1 ,

t if λ < 1.

Our aim in this article is two fold, as we explain in what follows. First, we give a
unified proof and extend the above estimates for more general potential functions.
More precisely, we consider a nonnegative nondecreasing measurable function ϕ on
[0,∞) satisfying the assumption

(H0) ϕ(t) ≈ t for 0 ≤ t ≤ 1 and
∫∞
1

ϕ(t)
t2 dt <∞,

Let ΓD be a measurable function defined in D ×D with values in [0,∞] such that

ΓD(x, y) ≈ 1
|x− y|n−β

ϕ
((δ(x)δ(y)
|x− y|2

)β/2)
, with β > 0 and n ≥ 2,

and let q be a nonnegative measurable function satisfying

(H1) q(x) ≈ (δ(x))−µL(δ(x)), where µ ≤ β
2 +1, L ∈ K with

∫ η
0
t−µ+ β

2 L(t) dt <∞
and η > diam(D).

Put V q(x) =
∫
D

ΓD(x, y)q(y)dy. So, we have the following estimates.

Theorem 1.2. Assume (H0), (H1). Then we have

V q(x) ≈


(δ(x))

β
2−1
( ∫ δ(x)

0
L(s)
s ds

)
if µ = β

2 + 1 ,

(δ(x))β−µL(δ(x)) if β
2 < µ < β

2 + 1 ,

(δ(x))β/2
( ∫ η

δ(x)
L(s)
s ds

)
if µ = β

2 ,

(δ(x))β/2 if µ < β
2 .
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Secondly, we fix σ ∈ [0, 1) and a nonnegative measurable function a in D satis-
fying

(H2) a(x) ≈ (δ(x))−λL(δ(x)), where λ ≤ β
2 (1 +σ) + (1−σ) and L ∈ K such that∫ η

0
t
β
2 (1+σ)−σ−λL(t) dt <∞.

Then we prove the following result.

Theorem 1.3. Assume that a satisfies (H2). Then, the integral equation

u = V (auσ)

has a unique solution u satisfying u(x) ≈ θλ(x), where
θλ(x)

=



(δ(x))
β
2−1
( ∫ δ(x)

0
L(s)
s ds

)1/(1−σ)

if λ = β
2 (1 + σ) + (1− σ) ,

(δ(x))
β−λ
1−σ (L(δ(x)))1/(1−σ) if β

2 (1 + σ) < λ < β
2 (1 + σ) + (1− σ) ,

(δ(x))β/2
( ∫ η

δ(x)
L(s)
s ds

)1/(1−σ)

if λ = β
2 (1 + σ) ,

(δ(x))β/2 if λ < β
2 (1 + σ).

(1.5)

This paper is organized as follows. Some preliminary lemmas are stated and
proved in the next Section, involving some already known results on Karamata
functions. In Section 3, we give the proof of Theorems 1.2 and 1.3. The last section
is devoted to the study of some examples.

2. The Karamata class

To let the paper be self-contained, we begin this section by recapitulating some
properties of Karamata regular variation theory. First, we mention that a function
L is in K if and only if L is a positive function in C1((0, η]) such that

lim
t→0+

tL′(t)
L(t)

= 0. (2.1)

Lemma 2.1 ([12, 14]). The following hold
(i) Let L ∈ K and ε > 0, then limt→0+ tεL(t) = 0.

(ii) Let L1, L2 ∈ K and p ∈ R. Then L1 + L2 ∈ K, L1L2 ∈ K and Lp1 ∈ K.

Example 2.2. Letm ∈ N∗. Let c > 0, (µ1, µ2, . . . , µm) ∈ Rm and d be a sufficiently
large positive real number such that the function

L(t) = c

m∏
k=1

(
logk

(d
t

))−µk
is defined and positive on (0, η], for some η > 1, where logk x = log ◦ log ◦ · · · ◦ log x
(k times). Then L ∈ K.

Applying Karamata’s theorem (see [12, 14]), we get the following.
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Lemma 2.3. Let µ ∈ R and L be a function in K defined on (0, η]. We have

(i) If µ < −1, then
∫ η
0
sµL(s)ds diverges and

∫ η
t
sµL(s)ds ∼t→0+ − t

1+µL(t)
µ+1 .

(ii) If µ > −1, then
∫ η
0
sµL(s)ds converges and

∫ t
0
sµL(s)ds ∼t→0+

t1+µL(t)
µ+1 .

Lemma 2.4 ([3]). Let L ∈ K be defined on (0, η]. Then

lim
t→0+

L(t)∫ η
t
L(s)
s ds

= 0. (2.2)

If further
∫ η
0
L(s)
s ds converges, then

lim
t→0+

L(t)∫ t
0
L(s)
s ds

= 0. (2.3)

Remark 2.5. Let L ∈ K defined on (0, η], then using (2.1) and (2.2), we deduce
that

t→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η
0
L(s)
s ds converges, by (2.3), we have

t→
∫ t

0

L(s)
s

ds ∈ K.

3. Proof of main results

We need the following lemmas.

Lemma 3.1. Let x ∈ D and let Dx = {y ∈ D : |x− y|2 ≤ δ(x)δ(y)}. Then
(i) If y ∈ Dx, then

3−
√

5
2

δ(x) ≤ δ(y) ≤ 3 +
√

5
2

δ(x) (3.1)

and

|x− y| ≤ 1 +
√

5
2

min(δ(x), δ(y)).

(ii) If y ∈ Dc
x, then

max(δ(x), δ(y)) ≤ 1 +
√

5
2
|x− y|.

In particular,

B(x,
√

5− 1
2

δ(x)) ⊂ Dx ⊂ B(x,
√

5 + 1
2

δ(x)). (3.2)

(iii) If L ∈ K, then there exists m ≥ 0 such that for each y ∈ Dx, we have(3−
√

5
2

)m
L(δ(x)) ≤ L(δ(y)) ≤

(3 +
√

5
2

)m
L(δ(x)). (3.3)

Proof. The proof of (i) and (ii) can be found in [10].
(iii) Let x ∈ D, y ∈ Dx and L ∈ K. There exist c > 0, z ∈ C([0, 1]) such that

z(0) = 0 and satisfying for each t ∈ (0, η]

L(t) = c exp
(∫ η

t

z(s)
s
ds
)
.
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Let m = sups∈[0,η] |z(s)|, then for each s ∈ [0, η], we have −m ≤ z(s) ≤ m. This
together with (3.1) implies

m log
(3−

√
5

2

)
≤
∣∣ ∫ δ(x)

δ(y)

z(s)
s
ds
∣∣ ≤ m log

(3 +
√

5
2

)
.

It follows that(3−
√

5
2

)m
L(δ(x)) ≤ L(δ(y)) ≤

(3 +
√

5
2

)m
L(δ(x)).

�

Lemma 3.2. Let q be a nonnegative measurable function in D satisfying (H1) and
assume that ϕ satisfies (H0). Then (1)∫

Dcx

1
|x− y|n−β

ϕ
((δ(x)δ(y)
|x− y|2

)β/2)
q(y)dy

≈
∫
Dcx

(δ(x))β/2(δ(y))
β
2−µ

|x− y|n
L(δ(y))dy

≈ (δ(x))
β
2−1

∫
Dcx

GD(x, y)(δ(y))
β
2−µ−1L(δ(y))dy

(2) ∫
Dx

1
|x− y|n−β

ϕ
((δ(x)δ(y)
|x− y|2

)β/2)
q(y)dy

≈ (δ(x))β−µL(δ(x))

≈ (δ(x))
β
2−1

∫
Dx

GD(x, y)(δ(y))
β
2−µ−1L(δ(y))dy

Proof. (1) If y ∈ Dc
x, then 0 < δ(x)δ(y)

|x−y|2 ≤ 1, so since β > 0,

ϕ
((δ(x)δ(y)
|x− y|2

)β/2)
≈ (δ(x)δ(y))β/2

|x− y|β
.

By (1.1), it follows that∫
Dcx

1
|x− y|n−β

ϕ
((δ(x)δ(y)
|x− y|2

)β/2)
q(y)dy

≈
∫
Dcx

(δ(x))β/2(δ(y))
β
2−µ

|x− y|n
L(δ(y))dy

≈ (δ(x))
β
2−1

∫
Dcx

GD(x, y)(δ(y))
β
2−µ−1L(δ(y))dy.

(2) If y ∈ Dx, then 3−
√

5
2 δ(x) ≤ δ(y) ≤ 3+

√
5

2 δ(x). So

ϕ
(( (
√

5− 1)δ(x)
2|x− y|

)β)
≤ ϕ

((δ(x)δ(y)
|x− y|2

)β/2)
≤ ϕ

(( (
√

5 + 1)δ(x)
2|x− y|

)β)
. (3.4)

On the one hand, using (3.1) and (3.3), for c > 0 we have∫
B(x,cδ(x))

1
|x− y|n−β

ϕ
(( cδ(x)
|x− y|

)β)
(δ(y))−µL(δ(y)) dy
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≈ (δ(x))−µL(δ(x))
∫ cδ(x)

0

rβ−1ϕ
((cδ(x)

r

)β)
dr

≈ (δ(x))β−µL(δ(x))
(∫ ∞

1

ϕ(t)
t2

dt
)

≈ (δ(x))β−µL(δ(x)).

By using (3.2), we have also that∫
Dx

G(x, y) dy ≈ (δ(x))2.

It follows by (3.1) and (3.2) that∫
Dx

1
|x− y|n−β

ϕ
((δ(x)δ(y)
|x− y|2

)β/2)
q(y)dy

≈ (δ(x))β−µL(δ(x))

≈ (δ(x))β−µ−2L(δ(x))
∫
Dx

G(x, y) dy

≈ (δ(x))
β
2−1

∫
Dx

GD(x, y)(δ(y))−(µ− β2 +1)L(δ(y))dy.

�

Proof of Theorem 1.2. By using Lemma 3.2 and Proposition 1.1 with λ = µ− β
2 +1,

we obtain

V q(x) =
∫
D

ΓD(x, y)q(y)dy

≈ (δ(x))
β
2−1

∫
D

GD(x, y)(δ(y))−(µ− β2 +1)L(δ(y))dy

≈


(δ(x))

β
2−1
( ∫ δ(x)

0
L(s)
s ds

)
if µ = β

2 + 1 ,

(δ(x))β−µL(δ(x)) if β
2 < µ < β

2 + 1 ,

(δ(x))β/2
( ∫ η

δ(x)
L(s)
s ds

)
if µ = β

2

(δ(x))β/2 if µ < β
2 .

�

Corollary 3.3. Let σ ∈ [0, 1) and assume that a satisfies (H2). Let θλ be the
function defined by (1.5). Then V (aθσλ)(x) ≈ θλ(x).

Proof. We have

a(x)θσλ(x) =



(δ(x))(
β
2−1)σ−λL(δ(x))

( ∫ δ(x)
0

L(s)
s ds

) σ
1−σ

if λ = β
2 (1 + σ) + (1− σ) ,

(δ(x))
(β−λ)σ

1−σ −λ(L(δ(x)))1/(1−σ)

if β
2 (1 + σ) < λ < β

2 (1 + σ) + (1− σ) ,

(δ(x))
β
2 σ−λL(δ(x))

( ∫ η
δ(x)

L(s)
s ds

) σ
1−σ

if λ = β
2 (1 + σ) ,

(δ(x))
β
2 σ−λL(δ(x)) if λ < β

2 (1 + σ).
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So, we see that

a(x)θσλ(x) = (δ(x))−µ L̃(δ(x)) ,

where µ ≤ β
2 + 1 and according to Lemma 2.1 and Lemma 2.3, we have L̃ ∈ K with∫ η

0
t
β
2−µ L̃(t) dt <∞. Hence the result follows from Theorem 1.2. �

Proof of Theorem 1.3. Let σ ∈ [0, 1) and assume that a satisfies (H2). Then by
Corollary 3.3, there exists a positive constant M such that

1
M
θλ ≤ V (aθσλ) ≤Mθλ (3.5)

Put c0 = M1/(1−σ) and consider the nonempty closed convex set

Λ =
{
u ∈ B+(D) :

1
c0
θλ ≤ u ≤ c0θλ

}
,

where B+(D) denotes the set of nonnegative Borel measurable functions in D.
Let T be the operator defined on Λ by Tu = V (auσ). Since σ ∈ [0, 1), then T
is nondecreasing on Λ. Now, using (3.5) we deduce that TΛ ⊂ Λ. Consider the
sequence (uk) defined by u0 = 1

c0
θλ and uk+1 = Tuk for k ≥ 0. Then, using again

(3.5) and the monotonicity of T , we obtain

1
c0
θλ = u0 ≤ u1 ≤ · · · ≤ uk ≤ c0θλ.

Hence, it follows from the monotone convergence theorem that the sequence (uk)k
converges to a function u ∈ Λ satisfying the integral equation

u = V (auσ). (3.6)

Finally, we aim at proving that the integral equation (3.6) has a unique solution
comparable to θλ. Let u, v ∈ B+(D) such that u = V (auσ), v = V (avσ) and
u ≈ θλ ≈ v. Then there exists k > 0 such that

1
k
≤ u

v
≤ k.

So the set J = {t ∈ (0, 1] : tu ≤ v} is nonempty. Let c = sup(J) and assume that
c < 1. Then, we have cu ≤ v and v − cσu = V (a(vσ − cσuσ)) ≥ 0. Which implies
that

cu ≤ cσu ≤ v in D.

This contradicts the fact that c = sup(J). So c = 1 and u ≤ v. By symmetry, we
deduce that u = v. �

4. Examples

Example 4.1. Let 0 < σ < 1 and let a be a nonnegative measurable function such
that a(x) ≈ (δ(x))−λL(δ(x)), with λ ≤ 2 and L ∈ K such that

∫ η
0
t1−λL(t) dt <∞.

Then the Dirichlet problem

−∆u = a(x)uσ in D,

u = 0 on ∂D
(4.1)
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has a unique positive continuous solution u satisfying u(x) ≈ θλ(x), where

θλ(x) =



(∫ δ(x)
0

L(s)
s ds

)1/(1−σ)

if λ = 2 ,

(δ(x))
2−λ
1−σ
(
L(δ(x))

)1/(1−σ) if 1 + σ < λ < 2,

δ(x)
( ∫ η

δ(x)
L(s)
s ds

)1/(1−σ)

if λ = 1 + σ ,

δ(x) if λ < 1 + σ .

Indeed we deduce by [1] that if a satisfies (H2), then V (a) is continuous in D with
boundary value zero. This together with the boundedness of u and the fact that
0 < σ < 1 give that u is a solution of (4.1) if and only if u satisfies (3.6). So the
result follows from Theorem 1.3.

Example 4.2. Let 0 < σ < 1, 0 < α < 2 and a be a nonnegative measurable
function such that a(x) ≈ (δ(x))−λL(δ(x)), with λ ≤ α

2 (1 +σ) + (1−σ) and L ∈ K
such that

∫ η
0
t
α
2 (1+σ)−σ−λL(t) dt <∞. Then the Dirichlet problem

(−∆)α/2u = a(x)uσ in D,

lim
x→∂D

(δ(x))1−
α
2 u(x) = 0 on ∂D

(4.2)

has a unique positive continuous solution u satisfying u(x) ≈ θλ(x), where

θλ(x)

=



(
δ(x)

)α
2−1

( ∫ δ(x)
0

L(s)
s ds

)1/(1−σ)

if λ = α
2 (1 + σ) + (1− σ) ,(

δ(x)
)α−λ

1−σ
(
L(δ(x))

)1/(1−σ) if α
2 (1 + σ) < λ < α

2 (1 + σ) + (1− σ) ,(
δ(x)

)α/2( ∫ η
δ(x)

L(s)
s ds

)1/(1−σ)

if λ = α
2 (1 + σ) ,

(δ(x))α/2 if λ < α
2 (1 + σ) ,

Indeed we deduce by [3] that u is a solution of (4.2) if and only if u satisfies (3.6).
So the result follows from Theorem 1.3.

Example 4.3. Let 0 < σ < 1, 0 < α < 2 and a be a nonnegative measurable
function such that a(x) ≈ (δ(x))−λL(δ(x)), where λ < α+ (2− α)(1− σ) and L is
defined on (0, η] belongs to K. Consider the Dirichlet problem

(−∆/D)α/2u = a(x)uσ in D,

lim
x→∂D

(δ(x))2−α u(x) = 0.
(4.3)

Since by [15] the Green function GDα of (−∆/D)α/2 satisfies

GDα (x, y) ≈ 1
|x− y|n−α

min
(

1,
δ(x)δ(y)
|x− y|2

)
.

Then we deduce that (4.3) has a unique positive continuous solution u in D satis-
fying u(x) ≈ θλ(x), where

θλ(x) =


(
δ(x)

)α−λ
1−σ
(
L(δ(x))

)1/(1−σ) if α− (1− σ) < λ < α+ (2− α)(1− σ) ,(
δ(x)

)( ∫ η
δ(x)

L(s)
s ds

)1/(1−σ)

if λ = α− (1− σ) ,

(δ(x)) if λ < α− (1− σ) .
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Indeed we deduce by [11] that u is a solution of (4.3) if and only if u satisfies (3.6).
So the result follows from Theorem 1.3.

Example 4.4. Let 0 < σ < 1, m a positive integer and let a be a nonnegative
measurable function in B(0, 1) such that a(x) ≈ (δ(x))−λL(δ(x)), where λ ≤ m(1+
σ) + (1 − σ), L ∈ K with

∫ η
0
tm(1+σ)−σ−λL(t) dt < ∞. Consider the following

Dirichlet problem
(−∆)mu = a(x)uσ in B(0, 1),

lim
|x|→1

u(x)
(1− |x|)m−1

= 0 on ∂B(0, 1).
(4.4)

Let Gm,n be the Green function of the polyharmonic operator (−∆)m on B(0, 1)
with Dirichlet boundary conditions u = ∂

∂νu = · · · = ∂m−1

∂νm−1u = 0. Then by [1],

Gm,n(x, y) ≈


|x− y|2m−n min

(
1, (δ(x)δ(y))m

|x−y|2m
)

if n > 2m,

log
(
1 + (δ(x)δ(y))m

|x−y|2m
)

if n = 2m,

(δ(x)δ(y))m−
n
2 min

(
1, (δ(x)δ(y))

n
2

|x−y|n
)

if n < 2m.

So we can apply our results to deduce that (4.4) has a positive continuous solution
u satisfying u(x) ≈ θλ(x), where

θλ(x) =



(
δ(x)

)m−1
( ∫ δ(x)

0
L(s)
s ds

)1/(1−σ)

if λ = m(1 + σ) + (1− σ) ,(
δ(x)

) 2m−λ
1−σ

(
L(δ(x))

)1/(1−σ) if m(1 + σ) < λ < m(1 + σ) + (1− σ) ,(
δ(x)

)m( ∫ η
δ(x)

L(s)
s ds

)1/(1−σ)

if λ = m(1 + σ) ,

(δ(x))m if λ < m(1 + σ) .

In this case, we refer to [6] to deduce that if a satisfies (H2) and 0 < σ < 1, then
the m-potential V (aθλ) is continuous in D with boundary value zero. Hence if u
satisfies (3.6), then u is a solution of (4.4). So the result follows from theorem 1.3.
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