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STABILITY AND PERIODICITY OF SOLUTIONS FOR DELAY
DYNAMIC SYSTEMS ON TIME SCALES

ZHI-QIANG ZHU, QI-RU WANG

Abstract. This article concerns the stability and periodicity of solutions to
the delay dynamic system

x4(t) = A(t)x(t) + F (t, x(t), x(g(t))) + C(t)

on a time scale. By the inequality technique for vectors, we obtain some sta-
bility criteria for the above system. Then, using the Horn fixed point theorem,

we present some conditions under which our system is asymptotically peri-

odic and its periodic solution is unique. In particular, the periodic solution is
positive under proper assumptions.

1. Introduction

Let R denote the set of real numbers, Rm the m-dimensional Euclidean space
and T a time scale, i.e., an nonempty closed subset of R with the topology and
ordering inherited from R. The forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t},
the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}
and the graininess function µ : T→ [0,∞) is defined by

µ(t) = σ(t)− t.
For the other terminologies on time scales, we refer the reader to [1, 2, 3].

In this paper, we consider the stability and periodicity of solutions for the delay
dynamic system

x4(t) = A(t)x(t) + F (t, x(t), x(g(t))) + C(t), t ∈ T, (1.1)

where T is a τ -periodic time scale, that is, t + τ ∈ T for all t ∈ T, inf T = −τ < 0
and sup T =∞.

Since functional differential (or difference) equations with delays appear in a
number of ecological models, there have been many research activities concerning
the qualitative behavior for the special cases of (1.1); see, for example, the references
[4, 5, 6, 9, 10, 11, 12, 13, 14, 15], where stability and periodicity of solutions of
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related equations have been investigated. In particular, for T = [−τ,∞) and the
scalar case, Cheng and Zhang [4] in 2001 and Franco et al [5] in 2007 established
some existence criteria of periodic solutions to the equation

x′(t) = −a(t)x(t) + λb(t)f(x(t− h(t))), t ∈ [−τ,∞), (1.2)

where λ is a postive constant, a, b ∈ C(R, [0,∞)) are ω-periodic functions with∫ ω
0
a(s)ds > 0 and

∫ ω
0
b(s)ds > 0, h ∈ C(R,R) is ω-periodic, and f ∈ C(R, [0,∞)).

Precisely speaking, Franco et al improved the work in [4] and obtained the following
result [5, Theorem 2].

Theorem 1.1. Assume that

σ = e
R ω
0 a(s)ds, G(t, s) =

∫ s
t
a(r)dr
σ − 1

,

A = max
t∈[0,ω]

∫ ω

0

G(t, s)b(s)ds, B = min
t∈[0,ω]

∫ ω

0

G(t, s)b(s)ds.

Assume further that f0, f∞ ∈ (0,∞), and
1

Bmax{f0, f∞}
< λ <

1
Amin{f0, f∞}

,

where f0 and f∞ are defined respectively by

f0 = lim
x→0+

f(x)
x

, f∞ = lim
x→∞

f(x)
x

.

Then (1.2) has a positive ω-periodic solution.

In 2003, Zhao [14] studied the asymptotic periodic solutions of (1.1) for the
case when T = [−τ,∞) and the function F is independent of the second variable.
In 2008, Zhu and Cheng [15] considered the periodic solutions of (1.1) when T =
{−τ,−τ + 1,−τ + 2, . . .} with positive integer τ .

The aim of this article is to extend the techniques in [15] and establish some
criteria for the stability and periodicity of (1.1). As we will see in the sequel, our
results will generalize or improve those in [14, 15] and, to some extent, possess more
comprehensive suitability than [5].

2. Preliminaries

Let [a, b]T be an interval in T which is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}.
The symbol [a,∞)T has a similar meaning. Let C[a, b]T with a, b ∈ T denote the
set of all rd-continuous functions mapping [a, b]T into Rm, endowed with the linear
structure and the norm ‖ · ‖ defined by ‖ϕ‖ = maxt∈[a,b]T ‖ϕ(t)‖, where ‖ϕ(t)‖
denotes the norm of vector ϕ(t). Then C[a, b]T is a Banach space.

For a given ϕ ∈ C[−τ, 0]T, by a solution x(ϕ) of (1.1) we mean that x(ϕ) is a
function defined on [−τ,∞)T which coincides with ϕ on [−τ, 0]T and satisfies (1.1)
on [0,∞)T.

For any x = (x1, x2, . . . , xm)T , y = (y1, y2, . . . , ym)T ∈ Rm, the symbols x ≤ y
and x < y mean, respectively, that xi ≤ yi and xi < yi for i = 1, 2, . . . ,m. The
absolute |x| of vector x means that |x| = (|x1|, |x2|, . . . , |xm|)T . For any matrices
A = (aij)m×m and B = (bij)m×m in Rm×m, the symbols A ≤ B, A < B and |A|
can be defined accordingly.

In this paper, we assume throughout that A : T → Rm×m, C : T → Rm are
all rd-continuous, g : [0,∞)T → T is rd-continuous and transforms [t, t + τ ]T into
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[t − τ, t]T for t ∈ [0,∞)T, and F : T × Rm × Rm → Rm is continuous and satisfies
F (·, 0, 0) ≡ 0. Further, we assume that there exist α > 0, Ai ∈ Rm×m with Ai ≥ 0
for i ∈ {0, 1, 2}, and C0 ∈ Rm with C0 > 0 such that

(H1) 1− αµ(t) > 0 for t ∈ T and limt→∞ e−α(t, 0) = 0;
(H2) |A(t) + αI| ≤ A0 for all t ∈ [0,∞)T;
(H3) |F (t, x1, x2)− F (t, y1, y2)| ≤ A1|x1 − y1|+A2|x2 − y2| and |C(t)| ≤ C0 for

all t ∈ [0,∞)T;
(H4) ρ̃(A0+A1+A2) < α, where ρ̃ denotes the spectral radius of square matrices.
We remark that the real number α > 0 depends on the concrete time scale.

For example, let T be the set of nonnegative integers. Then, 1 − αµ(t) > 0 when
0 < α < 1. In this case we have e−α(t, 0) = (1−α)t and hence limt→∞ e−α(t, 0) = 0.
While T = [0,∞), e−α(t, 0) = e−αt and 1 − αµ(t) > 0 for any real number α > 0.
In this case limt→∞ e−α(t, 0) = 0. We remark further that e−α(t, 0) > 0 by the
assumption (H1) (see [2, Theorem 2.44]).

Note that (1.1) can be rewritten as

x∆(t) = −αx(t) + (A(t) + αI)x(t) + F (t, x(t), x(g(t))) + C(t), t ∈ T,

where I is the m×m identity matrix. Then, similar to [2, Theorem 5.24] (see also
[2, Theorems 8.16, 8.24]), the solution x(ϕ) (x for short) of (1.1) is existent and
unique on [−τ,∞)T, and given by

x(t) = ϕ(t), t ∈ [−τ, 0]T,

x(t) = e−α(t, 0)ϕ(0) +
∫ t

0

e−α(t, σ(s))
[
(A(s) + αI)x(s)

+ F (s, x(s), x(g(s))) + C(s)
]
∆s, t ∈ [0,∞)T.

(2.1)

For a subset S of Rm and ε ∈ Rm with ε > 0, let O(S, ε) be defined by

O(S, ε) = {x ∈ Rm : inf
s∈S
|x− s| ≤ ε}.

Definition 2.1. Let x(ϕ0) be a solution of (1.1) and ϕ ∈ C[−τ, 0]T. If ϕ → ϕ0

implies x(ϕ)(t)→ x(ϕ0)(t) for all t ∈ [0,∞)T, then the solution x(ϕ0) is said to be
stable.

Definition 2.2. System (1.1) is said to be equi-bounded if, for any H ∈ Rm with
H > 0, there exists an M(H) ∈ Rm such that ϕ ∈ C[−τ, 0]T with |ϕ(t)| ≤ H on
[−τ, 0]T implies |x(ϕ)(t)| ≤M(H) for all t ∈ [0,∞)T.

Definition 2.3. A set S ⊂ Rm is said to be a global attractor of (1.1) if, for any ε ∈
Rm with ε > 0 and ϕ ∈ C[−τ, 0]T, there exists a positive number T (ε, ϕ) ∈ T such
that the solution x(ϕ) of (1.1) satisfies x(ϕ)(t) ∈ O(S, ε) for all t ∈ [T (ε, ϕ),∞)T.

Definition 2.4. System (1.1) is said to be extremely stable if any two solutions
x(ϕ1) and x(ϕ2) of (1.1) satisfy x(ϕ1)(t)− x(ϕ2)(t)→ 0 as t→∞.

The subset B of C[a, b]T is said to be equi-continuous if, for any real number
ε > 0, there exists a δ > 0 such that ‖x(t1) − x(t2)‖ < ε for all x ∈ B provided
|t1−t2| ≤ δ for t1, t2 ∈ [a, b]T. In what follows, we will require the time scale version
of Arzela-Ascoli theorem. Although a similar result has been given in [16], for the
completeness we present the following lemma and its proof.
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Lemma 2.5. If B ⊂ C[a, b]T is bounded and equi-continuous, then B is relatively
compact.

Proof. Note that C[a, b]T is a Banach space, we need only to show that B is com-
pletely bounded. Since B is equi-continuous, for any real number ε > 0, there exists
a δ > 0 such that when t1, t2 ∈ [a, b]T with |t1 − t2| ≤ δ, it follows that

‖f(t1)− f(t2)‖ < ε for all f ∈ B. (2.2)

For this δ, there exists a partition on [a, b]T as follows

a = t1 < t2 < · · · < tn = b,

which satisfies ti − ti−1 ≤ δ, or ti − ti−1 > δ but ρ(ti) = ti−1 (see [3, Lemma 5.7]).
Let

B̃ = {(f(t1), f(t2), . . . , f(tn)) : f ∈ B}.

Since B is bounded, B̃ ∈ Rm×n is also bounded and hence is completely bounded.
Therefore, there exists an ε-net {f1, f2, . . . , fk} of B̃. We assert that it is also an
ε-net of B. Indeed, for any f ∈ B, (f(t1), f(t2), . . . , f(tn)) ∈ B̃ implies that there
exists some v ∈ {1, 2, . . . , k} such that

‖f(ti)− fv(ti)‖ < ε, i = 1, 2, . . . , n. (2.3)

Note that t ∈ [a, b]T implies t ∈ [ti, ti+1]T for some i ∈ {1, 2, . . . , n− 1}. Now there
are two cases to consider.

Case 1: ti+1 − ti ≤ δ. In this case, we have from (2.2) and (2.3) that

‖f(t)− fv(t)‖ ≤ ‖f(t)− f(ti)‖+ ‖f(ti)− fv(ti)‖+ ‖fv(ti)− fv(t)‖ < 3ε.

Case 2: ti+1 − ti > δ. In this case, ρ(ti+1) = ti and hence, t = ti or t = ti+1.
Thus ‖f(t)− fv(t)‖ < ε by (2.3).

To sum up, {f1, f2, . . . , fk} is an ε-net of B. The proof is complete. �

In the sequel, the following standard results will be imposed.

Lemma 2.6 ([7, 14]). Let R ∈ Rm×m and ρ̃(R) be the spectral radius of R. If
R ≥ 0 and ρ̃(R) < 1, then (I −R)−1 ≥ 0.

Lemma 2.7 ([8]). Let X be a Banach space and u : X → X be a completely
continuous. If there exists a bounded set E such that for each x ∈ X, there exists
integer n = n(x) such that un(x) ∈ E, then u has a fixed point in E.

3. Stability analysis

Note that, by assumption (H4) and Lemma 2.6, the matrix I− 1
α (A0 +A1 +A2)

is invertible. For the sake of convenience, we let

U =
(
I − A0 +A1 +A2

α

)−1

whenever it is defined.

Theorem 3.1. For any ϕ0 ∈ C[−τ, 0]T, the solution x(ϕ0) of (1.1) is stable.
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Proof. Let ϕ ∈ C[−τ, 0]T. From (2.1) we have

|x(ϕ)(t)− x(ϕ0)(t)|

≤ e−α(t, 0)|ϕ(0)− ϕ0(0)|+
∫ t

0

e−α(t, σ(s))(A0 +A1)|x(ϕ)(s)− x(ϕ0)(s)|∆s

+
∫ t

0

e−α(t, σ(s))A2|x(ϕ)(g(s))− x(ϕ0)(g(s))|∆s.

(3.1)
For any ε ∈ Rm with ε > 0, we assert that |x(ϕ)(t) − x(ϕ0)(t)| ≤ 1

αUε for all
t ∈ [0,∞)T when |ϕ(t) − ϕ0(t)| ≤ 1

αUε on [−τ, 0]T. Otherwise, there exists a
t1 ∈ T ∩ (0,∞) and a real number β > 1 such that

|x(ϕ)(t)− x(ϕ0)(t)| ≤ β

α
Uε, t ∈ [0, t1]T, (3.2)

|xv(ϕ)(t1)− xv(ϕ0)(t1)| =
(β
α
Uε
)
v
, (3.3)

where xv(ϕ)(t1) − xv(ϕ0)(t1) stands for some component of the vector x(ϕ)(t1) −
x(ϕ0)(t1). Then, we have from (3.1) and (3.2) that

|x(ϕ)(t1)− x(ϕ0)(t1)|

≤ e−α(t1, 0)|ϕ(0)− ϕ0(0)|+
∫ t1

0

e−α(t1, σ(s))∆s · β
α

(A0 +A1 +A2)Uε

<
β

α
e−α(t1, 0)Uε+

∫ t1

0

e−α(t1, σ(s))∆s · β
α

[(A0 +A1 +A2)Uε+ αε]

=
β

α
e−α(t1, 0)Uε+

1
α

[1− e−α(t1, 0)] · β
α

[(A0 +A1 +A2)Uε+ αε]

=
β

α
Uε,

which is in conflict with (3.3), where we have used the formula∫ t1

0

e−α(t1, σ(s))∆s = − 1
α

[e−α(t1, 0)− 1],

see [2, Theorem 2.39] for the details. Since ε > 0 is arbitrary, the solution x(ϕ0) of
(1.1) is stable. The proof is complete. �

Theorem 3.2. System (1.1) is equi-bounded and the set

S =
{
s ∈ Rm : |s| ≤ 1

α
UC0

}
is a global attractor of (1.1).

Proof. For the first part, we note that 1
αUC0 > 0. Then, for any H ∈ Rm with

H > 0, there exists a real number β0 ≥ 1 such that H ≤ β0
α UC0. Now, for any

given ϕ ∈ C[−τ, 0]T with |ϕ(t)| ≤ H on [−τ, 0]T, we assert that the solution x(ϕ)
of (1.1) satisfies |x(ϕ)(t)| ≤ β0

α UC0 on [0,∞)T. Otherwise, similar to the proof of
Theorem 3.1, there exist a t1 ∈ T ∩ (0,∞) and a real number β1 > 1 such that

|x(ϕ)(t)| ≤ β1β0

α
UC0, t ∈ [0, t1]T, (3.4)

|xv(ϕ)(t1)| =
(β1β0

α
UC0

)
v
. (3.5)
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By the same method as above, from (2.1) and (3.4) we have

|x(ϕ)(t1)| < β1β0

α
UC0,

which contradicts (3.5).
Next we show the second part. By the equi-boundedness, it follows that the

solution x(ϕ) of (1.1) is bounded for any ϕ ∈ C[−τ, 0]T and hence we may assume
that

lim sup
t→∞

|x(ϕ)(t)| = 1
α
UC0 + β,

where β ∈ Rm. Therefore, for any given ε ∈ Rm with ε > 0, there exists a large
t1 ∈ [0,∞)T such that

|x(ϕ)(t)| ≤ 1
α
UC0 + β + ε for all t ∈ [t1 − τ,∞)T. (3.6)

Let

U(ε) =
1
α
UC0 + β + ε

and x(t) for x(ϕ)(t). According to (2.1) we see that when t ∈ [t1,∞)T,

x(t) = e−α(t, t1)x(t1)

+
∫ t

t1

e−α(t, σ(s))[(A(s) + αI)x(s) + F (s, x(s), x(g(s)))) + C(s)]∆s,

and this, together with (3.6), yields

|x(t)| ≤ e−α(t, t1)|x(t1)|+
∫ t

t1

e−α(t, σ(s))∆s[(A0 +A1 +A2)U(ε) + C0]

= e−α(t, t1)|x(t1)|+ 1
α

[1− e−α(t, t1)][(A0 +A1 +A2)U(ε) + C0],

which, with the aid of e−α(t, t1) = e−α(t, 0)e−α(0, t1) → 0 as t → ∞ (see assump-
tion (H1)), results in

1
α
UC0 + β ≤ 1

α
[(A0 +A1 +A2)U(ε) + C0],

namely (
1− A0 +A1 +A2

α

)
β ≤ A0 +A0 +A2

α
ε. (3.7)

Note that assumption (H4) and Lemma 2.6 imply(
1− A0 +A1 +A2

α

)−1 ≥ 0.

Consequently, by (3.7) we see that

β ≤
(
I − A0 +A1 +A2

α

)−1A0 +A1 +A2

α
ε,

which yields β ≤ 0. Now from (3.6) we show that S is a global attractor of (1.1).
The proof is complete. �
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Remark 3.3. The proof of the first part in Theorem 3.2 shows that the solution
x(ϕ) of (1.1) satisfies that

|x(ϕ)(t)| ≤ S for all t ∈ [0,∞)T

when ϕ ∈ S, where S is defined as in Theorem 3.2. In other words, S is an invariant
set of (1.1). Accordingly, our Theorem 3.2 covers the conclusions in [14, Theorems
1 and 2 ].

Note that if the functions A(t), C(t) and F (t, x, y) satisfy A(t)+αI ≥ 0, C(t) ≥ 0
and F (t, x, y) ≥ 0 for all t ∈ T and x, y ∈ Rm, then from (2.1) we have

x(ϕ)(t) ≥ e−α(t, 0)ϕ(0)→ 0 as t→∞.
Hence, by (3.6) we see that, for any given positive vector ε ∈ Rm there exists a
positive number T ∈ T such that

−ε ≤ x(ϕ)(t) ≤ 1
α
UC0 + ε for t ∈ [T,∞)T.

Now the following conclusion is clear.

Theorem 3.4. Assume that in (1.1), the functions A(t), C(t) and F (t, x, y) satisfy
A(t) + αI ≥ 0, C(t) ≥ 0 and F (t, x, y) ≥ 0 for all t ∈ T and x, y ∈ Rm. Then the
set

S0 =
{
s ∈ Rm : 0 ≤ s ≤ 1

α
UC0

}
is a global attractor of (1.1).

Theorem 3.5. System (1.1) is extremely stable.

Proof. Let x1 = x(ϕ1) and x2 = x(ϕ2) be any two solutions of (1.1) and z(t) =
x1(t) − x2(t). Then, Theorem 3.2 implies that z(t) is bounded. Thus we may
assume that

lim sup
t→∞

|z(t)| = z̃. (3.8)

This means that, for any positive vector ε ∈ Rm, there exists a large t1 ∈ [0,∞)T
such that

|z(t)| ≤ z̃ + ε, t ∈ [t1 − τ,∞)T. (3.9)
In addition, z(t) must satisfy

z∆(t) = A(t)z(t) + F (t, x1(t), x1(g(t)))− F (t, x2(t), x2(g(t))).

Similar to (2.1), it follows that when t ∈ [t1,∞)T,

z(t) = e−α(t, t1)z(t1) +
∫ t

t1

e−α(t, σ(s))(A(s) + αI)z(s)∆s

+
∫ t

t1

e−α(t, σ(s))[F (s, x1(s), x1(g(s)))− F (s, x2(s), x2(g(s)))]∆s,

which, associated with (3.9), implies that when t ∈ [t1,∞)T,

|z(t)| ≤ e−α(t, t1)|z(t1)|+ 1
α

[1− e−α(t, t1)](A0 +A1 +A2)(z̃ + ε). (3.10)

Invoking (3.8), from (3.10) we have

z̃ ≤ A0 +A1 +A2

α
(z̃ + ε)
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and then
z̃ ≤

(
I − A0 +A1 +A2

α

)−1A0 +A1 +A2

α
ε. (3.11)

Since ε > 0 is arbitrary, by (3.8) and (3.11) we see that limt→∞ z(t) = 0, which
completes our proof. �

4. Existence of periodic solutions

In this section, we consider the existence of periodic solutions for (1.1). To do
this, we set

G(t, x(t)) = A(t)x(t) + F (t, x(t), x(g(t))) + C(t). (4.1)
For a solution x(ϕ) of (1.1) and t ∈ [0,∞)T, the delay function xt(ϕ) : [−τ, 0]T →
Rm is defined by xt(ϕ)(θ) = x(ϕ)(t+ θ) for θ ∈ [−τ, 0]T.

Theorem 4.1. Suppose that ω ≥ τ , A(t) = A(t+ ω), C(t) = C(t+ ω), F (t, ·, ·) =
F (t + ω, ·, ·) and g(t + ω) = g(t) + ω for all t ∈ [0,∞)T. Then (1.1) has a unique
ω-periodic solution.

Proof. Let u : C[−τ, 0]T → C[−τ, 0]T be defined by

u(ϕ) = xω(ϕ), ϕ ∈ C[−τ, 0]T.

Then, Theorem 3.1 implies that u is continuous on C[−τ, 0]T. Since the solution of
(1.1) is existent and unique, by the periodicity of A, C and F with respect to t we
obtain that

x(ϕ)(t+ ω) = x(xω(ϕ))(t), t ∈ [0,∞)T, (4.2)
where x(xω(ϕ)) represents the solution of (1.1) through xω(ϕ). From (4.2) we have
xω(xω(ϕ)) = x2ω(ϕ) and hence u2(ϕ) = x2ω(ϕ). In general, for any positive integer
n, it follows from the mathematical induction that un(ϕ) = xnω(ϕ).

(i) First, we show that u maps any bounded subset E ⊂ C[−τ, 0]T into a relatively
compact set. We note first that Theorem 3.2 implies that there exists M1 ∈ Rm such
that for any ϕ ∈ E, the solution x(ϕ) of (1.1) satisfies |x(ϕ)(t)| ≤M1 for all t ∈ T.
Then, by assumption (H3), there exists M2 ∈ Rm so that |G(t, x(ϕ)(t))| ≤ M2 for
all t ∈ T and ϕ ∈ E, where G is defined by (4.1). Subsequently, for all ϕ ∈ E we
have

|u∆(ϕ)(θ)| = |x∆(ϕ)(ω + θ)|
= |G(ω + θ, x(ϕ)(ω + θ))| ≤M2, θ ∈ [−τ, 0]T,

(4.3)

where ∆ denotes the derivative with respect to θ, and the hypothesis ω ≥ τ has
been imposed. Now invoking the Mean Value Theorem [3, Theorem 1.14], we have
from (4.3) that

|u(ϕ)(θ1)− u(ϕ)(θ2)| ≤M2|θ1 − θ2| for all ϕ ∈ S,
which means that u(E) is equi-continuous. Since u(E) is bounded, Lemma 2.5
implies that u(E) is relatively compact and hence u is completely continuous.

(ii) Next, we show that u has a fixed point. To this end, we recall that, by
Theorem 3.2, {

s ∈ Rm : |s| ≤ 1
α
UC0

}
is a global attractor of (1.1). Then, for a given ε0 ∈ Rm with ε0 > 0, and any
ϕ ∈ C[−τ, 0]T, there exists T̃ = T̃ (ε0, ϕ) such that

|x(ϕ)(t)| ≤ 1
α
UC0 + ε0 for all t ∈ [T̃ ,∞)T. (4.4)
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Taking an integer n = n(ε0, ϕ) with nω ≥ T̃ + τ , it follows from (4.4) that

|x(ϕ)(nω + θ)| ≤ 1
α
UC0 + ε0 for all θ ∈ [−τ, 0]T. (4.5)

Let

E =
{
ϕ ∈ C[−τ, 0]T : |ϕ(θ)| ≤ 1

α
UC0 + ε0, θ ∈ [−τ, 0]T

}
. (4.6)

Then (4.5) implies xnω(ϕ) ∈ E and hence un(ϕ) ∈ E. By Lemma 2.7 we see that u
has a fixed point ϕ0 ∈ E.

(iii) Note that the solution x(ϕ0) of (1.1) through ϕ0 satisfies

x(ϕ0)(t) = x(u(ϕ0))(t) = x(xω(ϕ0))(t) = x(ϕ0)(t+ ω) for all t ∈ [0,∞)T,

where we have invoked (4.2). Hence x(ϕ0) is ω-periodic. Further, Theorem 3.5
implies that this periodic solution of (1.1) is unique. The proof is complete. �

Note that under the conditions in Theorem 3.4, the set{
s ∈ Rm : 0 ≤ s ≤ 1

α
UC0

}
is a global attractor of (1.1). Then, if we replace E as in (4.6) by

E0 =
{
ϕ ∈ C[−τ, 0]T : −ε0 ≤ ϕ(θ) ≤ 1

α
UC0 + ε0, θ ∈ [−τ, 0]T

}
,

then, in a similar way as in the proof of Theorem 4.1 we see that u has a fixed point
ϕ0 ∈ E0 for which x(ϕ0)(t) is a unique ω-periodic solution of (1.1). Since ε0 > 0 is
arbitrary, ϕ0(θ) ≥ 0 for all θ ∈ [−τ, 0]T. Therefore, from (2.1) we have

x(ϕ0)(t) ≥ 0 and x(ϕ0)(t) is not identically zero on T

provided C(t) ≥ 0 is not identically zero on T. In this case we refer to the periodic
solution x(ϕ0) as positive. Now we extract the essence and obtain the following
result.

Theorem 4.2. Under the conditions in Theorems 3.4 and 4.1, if C(t) is not iden-
tically zero on T, then system (1.1) has a unique positive ω-periodic solution.

Now we see that under the conditions in Theorem 4.1, system (1.1) possesses a
unique periodic solution x(ϕ0). On the other hand, by Theorem 3.5 we have

x(ϕ)(t)− x(ϕ0)(t)→ 0 as t→∞

for any solution x(ϕ) of (1.1). That is, x(ϕ) is an asymptotical periodic solution
of (1.1). Furthermore, x(ϕ0)(t) ≡ 0 in case C(t) ≡ 0 on T. As a consequence, the
following result is clear.

Theorem 4.3. Under the conditions in Theorem 4.1, each solution of (1.1) is
asymptotically periodic. Specially, if C(t) ≡ 0 on T, then each solution x(t) of
(1.1) converges to zero as t→∞.

Remark 4.4. As a final remark, our results for periodicity cover those in [14,
Theorem 3] and improve the conclusion in [15, Theorem 14]. Indeed, the authors
in [15] only obtained an existence criterion of periodic solutions and ignored the
uniqueness and asymptotical property.



10 Z.-Q. ZHU, Q.-R. WANG EJDE-2014/100

5. Examples

Let us consider the following two examples to better understand our results.

Example 5.1. Let T = [−1,∞) ⊂ R and consider the equation of Nicholson
blowflies type [5, Example 1]

x′(t) = −1
2
x(t) +

λ

2
|x(t− 1)|

(
α+ βe−x(t−1)

)
+ c(t), t ∈ [−1,∞), (5.1)

where α, β and λ are positive constants, and c(t) ≥ 0 is a 1-periodic function.

(i) For the case c(t) ≡ 0, to invoke Theorem 1.1 we first calculate

f0 = α+ β, f∞ = α, A = 1, B = e−1/2.

Then, for any α and β satisfying

1
B(α+ β)

≥ 1
Aα

,

Theorem 1.1 is invalid since ( 1
B(α+β) ,

1
Aα ) is empty. Now we turn to impose our

criteria under the same conditions as above. To this end, we take F (t, x1, x2) =
λ
2 |x2|(α+ βe−x2) and

A1 = 0, A2 =
λ(α+ β)

2
.

Then

|F (t, x1, x2)− F (t, y1, y2)| ≤ A2|x2 − y2|

and hence, for

λ <
1

α+ β
, (5.2)

Theorem 4.3 implies that each solution x(t) of (5.1) converges to zero as t→∞.
(ii) For the case c(t) ≥ 0 and not identically zero, as long as the positive constants

α, β and λ fulfill the relation (5.2), our Theorems 4.2 and 4.3 imply that (5.1) has
a unique positive 1-periodic solution and others are asymptotically periodic.

Example 5.2. Let T = ∪∞k=1[4k − 8, 4k − 6] and α = 1/3. Then 1 − αµ(t) > 0
for all t ∈ T, T is a 4-periodic time scale and e−α(t, 0) → 0 as t → ∞. Now we
consider the delay dynamic system

x∆(t) =
(
−1/3 0

0 −1/3

)
x(t)+

(
1/4 1
0 1/4

)
x(t−4)+

(
sin(πt/2)
cos(πt/2)

)
, t ∈ T (5.3)

and take

A0 = A1 = 0, A2 =
(

1/4 1
0 1/4

)
, C0 =

(
1
1

)
.

Then, assumptions (H1)–(H4) are satisfied. Now by Theorems 4.1 and 4.3, sys-
tem (5.3) has a unique 4-periodic solutions and others are asymptotically periodic.
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