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EXACT CONTROLLABILITY FOR A WAVE EQUATION WITH
MIXED BOUNDARY CONDITIONS IN A NON-CYLINDRICAL

DOMAIN

LIZHI CUI, HANG GAO

Abstract. In this article we study the exact controllability of a one-dimen-

sional wave equation with mixed boundary conditions in a non-cylindrical do-

main. The fixed endpoint has a Dirichlet-type boundary condition, while the
moving end has a Neumann-type condition. When the speed of the moving

endpoint is less than the characteristic speed, the exact controllability of this

equation is established by Hilbert Uniqueness Method. Moreover, we shall give
the explicit dependence of the controllability time on the speed of the moving

endpoint.

1. Introduction and statement of main results

Given T > 0. For any 0 < k < 1, set

αk(t) = 1 + kt for t ∈ [0, T ]. (1.1)

Also, define the non-cylindrical domain

Q̂kT = {(y, t) ∈ R2; 0 < y < αk(t), t ∈ [0, T ]}
and write

V (0, αk(t)) = {ϕ ∈ H1(0, αk(t));ϕ(0) = 0} for t ∈ [0, T ],

which is a subspace of H1(0, αk(t)) and we denote by [V (0, αk(t))]′ its conjugate
space.

Consider the wave equation

utt − uyy = 0 in Q̂kT ,

u(0, t) = 0, uy(αk(t), t) = v(t) on (0, T ),

u(y, 0) = u0(y), ut(y, 0) = u1(y) in (0, 1),

(1.2)

where v is the control variable, u is the state variable and (u0, u1) ∈ L2(0, 1) ×
[V (0, 1)]′ is any given initial value. By [3] and [5], it is easy to check that the
equation (1.2) has a unique solution u by transposition

u ∈ C([0, T ];L2(0, αk(t))) ∩ C1([0, T ]; [V (0, αk(t))]′).
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The main purpose of this article is to study the exact controllability of (1.2).
There are numerous publications on the controllability problems of wave equa-
tions in a cylindrical domain. However, there are only a few works on the exact
controllability for wave equations defined in non-cylindrical domains. We refer to
[1, 2, 5, 6, 7] for some known results in this respect. In [1], the exact controllability
of a multi-dimensional wave equation with constant coefficients in a non-cylindrical
domain was established, while a control entered the system through the whole
non-cylindrical domain. In [2, 5, 6, 7], some controllability results for the wave
equations with Dirichlet boundary conditions in suitable non-cylindrical domains
were investigated, respectively.

In [2] and [5], exact controllability of a wave equation in certain non-cylindrical
domain was studied. But in the one-dimensional case, some conditions on the
moving boundary were required, e.g.∫ ∞

0

|α′k(t)|dt <∞. (1.3)

In [6] and [7], the exact Dirichlet boundary controllability of the following systems
were discussed,

utt − uyy = 0 in Q̂kT ,

u(0, t) = 0, u(αk(t), t) = v(t) on (0, T ),

u(y, 0) = u0, ut(y, 0) = u1 in (0, 1),

and

utt − uyy = 0 in Q̂kT ,

u(0, t) = v(t), u(αk(t), t) = 0 on (0, T ),

u(y, 0) = u0, ut(y, 0) = u1 in (0, 1),

In [6, 7] and in this research, we deal with the different case. It is easy to check
that the condition ∫ ∞

0

|α′k(t)|dt =∞

is satisfied on the moving boundary
To overcome these difficulties, in this article, we transform (1.2) into an equiva-

lent wave equation with variable coefficients in the cylindrical domain and establish
the exact controllability of this equation by Hilbert Uniqueness Method. In [3], the
Neumann boundary controllability problem for a multi-dimensional wave equation
with variable coefficients in a cylindrical domain was studied. However in [3], in
the one-dimensional case, the condition (1.3) was required. In this paper, the key
point is to construct a different adjoint equation. Then we define weighted energy
function for this adjoint equation and characterize the energy explicitly (see (2.4)).

Throughout this article, we set

T ∗k =
e

2k(1+k)
1−k − 1
k

. (1.4)

The main result of this paper is stated as follows.

Theorem 1.1. For any given T > T ∗k , the equation (1.2) is exactly controllable
at the time T ; i.e., for any initial value (u0, u1) ∈ L2(0, 1) × [V (0, 1)]′ and target
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(u0
d, u

1
d) ∈ L2(0, αk(T ))× [V (0, αk(T ))]′, there exists a control v ∈ [H1(0, T )]′ such

that the corresponding solution u of (1.2) satisfies

u(T ) = u0
d and ut(T ) = u1

d. (1.5)

Remark 1.2. It is easy to check that

T ∗0 := lim
k→0

T ∗k = lim
k→0

e
2k(1+k)

1−k − 1
k

= 2.

It is well known that the wave equation (1.2) in the cylindrical domain is exactly
controllable at any time T > T ∗0 . As we know, T ∗0 is sharp. However, we do not
know whether the controllability time T ∗k is sharp.

To establish the exact controllability of (1.2), we first transform (1.2) into an
equivalent wave equation with variable coefficients in a cylindrical domain. To this
aim, for any (y, t) ∈ Q̂kT , set y = αk(t)x and u(y, t) = u(αk(t)x, t) = w(x, t). Then
it is easy to check that (1.2) is transformed into the wave equation

wtt − [
βk(x, t)
αk(t)

wx]x + [
γk(x)
αk(t)

]wtx = 0 in Q,

w(0, t) = 0, wx(1, t) = v(t) on (0, T ),

w(x, 0) = w0(x), wt(x, 0) = w1(x) in (0, 1),

(1.6)

where

Q = (0, 1)× (0, T ), v(t) = αk(t)v(t), βk(x, t) =
1− k2x2

αk(t)
,

γk(x) = −2kx,w0 = u0 and w1 = u1 + kxu0
x.

(1.7)

By a method similar to the one used in [3], it is easy to check that the equation
(1.6) has a unique solution w by transposition

w ∈ C([0, T ];L2(0, 1)) ∩ C1([0, T ]; [V (0, 1)]′).

Moreover, the exact controllability of (1.2) (Theorem 1.1) is reduced to the following
exact controllability result for (1.6).

Theorem 1.3. Suppose that T > T ∗k . Then for any initial value (w0, w1) ∈
L2(0, 1)× [V (0, 1)]′ and target (w0

d, w
1
d) ∈ L2(0, 1)× [V (0, 1)]′, there exists a control

v ∈ [H1(0, T )]′ such that the corresponding solution w of (1.6) satisfies

w(T ) = w0
d and wt(T ) = w1

d.

To prove Theorem 1.3, we adopt Hilbert Uniqueness Method. The key is to
define a weighted energy function for a wave equation with variable coefficients in
cylindrical domains.

The rest of this paper is organized as follows. In Section 2, we derive an explicit
energy equality for a wave equation with variable coefficients in cylindrical domains
and further deduce two key inequalities for this equation. Section 3 is devoted to a
proof of Theorem 1.3.
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2. Two inequalities for the wave equation with variable coefficients

First we introduce some notation. Denote by | · | and ‖ · ‖ the norms of the
spaces L2(0, 1) and V (0, 1), respectively. Also, we use L2, V and V ′ to represent
the spaces L2(0, 1), V (0, 1) and [V (0, 1)]′, respectively. Denote by 〈·, ·〉 the duality
product between the linear space F and its dual space F ′.

Consider the wave equation with variable coefficients
αk(t)ztt − [βk(x, t)zx]x + γk(x)ztx = 0 in Q,

z(0, t) = 0, βk(1, t)zx(1, t)− γk(1)zt(1, t) = 0 on (0, T ),

z(x, 0) = z0(x), zt(x, 0) = z1(x) in (0, 1),

(2.1)

where (z0, z1) ∈ V × L2 is any given initial value, and αk, βk and γk are the
functions given in (1.7). By a similar method in [3] and [8], it is easy to check that
(2.1) has a unique solution z by transposition

z ∈ C([0, T ];V ) ∩ C1([0, T ];L2).

Define the following energy function for (2.1),

E(t) =
1
2

∫ 1

0

[αk(t)|zt(x, t)|2 + βk(x, t)|zx(x, t)|2]dx for t ∈ [0, T ],

where z is the solution of (2.1). It follows that

E0 , E(0) =
1
2

∫ 1

0

[|z1(x)|2 + βk(x, 0)|z0
x(x)|2]dx.

To prove Theorem 1.3, we need the following two key inequalities.

Theorem 2.1. For any T > 0, there exists a positive constant C1 depending only
only T , such that solutions z of (2.1) satisfy∫ T

0

|zt(1, t)|2dt ≤ C1(‖z0‖2 + |z1|2) for any (z0, z1) ∈ V × L2. (2.2)

Theorem 2.2. Suppose that T > T ∗k . Then there exists a positive constant C2

depending only on T , such that solutions z of (2.1) satisfy∫ T

0

|zt(1, t)|2dt ≥ C2(‖z0‖2 + |z1|2) for any (z0, z1) ∈ V × L2. (2.3)

First, we prove two lemmas, which will be used in the proofs of these inequalities.
The first lemma is related to an equivalent expression of the energy E(t).

Lemma 2.3. Suppose that z is any solution of (2.1). Then we have

E(t) =
1

αk(t)
E0 −

k

αk(t)

∫ t

0

αk(s)|zt(1, s)|2ds, 0 ≤ t ≤ T. (2.4)

Proof. Multiplying both sides of the first equation of (2.1) by zt and integrating on
(0, 1)× (0, t), we obtain

0 =
∫ t

0

∫ 1

0

{
αk(s)ztt(x, s)zt(x, s)− [βk(x, s)zx(x, s)]xzt(x, s)

+ γk(x)ztx(x, s)zt(x, s)
}
dx ds

, J1 + J2 + J3.
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Next, we calculate the above three integrals. It is easy to check that

J1 =
∫ t

0

∫ 1

0

1
2
αk(s)[|zt(x, s)|2]t dx ds

=
1
2

∫ 1

0

αk(s)|zt(x, s)|2dx
∣∣t
0
− k

2

∫ t

0

∫ 1

0

|zt(x, s)|2 dx ds.
(2.5)

Further, by the second equation of (2.1), it holds that

J2 = −
∫ t

0

βk(x, s)zx(x, s)zt(x, s)ds
∣∣1
0

+
∫ t

0

∫ 1

0

βk(x, s)zx(x, s)zxt(x, s) dx ds

= −
∫ t

0

βk(x, s)zx(x, s)zt(x, s)ds
∣∣1
0

+
1
2

∫ 1

0

βk(x, s)|zx(x, s)|2dx
∣∣t
0

− 1
2

∫ t

0

∫ 1

0

βk,t(x, s)|zx(x, s)|2 dx ds

= −
∫ t

0

γk(1)|zt(1, s)|2ds+
1
2

∫ 1

0

βk(x, s)|zx(x, s)|2dx
∣∣t
0

− 1
2

∫ t

0

∫ 1

0

βk,t(x, s)|zx(x, s)|2 dx ds.

By (1.7), it is obvious that

βk,t(x, t) = −k(1− k2x2)
(1 + kt)2

= − k

(1 + kt)
βk(x, t).

This implies that

J2 = −
∫ t

0

∫ 1

0

[βk(x, s)zx(x, s)]xzt(x, s) dx ds

= −
∫ t

0

γk(1)|zt(1, s)|2ds+
1
2

∫ 1

0

βk(x, s)|zx(x, s)|2dx
∣∣t
0

+
1
2

∫ t

0

k

(1 + ks)

∫ 1

0

βk(x, s)|zx(x, s)|2 dx ds.

(2.6)

Further, by the definition of γk, we find that

J3 =
1
2

∫ t

0

γk(x)|zt(x, s)|2ds
∣∣1
0
− 1

2

∫ t

0

∫ 1

0

γk,x(x)|zt(x, s)|2 dx ds

=
1
2

∫ t

0

γk(1)|zt(1, s)|2ds−
1
2

∫ t

0

∫ 1

0

γk,x(x)|zt(x, s)|2 dx ds.

Since γk,x(x) = −2k, it follows that

J3 =
1
2

∫ t

0

γk(1)|zt(1, s)|2ds+ k

∫ t

0

∫ 1

0

|zt(x, s)|2 dx ds. (2.7)

By (2.5)-(2.7) and the definition of E(t), we see that

E(t) = E0 +
1
2

∫ t

0

γk(1)|zt(1, s)|2ds−
1
2

∫ t

0

k

(1 + ks)

∫ 1

0

βk(x, s)|zx(x, s)|2 dx ds

− k

2

∫ t

0

∫ 1

0

|zt(x, s)|2 dx ds
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= E0 −
∫ t

0

k|zt(1, s)|2ds−
1
2

∫ t

0

k

(1 + ks)

∫ 1

0

βk(x, s)|zx(x, s)|2 dx ds

− 1
2

∫ t

0

k

(1 + ks)

∫ 1

0

αk(x, s)|zt(x, s)|2 dx ds

= E0 −
∫ t

0

k|zt(1, s)|2ds−
∫ t

0

k

(1 + ks)
E(s)ds,

which implies that

Et(t) = − k

1 + kt
E(t)− k|zt(1, t)|2, 0 ≤ t ≤ T.

It follows that

[(1 + kt)E(t)]t = −k(1 + kt)|zt(1, t)|2, 0 ≤ t ≤ T,

which completes the proof of Lemma 2.3. �

Remark 2.4. By (2.4), it is easy to check that E(t) < 1
αk(t)E0 < E0.

By the multiplier method, we have the following estimate for any solution of
(2.1).

Lemma 2.5. Let q ∈ C1([0, 1]). Then any solution z of (2.1) satisfies

[
1
2

∫ T

0

βk(x, t)q(x)|zx(x, t)|2dt]
∣∣1
0

+
1
2

∫ T

0

αk(t)q(1)|zt(1, t)|2dt

=
1
2

∫ T

0

∫ 1

0

qx(x)[αk(t)|zt(x, t)|2 + βk(x, t)|zx(x, t)|2] dx dt

−
∫ T

0

∫ 1

0

αk,t(t)q(x)zt(x, t)zx(x, t) dx dt

− 1
2

∫ T

0

∫ 1

0

βk,x(x, t)q(x)|zx(x, t)|2 dx dt

+
{∫ 1

0

[αk(t)q(x)zt(x, t)zx(x, t) +
1
2
γk(x)q(x)|zx(x, t)|2]dx

}∣∣∣T
0
.

(2.8)

Proof. Multiplying the first equation of (2.1) by qzx and integrating on Q, we
obtain

0 =
∫ T

0

∫ 1

0

αk(t)ztt(x, t)q(x)zx(x, t) dx dt

−
∫ T

0

∫ 1

0

[βk(x, t)zx(x, t)]xq(x)zx(x, t) dx dt

+
∫ T

0

∫ 1

0

γk(x)ztx(x, t)q(x)zx(x, t) dx dt

, L1 + L2 + L3.
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Now, we calculate L1, L2 and L3. First, it is easy to check that

L1 =
∫ 1

0

αk(t)q(x)zt(x, t)zx(x, t)dx
∣∣T
0
−
∫ T

0

∫ 1

0

αk,t(t)q(x)zt(x, t)zx(x, t) dx dt

− 1
2

∫ T

0

αk(t)q(x)|zt(x, t)|2dt
∣∣1
0

+
1
2

∫ T

0

∫ 1

0

αk(t)qx(x)|zt(x, t)|2 dx dt

=
∫ 1

0

αk(t)q(x)zt(x, t)zx(x, t)dx
∣∣T
0
−
∫ T

0

∫ 1

0

αk,t(t)q(x)zt(x, t)zx(x, t) dx dt

− 1
2

∫ T

0

αk(t)q(1)|zt(1, t)|2dt+
1
2

∫ T

0

∫ 1

0

αk(t)qx(x)|zt(x, t)|2 dx dt.

(2.9)

Further,

L2 = −
∫ T

0

∫ 1

0

[βk(x, t)zx(x, t)]xq(x)zx(x, t) dx dt

= −
∫ T

0

βk(x, t)q(x)|zx(x, t)|2dt
∣∣1
0

+
∫ T

0

∫ 1

0

[βk(x, t)qx(x)|zx(x, t)|2 + βk(x, t)zx(x, t)q(x)zxx(x, t)] dx dt

= −
∫ T

0

βk(x, t)q(x)|zx(x, t)|2dt
∣∣1
0

+
∫ T

0

∫ 1

0

βk(x, t)qx(x)|zx(x, t)|2 dx dt

+
1
2

∫ T

0

βk(x, t)q(x)|zx(x, t)|2dt
∣∣1
0
− 1

2

∫ T

0

∫ 1

0

[βk(x, t)q(x)]x|zx(x, t)|2 dx dt.

It follows that

L2 = −1
2

∫ T

0

βk(x, t)q(x)|zx(x, t)|2dt
∣∣1
0

+
1
2

∫ T

0

∫ 1

0

[βk(x, t)qx(x)|zx(x, t)|2 − βk,x(x, t)q(x)|zx(x, t)|2] dx dt.

(2.10)

Further,

L3 =
1
2

∫ 1

0

γk(x)q(x)|zx(x, t)|2dx
∣∣T
0
. (2.11)

By (2.9)-(2.11), we get the desired result in Lemma 2.5. �

Next, we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Choose q(x) = x. Notice that αk,t(t) = k, βk,x(x, t) =
−2k2x
1+kt and γk(x) = −2kx. By (2.8), it follows that(1

2
+

2k2

1− k2

) ∫ T

0

αk(t)|zt(1, t)|2dt

=
∫ T

0

E(t)dt−
∫ T

0

∫ 1

0

kxzt(x, t)zx(x, t) dx dt+
∫ T

0

∫ 1

0

k2x2

1 + kt
|zx(x, t)|2 dx dt

+
{∫ 1

0

[
αk(t)xzt(x, t)zx(x, t)− kx2|zx(x, t)|2]dx

}∣∣∣T
0
.

(2.12)
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Now, we estimate the terms in the right-hand side of (2.12). Using the Young
inequality, we obtain∫ T

0

E(t)dt+
∫ T

0

∫ 1

0

k2x2

1 + kt
|zx(x, t)|2 dx dt−

∫ T

0

∫ 1

0

kxzt(x, t)zx(x, t) dx dt

≤
∫ T

0

E(t)dt+
∫ T

0

∫ 1

0

k2x2

1 + kt
|zx(x, t)|2 dx dt

+
1
2

∫ T

0

∫ 1

0

k2x2

1 + kt
|zx(x, t)|2 dx dt+

1
2

∫ T

0

∫ 1

0

αk(t)|zt(x, t)|2 dx dt

=
∫ T

0

E(t)dt+
3
2

∫ T

0

∫ 1

0

k2x2

1− k2x2
βk(x, t)|zx(x, t)|2 dx dt

+
1
2

∫ T

0

∫ 1

0

αk(t)|zt(x, t)|2 dx dt

≤
∫ T

0

E(t)dt+
3
2

k2

1− k2

∫ T

0

∫ 1

0

βk(x, t)|zx(x, t)|2 dx dt

+
1
2

∫ T

0

∫ 1

0

αk(t)|zt(x, t)|2 dx dt

≤
∫ T

0

E(t)dt+
( 3k2

1− k2
+ 1
)∫ T

0

E(t)dt

=
2 + k2

1− k2

∫ T

0

E(t)dt.

(2.13)

Further, for any t ∈ [0, T ] and 0 < ε < 1, by the Young inequality, it holds that∣∣ ∫ 1

0

[αk(t)xzt(x, t)zx(x, t)− kx2|zx(x, t)|2]dx
∣∣

≤
√

1 + kt
[ 1

2ε

∫ 1

0

αk(t)|zt(x, t)|2dx+
ε

2

∫ 1

0

x2|zx(x, t)|2dx
]

+ k

∫ 1

0

x2|zx(x, t)|2dx

≤
√

1 + kt

2ε

∫ 1

0

αk(t)|zt(x, t)|2dx+
(√1 + kt

2
ε+ k

)∫ 1

0

x2|zx(x, t)|2dx

≤
√

1 + kt

ε

1
2

∫ 1

0

αk(t)|zt(x, t)|2dx

+
2
(√

1+kt
2 ε+ k

)
(1 + kt)

1− k2

1
2

∫ 1

0

βk(x, t)|zx(x, t)|2dx.

Choose

ε =
1− k√
1 + kt

.

Then it is easy to check that ε ∈ (0, 1) and

√
1 + kt

ε
=

2
(√

1+kt
2 ε+ k

)
(1 + kt)

1− k2
=

1 + kt

1− k
.
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By (2.4), it follows that∣∣ ∫ 1

0

[αk(t)xzt(x, t)zx(x, t)− kx2|zx(x, t)|2]dx
∣∣

=
1 + kt

1− k
E(t)

≤ 1 + kt

1− k
1

1 + kt
E0 =

1
1− k

E0.

This implies that∣∣∣{ ∫ 1

0

[αk(t)xzt(x, t)zx(x, t)− kx2|zx(x, t)|2]dx
}∣∣∣T

0

∣∣∣ ≤ 2
1− k

E0. (2.14)

By (2.12), (2.13), (2.14) and Remark 2.4, we find that(1
2

+
2k2

1− k2

) ∫ T

0

αk(t)|zt(1, t)|2dt

≤ 2 + k2

1− k2

∫ T

0

E0dt+
2

1− k
E0 =

(2 + k2

1− k2
T +

2
1− k

)
E0.

(2.15)

By (1.7), it follows that
βk(x, 0) = 1− k2x2.

It is obvious that

E0 =
1
2

∫ 1

0

[|z1|2 + βk(x, 0)|z0
x|2]dx ≤ 1

2
(‖z0‖2 + |z1|2). (2.16)

By (2.15) and (2.16), noting that 1 ≤ αk(t) ≤ (1 + kT ) for 0 ≤ t ≤ T , one can find
a positive constant C1 = 1

2 ( 1
2 + 2k2

1−k2 )−1( 2+k2

1−k2T + 2
1−k ) such that∫ T

0

|zt(1, t)|2dt ≤ C1(‖z0‖2 + |z1|2),

which completes the proof. �

Proof of Theorem 2.2. By the Young inequality, for any ε ∈ (0, 1
2 ), it is easy to

check that∫ T

0

E(t)dt+
∫ T

0

∫ 1

0

k2x2

1 + kt
|zx(x, t)|2 dx dt−

∫ T

0

∫ 1

0

kxzt(x, t)zx(x, t) dx dt

≥
∫ T

0

∫ 1

0

{1− ε
2

αk(t)|zt(x, t)|2 +
[1
2
βk(x, t) +

(
1− 1

2ε
) k2x2

1 + kt

]
|zx(x, t)|2

}
dx dt

=
∫ T

0

∫ 1

0

{
(1− ε)αk(t)

2
|zt(x, t)|2 + [1 +

(
2− 1

ε

) k2x2

1− k2x2
]
βk(x, t)

2
|zx(x, t)|2

}
dx dt

≥
∫ T

0

∫ 1

0

{
(1− ε)αk(t)

2
|zt(x, t)|2 + [1 +

(
2− 1

ε

) k2

1− k2
]
βk(x, t)

2
|zx(x, t)|2

}
dx dt.

Take ε = k
1+k ∈ (0, 1

2 ), then we find that

1− ε = 1 +
(
2− 1

ε

) k2

1− k2
.
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It follows that∫ T

0

E(t)dt+
∫ T

0

∫ 1

0

k2x2

1 + kt
|zx(x, t)|2 dx dt−

∫ T

0

∫ 1

0

kxzt(x, t)zx(x, t) dx dt

≥
(
1− k

1 + k

) ∫ T

0

E(t)dt =
1

1 + k

∫ T

0

E(t)dt.

(2.17)

Therefore, substituting (2.4), (2.14) and (2.17) into (2.12) indicates that(1
2

+
2k2

1− k2

) ∫ T

0

αk(t)|zt(1, t)|2dt

≥ 1
1 + k

∫ T

0

E(t)dt− 2
1− k

E0

=
1

1 + k

∫ T

0

[
1

1 + kt
E0 −

k

αk(t)

∫ t

0

αk(s)|zt(1, s)|2ds]dt−
2

1− k
E0,

which implies that(1
2

+
2k2

1− k2

) ∫ T

0

αk(t)|zt(1, t)|2dt+
1

k + 1

∫ T

0

[
k

αk(t)

∫ t

0

αk(s)|zt(1, s)|2ds]dt

≥ 1
1 + k

∫ T

0

1
1 + kt

E0dt−
2

1− k
E0.

It follows that(1
2

+
2k2

1− k2
+

kT

1 + k

) ∫ T

0

αk(t)|zt(1, t)|2dt

≥ 1
1 + k

∫ T

0

1
1 + kt

E0dt−
2

1− k
E0 = [

1
k(1 + k)

ln(1 + kT )− 2
1− k

]E0.

(2.18)

From (2.18) and (2.16), it holds that(1
2

+
2k2

1− k2
+

kT

1 + k

)
(1 + kT )

∫ T

0

|zt(1, t)|2dt

≥ 1− k2

2
[

1
k(1 + k)

ln(1 + kT )− 2
1− k

](‖z0‖2 + |z1|2).
(2.19)

Notice that if T > T ∗k , then 1
k(1+k) ln(1+kT )− 2

1−k > 0. This, together with (2.19)
indicates the desired estimate in Theorem 2.2. �

3. Proof of Theorem 1.3

In this section we use the Hilbert Uniqueness Method. For Theorem 1.3, it
suffices to show that for any given initial value (w0, w1) ∈ L2 × V ′ and target
(w0

d, w
1
d) ∈ L2 × V ′, one can find a control v = v(t) ∈ [H1(0, T )]′ such that the

corresponding solution w of (1.6) satisfies

w(T ) = w0
d and wt(T ) = w1

d. (3.1)

We divide the whole proof into three parts.
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Step 1. First, we define a linear operator Λ from V ×L2 to V ′×L2. Consider the
wave equation

ξtt − [
βk(x, t)
αk(t)

ξx]x + [
γk(x)
αk(t)

]ξtx = 0 in Q,

ξ(0, t) = 0, ξx(1, t) = 0 on (0, T ),

ξ(x, T ) = w0
d(x), ξt(x, T ) = w1

d(x) in (0, 1).

(3.2)

It is easy to check that (3.2) has a unique solution

ξ ∈ C([0, T ];L2) ∩ C1([0, T ];V ′)

and set
(ξ0, ξ1) , (ξ(x, 0), ξt(x, 0)) ∈ L2 × V ′.

Thus
(w0 − ξ0, w1 − ξ1) ∈ L2 × V ′. (3.3)

On the other hand, for any (z0, z1) ∈ V ×L2, we denote by z the corresponding
solution of (2.1). Consider the wave equation

ηtt − [
βk(x, t)
αk(t)

ηx]x + [
γk(x)
αk(t)

]ηtx = 0 in Q,

η(0, t) = 0, ηx(1, t) =
1

βk(1, t)
Gzt(1,t) on (0, T ),

η(x, T ) = ηt(x, T ) = 0 in (0, 1).

(3.4)

Notice that Gzt(1,t) ∈ (H1(0, T ))′ is defined as

〈Gzt(1,t), φ〉(H1(0,T ))′,H1(0,T ) = −
∫ T

0

zt(1, t)φt(t)dt for any φ ∈ H1(0, T ). (3.5)

Now, we define the operator

Λ : V × L2 → V ′ × L2,

(z0, z1)→
(
ηt(x, 0) + γk(x)ηx(x, 0)− kη(x, 0),−η(x, 0)

)
.

Therefore,

〈Λ(z0, z1), (z0, z1)〉

=
∫ 1

0

[ηt(x, 0)z0 − kη(x, 0)z0 + γk(x)ηx(x, 0)z0 − η(x, 0)z1]dx.
(3.6)

For simplicity, we set F = V × L2, F ′ = V ′ × L2.
Step 2. We prove that Λ is an isomorphism. To this aim, multiplying both sides
of the first equation of (3.4) by αk(t)z (0 ≤ t ≤ T ) and integrating on Q, we obtain
that

−
∫ T

0

βk(1, t)ηx(1, t)z(1, t)dt

=
∫ 1

0

[η′(x, 0)z0 − kη(x, 0)z0 − η(x, 0)z1 + γk(x)ηx(x, 0)z0]dx.

(3.7)

From (3.4)-(3.6) and (3.7), we conclude that∫ T

0

|zt(1, t)|2dt = 〈Λ(z0, z1), (z0, z1)〉. (3.8)
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By Theorem 2.1, it holds that Λ is a linear bounded operator.
It remains to show that Λ is onto. To this end, define the bilinear functional on

F × F :
A((ẑ0, ẑ1), (z0, z1)) = 〈Λ(ẑ0, ẑ1), (z0, z1)〉,

where (ẑ0, ẑ1), (z0, z1) ∈ F × F . It is clear that A is bounded. From (3.8) and
Theorem 2.2, it follows that A is coercive. Hence, applying Lax-Milgram Theorem,
we derive that Λ is onto. This completes the proof of Step 2.
Step 3. We prove that the exact controllability of (1.6) is equivalent that Λ is an
isomorphism. Indeed, for any given (w0, w1), (w0

d, w
1
d) ∈ L2 × V ′, we choose

v(·) =
1

βk(1, ·)
Gzt(1,·) ∈ (H1(0, T ))′,

where z is the solution of (2.1) associated to (z0, z1) = Λ−1((w1− ξ1) +γk(x)(w0
x−

ξ0x)− k(w0 − ξ0),−(w0 − ξ0)) and w is the solution of (1.6). From the definition of
Λ, we conclude that Λ(z0, z1) = (η′(x, 0)+γk(x)ηx(x, 0)−kη(x, 0),−η(x, 0)), where
η is the solution of (3.4). Then, η satisfies (η(x, 0), η′(x, 0)) = (w0 − ξ0, w1 − ξ1).
This implies that w = ξ+ η satisfies both (1.6) and (3.1). This completes the proof
of Theorem 1.3.

Acknowledgments. This work is partially supported by the NSF of China under
grants 11171060 and 11371084.

References

[1] C. Bardos, G. Chen; Control and stabilization for the wave equation, part III: domain with
moving boundary, SIAM J. Control Optim., 19 (1981), 123–138.

[2] F. D. Araruna, G. O. Antunes, L. A. Medeiros, Exact controllability for the semilinear string

equation in the non cylindrical domains, Control Cybernet., 33 (2004), 237–257.
[3] M. M. Cavalcanti; Exact controllability of the wave equation with mixed boundary condition

and time coefficients, Arch. Math. (BRNO), 35 (1999), 29–57.

[4] J. L. Lions; Exact controllability, stabilizability and perturbation for distributed systems, SIAM
Rev., 30 (1988), 1–68.

[5] M. Milla Miranda; Exact controllability for the wave equation in domains with variable bound-

ary, Rev. Mat. Univ. Complut. Madrid, 9 (1996), 435–457.
[6] Lizhi Cui, Xu Liu, Hang Gao; Exact controllability for a one-dimensional wave equation

in non-cylindrical domains, Journal of Mathematical Analysis and Applications, 402 (2013),

612–625.
[7] Lizhi Cui, Libo Song; Controllability for a Wave Equation with Moving Boundary, Journal of

Applied Mathematics, doi:10.1155/2014/827698 (2014).
[8] J. P. Quinn, D. L. Russell; Asymptotic stability and energy decay rates for solutions of hyper-

bolic equations with boundary damping, Proc. Soc. Edinburgh Sect. A 77 (1977), 97–127.

Lizhi Cui

College of Applied Mathematics, Jilin University of Finance and Economics, Changchun
130117, China.

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024,

China
E-mail address: cuilz924@126.com

Hang Gao
School of Mathematics and Statistics, Northeast Normal University, Changchun 130024,

China

E-mail address: hangg@nenu.edu.cn


	1. Introduction and statement of main results
	2. Two inequalities for the wave equation with variable coefficients
	3. Proof of Theorem ??
	Acknowledgments

	References

