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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR INDEFINITE SEMILINEAR ELLIPTIC PROBLEMS IN R¥

YI-HSIN CHENG, TSUNG-FANG WU

ABSTRACT. In this article, we study a class of indefinite semilinear elliptic
problems in RY. By using the fibering maps and studying some properties
of the Nehari manifold, we obtain the existence and multiplicity of positive
solutions.

1. INTRODUCTION

In this article, we consider the existence and multiplicity of positive solutions for
the semilinear elliptic problem

~Au+u=[uff?u+ f(z)|ul??u inRY, 1)
0<ue HYRY), ’

where 2 < ¢ <p<2* (2*=2N/(N —-2)if N >3,and 2* =00 if N =1,2) and f
is a continuous function in RY.

When ¢ = p and f > —1, Equation becomes to the semilinear elliptic
equation with positive nonlinearity,

—Au+u= 14+ f(2)|uf?u inRY,
uec H'(RY).

It is well known that if f = 0, then Equation has a unique positive solution
(see [24]) and infinitely many radially symmetric nodal solutions. Moreover, the
existence of positive solutions has been established by several authors under various
conditions. In [8, 26, 27], it was proved that if f > limy—o f(z) = 0, then
Equation has a positive ground state solution and if f < lim,_o f(z) =0,
then Equation has no any ground state solution. In [6] [7, 25], it was proved
that there is at least one positive solution to Equation when lim|; (1 +
f(z)) =Co>0and 0> f(z) > —Cexp(—0d|z|) for some § >0and 0 < C < 1. In
[12], it was proved that there is at least one positive solution to Equation when
lim,|— oo f(z) =0 and f(z) >237P)/2 -1 for 3< N <8and 1 <p<N/(N-2)
if N =341 <p<8/Nifd < N < 8 The multiplicities of solutions of
Equation were studied in [35] as follows. Assume that N > 5, (1+ f(z)) >

(1.2)
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lim|;)—oo (1 + f(z)) = Co > 0 and that there exist positive constants C,~y and Rg
such that f(z) > C/|z|” for |x| > Ry. Then has at least one positive solution
and one nodal solution.

When ¢ < p and f is non-positive or sign-changing, Equation is the semi-
linear elliptic equation with indefinite nonlinearity. In fact, if Equation is
considered in a bounded domain 2 with, say, a Dirichlet boundary condition, then
there is a vast literature on existence and multiplicity results (see [3, [I3] and the
references cited therein). In particular, the authors of [3] seem to have been the
first authors to consider such indefinite problems in bounded domains. However,
little has been done for this type of problem in RY. We are only aware of works
[T4}, 20), 15}, 17, 2] etc. that which studied the existence of solutions for the indefi-
nite elliptic problem

—Au — da(z)u = b(z)h(u) in RV,
0 <u e DM (RY),

where a,b € C(RY) change sign in RY and h is a nonlinear function with su-
perquadratic growth both at zero and at infinity.

Several papers have also been devoted in the past few years to the study of
nonlinearities with indefinite sign. Most of them, however, deal with problems that
are not directly comparable to those considered here (cf., e.g., [2], 1] 16} 19] 23| B2}
33, 34]).

Our work was motivated in part by recent papers [3] 6l [7]. The main purpose of
this paper is to use the shape of the graph of the function f to prove the existence
and multiplicity of positive solutions of . Here we consider the indefinite
semilinear elliptic equation

—Au+u = [ulP?u+ fr(2)|u[T%u in RY,
u e HY(RY),
where 2 < ¢ <p < 2* (2* =2N/(N —2)if N > 3, and 2* = 00 if N = 1,2) and

A € R. We assume that fx(x) = Afy(x)— f—(z) and that the nonnegative functions
f+ and f_ satisfy the following conditions:

(D1) f- € C(RM)\{0} and there exists a positive number 7_ > 1 such that

(1.3)

f-(z) <Cexp(—r_|z|) or some &> 0 and for all z € RY;

(D2) f. € C(RN)NLP/(P=0)(RN) and there exist positive numbers Ry and 7y <
min{r_, ¢} such that

fi(x) > coexp(—ry|z]) for some ¢o > 0 and for all z € RY with |z| > R,.
+ +

The following theorem is our main result.

Theorem 1.1. Suppose that the functions f+ satisfy the conditions (D1) and (D2).
Then we have the following statements:
(i) Equation has a positive higher energy solution and mo any ground
state solution for A = 0;
(ii) Equation has a positive ground state solution for A € (0,00);
(iii) there exists a positive number A, such that Equation has at least three
positive solutions for A € (0, A,).

Corollary 1.2. If in addition to conditions (D1) and (D2), we assume
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(D3) there exists a positive number 1 < 7y < ry such that
fi(z) <Texp(—Ty|z|) for some T > 0 and for all x € RY,

then we have the following statements:

(i) Equation has a positive higher energy solution and no any ground
state solution for A € (—o0,0];
(ii) Equation has a positive ground state solution for A € (0,00);
(iii) there exists a positive number A, such that Equation has at least three
positive solutions for X € (0, A,).

Next we prove Theorem by using the variational methods to find positive
solutions of Equation (1.3). We consider, the energy functional J) in H!(RY)
associated with Equation (|1.3)),

1 1 1
I = gl =3 [ fpda=2 [ plalvaa,

1/2
ull g = (/N Vul? + u?dr)
R

is the standard norm in H'(RY). It is well known that the solutions of Equation
(1.3) are the critical points of the energy functional Jy in H!(RY) (see Rabinowitz
129]).

This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we give some estimates of the energy. In Section 4,
we establish the existence of a positive solution for all A € R. In Section 5, we
establish the existence of two positive solutions for A sufficiently small. In Section
6, we prove Theorem

where

2. PRELIMINARIES

First, we define the Palais-Smale (or simply (PS)-) sequences, (PS)-values, and
(PS)-conditions in H(RY) for Jy as follows.

Definition 2.1. (i) For 8 € R, a sequence {u,} is a (PS)g-sequence in H!(RY)
for Jy if J\(un) = B+0(1) and J; (u,) = o(1) strongly in H=*(RY) as n — oo. (ii)
Jy, satisfies the (PS)s-condition in H(RY) if every (PS)gs-sequence in H'(RY) for
Jy contains a convergent subsequence.

As the energy functional Jy is not bounded from below on H!(RY), it is useful
to consider the functional on the Nehari manifold

Ny = {u e H'(RV)\{0} : (J(u), u) = 0}.
Thus, v € N, if and only if

Hw%r1/\MWx7/ flultde = 0.
RN RN

wwwww@—/lwm—/,mwm.
RN RN
Then for u € Ny,

Whtaw) = 2ully —p [ Jupde—g [ fifulrda
RN RN

Define
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= 2 ullZs + (a—p) /N juPdz < 0
R
Furthermore, we have the following results.
Lemma 2.2. The energy functional Jy is coercive and bounded from below on Ny .

Proof. If u € Ny, then
) = ghelly — 5 [ uPde=< [l
Aw) = vz — = ulPde — — Au|td
2 p Jon q Jrwy

q—2, 12 p—q/
= —|lullf + —— ulPdx
5g Il + == |

Thus, J, is coercive and bounded below on N . O

(2.1)

Lemma 2.3. Suppose that ug is a local minimizer for Jy on Ny. Then Ji(ug) =0
in H-Y(RYN).

The proof of the above lemma is essentially the same as that in Brown and Zhang
[11, Theorem 2.3] (or see Binding, Drabek and Huang [9]).

To get a better understanding of the Nehari manifold, we consider the function
My : RT — R defined by

My (t) = 279 |u|Fp — P71 /]RN |u|Pdx  for t > 0.

Clearly, tu € N, if and only if mq(t) — [on falu|%dz = 0, and m,,(£(u)) = 0, where

. 2 1/(p—2)
f(u) = (M) > 0. (2.2)
S~ |uPdz
Moreover,
mi(®) =12 = lulf — -9 ? [ Julrda].
RN
Thus,

m.,(t) <0 forall t >0,

which implies that m,, is strictly decreasing on (0, 0o) with lim;_, g+ m,(t) = oo and
lim;_, o0 My, (t) = —00. Moreover, we have the following lemma.

Lemma 2.4. Suppose that A\ € R. Then for each u € H*(RN)\{0} we have the
following.
(1) If Jon frlul?dz <0, then there is a unique ty(u) > t(u) such that t\(u)u €
N,. Furthermore,

Ia(ta(uw)u) = sup Jx(tu) = sup Jx(tw). (2.3)
>0 t>t(u)

(ii) If [on falul?dz > 0, then there is a unique ty(u) < t(u) such that tx(u)u €
Na. Furthermore,

In(ta(w)u) = sug) Iy (tu) = sup( )J,\(tu). (2.4)
t> 0<t<t(u
(iii) ta(u) is a continuous function for u € H*(RN)\{0}.
(iv) ta(u) = mb\(m)
(v) N = {ue H'RM)\{0}: W“(W) =1}
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Proof. Fix u € H'(RY)\{0}. Let

2, tP » td v
halt) = In(t) = Sl = = [ Japda = [ pufrda,
2 P Jry q Jrw
Then
R.,(t) = t||u||%1 — tpfl/ luPdx — tqfl/ Ialu|%dx
RN RN

:tqfl(t2*Q||u||§Il—tP*Q/ |u|pdx—/ Slulde)
RN RN
=t 1 mu / f>\|u|qda:

i) If [on faul%de < 0, then the equation my () — [on falu|%dz = 0 has a unique

solution ty(u) > #(u), which implies that h;(t,\(u)) = 0 and t)(u)u € Ny. More-
over, h, is strictly increasing on (0,%x(u)) and strictly decreasing on (t(u),00).
Therefore, holds.

(ii) If [on falul?dz > 0, then the equation my(t) — [on falul%dz = 0 has a
unique solution #y(u) < #(u), which implies that h’ J(ta(uw)) = 0 and ty(u)u €
N,. Moreover, h, is strictly increasing on (0,¢x(u )) and strictly decreasing on
(ta(u), 00). Therefore, holds.

(iii) By the uniqueness of ¢y (u) and the extrema property of ¢y (u), we have ¢ (u)
is a continuous function for u € H'(RV)\{0}.

(iv) Let v = Hul\ . Then by parts (i) and (ii), there is a unique t)(v) > 0 such
that t)\( )’U € N, or t,\(HuH T ) H“HHI
can conclude that t(u) = mt At

(v) For u € Ny. By parts (i)—(iii), tx(7——

€ N,. Thus, by the uniqueness of t)(v), we

€ N,. Since u € N, we

) u
HuHHl llell g1

have t,\(m)m 1, which implies that
N 1 U
Ny C {ue H'(RY): ———ty( )=1}.
llullgr ™ flull g
Conversely, let u € H'(RY) such that Talr ” - (”u‘THl ) = 1. Then, by part (iii),
t)\(L L c N)\'
[l g™ el 2
Thus,
u
Ny ={ue HRY)\{0} : ——t\(+——) =1}
[l g™ [l g
This completes the proof. [l

Now we consider the elliptic problem
~Au+u=|ufP"2u in RV,

lim «=0.
|| — o0

We consider the energy functional J> in H*(RY) associated with (2.5),

1 1
J¥(u) = 5/ \Vu|2+u2dsz/ |u|Pd.
RN D Jry

(2.5)
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Consider the minimizing problem:

LT =

where

N> = {u e H'(RM)\{0} : (/) (u), u) = 0}.
It is known that Equation (2.5 has a unique positive radial solution w(z) such that

J®(w) = a* and w(0) = max,cgy w(x) (see [24]). Then we have the following
results.

Proposition 2.5. Let {u,} be a (PS)g—sequence in Hl(RN) for Jx. Then there
exist a subsequence {un} m € N, sequences {x1}°° in RN, and functions vy €
HYRYN), and 0 # w' € HY(RY), for 1 <i < m such that:

() |28 | — oo and |xi, — 2)| — 00 as n — oo, for 1 <i#j<m;
i) —Avg + vo = [vo|P~ 2o+ fia(z )\v0|q 2yo in RYV;
i) —Aw’ +w' = [w|P~ 2w in RY
) un =vo+ Zw (- —28) +o(1) strongly in H'(RN);
(V) J)\(un) J)\(UQ)+ZZ 1JOO( 2)+O(1).
In addition, if u, >0, then vg > 0 and w® > 0 for each 1 < i < m.
The proof of the above proposition is similar to the argument in Lions [26, 27].
For A\ € R, we define
ay = inf Jy(u).

ueN
Then, by Proposition we have the following compactness result.
Corollary 2.6. Suppose that {u,} is a (PS)s-sequence in HY(RYN) for J\ with
0 < B < a®+min{ay,a>®} and B # a®. Then there exists a subsequence {u,} and
a non-zero ug in HY(RN) such that u, — ug strongly in H*(RY) and Jy(uo) = .
Furthermore, ug is a non-zero solution of (|1.3)).

3. THE ESTIMATE OF ENERGY

Let w(z) be a positive radial solution of Equation (2.5)) such that J*>°(w) = o>
Then by Gidas, Ni and Nirenberg [22] and Kwong [24], for any £ > 0, there exist
positive numbers A, and By such that

Acexp(—(1+4¢)|z|) < w(z) < Byexp(—|z|) for all z € RV, (3.1)
Let e € SV~ = {x e RN : || = 1} and let 29 = (60,0, ...,0) € RV, where
min{r_, q, g} -1

0<d= 2(min{r_,q, 5} +1) <1
Clearly,
1-6p<le—2| <146 foralleecsSV1 (3.2)
Define
we(z) =w(x —le) forl>0andec SV! (3.3)
and

Wy i(x) = w(x —lz9) forl>0.
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Clearly, we,; and w,,; are also least energy positive solutions of (2.5)) for all [ > 0.
Moreover, by Lemma for each v € HY(RY)\{0} and A\ € R there is a unique
tx(u) > 0 such that ty(u)u € Ny. Let £ be as in (2.2)). Then we have the following
results.

Lemma 3.1. For each sg € (0,1) there exist I(sg) > 0 and o(sg) > 1 such that for
any 1 > l(sg) we have

o(so)
sP72 4+ (1 —s)p—2

for all e € SN=1 and for all s € (0,1) with min{s,1 — s} > sq.

fp_2(swe,l + (1= s)wyy ) >

Proof. Since
fp*2(swe’l + (1 —s)wy, 1)
e+ (1= w3
Jan |5we + (1 — 8)wzy [Pda
5% || we 71 4 (1= 8)2[Jwa 71 4 25(1 = ) {we 1, w2y 1) (3-4)
f]RN [swe, + (1 — s)w., i |Pdz
_ Swllin + (1= s)?lwl|F + 25(1 = s)(wet, we, 1)
fRN |3wefzo,l + (1 = s)wlrdz

for all s € [0,1] and for all e € S¥~1. Moreover, by

1-6g<|e—z| <1408y foralleeSN™1 (3.5)
and
/ wé’jlw%ldx = (We, 1, Wy 1) z/ weri’;llda:. (3.6)
RN RN
we have

<we,lawzo,l> :/ wpilwz()—e,ldx
RN
< By / exp(—(p — Dlal) exp(— |z — U(z0 — ¢))de
RN
< By / exp(— (2] + |z — I(z0 — )))dz
|z|<(1400)1
+ By / exp(— (2] + |z — (z0 — €)))dz
|z|>(1400)1
< BgzN/ exp(=1(|&] + & — (20 — €)]))da
|z|<(14d0)
+ coBY exp(—(1 + 50)1) / exp (— (|2 — Uz — ))))de
[2]>(1+60)!
< coBEIY / exp(—(1 — do)l)dx + CoBE exp(—(1 + o)1)
|z|<(1+60)

< CoBEIN exp(—1(1 — &g)) for all I > 1 and for all e € SV,
which implies that

lim (we ;,w, ;) =0 uniformly in e € S¥71, (3.7)
—00
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By (3.1), (3.5) and Brézis-Lieb lemma [I0], for any s € [0, 1] we have

zlir& R [sWe—zo1 + (1 — S)w|P — [SWe— 4, 1P dx
R (3.8)
= / |(1 — s)w[Pdz uniformly in e € SV 1.
RN
Thus, by (3.4)), (3.7) and (3.8)), for any s € [0, 1],
2 (1_g)2 2
lim #72(swe; + (1 — s)w,, ) = (57 + (1 = ") [wliz
100 ’ (P + (1 = 5)P) [on |w|Pde
52 4+ (1 — 5)? (39)
=———~— " qyniformly in e € SN L.
P4+ (1—s)P
Since
(24 (1 —s8)) (P 2+ (1—s)P2) 1+ s2(1 — 8)P72 4 (1 — 5)%sP72
sP+(1—s)P N sP+(1—s)P
(3.10)

s3(1 —s0)P72 + (1 — s0)2sh™ 2
sh+(1—sp)?

for all s € (0,1) with min{s,1 — s} > sg, by (3.9) and (3.10]), there exist (sg) > 0
and o(sg) > 1 such that for any [ > I(sg), we have

> 1+

a(so)

sP=2 4 (1 —s)P—2

fp_Q(swe,l + (1= 8)wyy ) >

for all e € SV~ and for all s € (0,1) with min{s,1 — s} > so. This completes the
proof. O

Proposition 3.2. (i) For each A > 0, there exists [, = Iy (\) > 0 such that for any
l > ll7

sup Jy(twe ;) < o™ for alle € sh-L
>0

Furthermore, there is a unique tx(we,;) > 0 such that tx(we)we; € Njy.
(ii) There exists 1 > 0 such that for any 1 > 1y

sup Jo(t[swe, + (1 — s)wy, 1)) <2a™ forall0<s<1landec€ sNv-1,
>0

where Jo = Jx with A\ = 0. Furthermore, there is a unique ty(swe +(1—s)w,, 1) > 0
such that

ta(swWe + (1 — 8)wyy 1) [SWe + (1 — $)w,, ] € N

Proof. (i) We have
tP td
——/ / Salwe | *dx

t2
=5\|w||%p—f/ wpdx——/ Fratydo+ & [t i

2
< —Jlwl|Z - — wpdx + & wldz.
D) H
q JrN

2
J,\(twe,l) = 5

(3.11)
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for all A > 0. This implies that Jj(tw,;) — —oo as t — oo uniformly for e € SN 1.
Thus, by Jy(0) = 0 < a*,Jy € CY(H'(RY),R) and |lwe,|%: = p%pzaoo for all
I > 0, there exists t;,t3 > 0 such that

In(twe ;) < forall t €[0,t5] U [t1,00) and for all e € SN 1. (3.12)
Moreover, by Brown and Zhang [I1] and Willem [31], we know that

2 tr
J®(tw) = —|Jwl|/3: — —/ wPdr < o forallt > 0. (3.13)
2 D JrN

Thus, by (3.11)),
0o At q ta q
I (twe,) < a®™ — — frwl de + — f-w?,dx for all t > 0. (3.14)
q JrN ’ q JrN ’

By (3.12)) we only need to show that there exists 11 > 0 such that, for any [ > lAl,

sup Jx(twe;) < a® forallee sh-L
to<t<ty

We set

Co= min wi(z) >0,
z€BN(0,1)

where BY(0,1) = {z € RV : |z| < 1}. Then, by condition (D2),

/ fﬂug,ldmZ/ frwf dx
RN |z[>Ro

= / fr(x+le)wi(z)de > Co/ fr(x +le)dx
|z+le|>Ro

BN (0,1)
> Coexp(—ryl) for all I > 2max{1l, Ry}.

Moreover, by (3.1) and condition (D1),

f_wg,ld:r <¢B{ /N exp(—r_|z|) exp(—q|z — le|)dz
R

< Cy exp(—min{r_, q}l)

RN (3.15)

Since 4 < min{r_,q} and t2 <t < ¢1, we can find lA1 > 2max{1, Ro} such that,
for any | > [y,
4 . At )
— fow? de < — fyw? dx for all e € S and for all ¢ € [ta,t1]. (3.16)
q JrN ’ q JrN ’

Thus, by (3.12)- (3.14) and (3.16), we obtain that for any | > 0,

sup Jy(twe,;) < a™ foralle € SV,
t>0
Moreover, by Lemma there is a unique tx (we,;) > 0 such that ¢ (we,)we; € Ny.
(ii) When s = 0 or 1, by a similar argument in part (i), there exists ¢; > 0 such
that

t1Co

max{sup Jo(twe ), sup Jo(twy, 1)} < a™ + exp(—min{ry, q}l) (3.17)
>0

t>0

for all e € SV, this implies that there exists 11 > 0 such that, for any [ > 21,

3
max{sup Jo(twe, ), sup Jo(tw,, 1)} < =a*  for all e € SV 1.
>0 >0 2
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Therefore, since Jy € C2(H'(RY),R), there exist positive constants sy and [ such
that, for any [ > [,

sup Jo(t[swe,; + (1 — $)wyy.]) < 20
>0

for all e € S¥~1 and for all min{s,1 — s} < s¢. In the following we always assume
that min{s,1 — s} > sp. Since

fol(swe 4+ (1 = s)w, 1)|?dz > 0,
RN

by Lemma [2.4] (i) and Lemma we may show that there exists [; > I such that,
for any [ > [y,

sup Jo(t[swe + (1 — 8)w,, 1)) < 20 for all e € SV71 (3.18)

a(sg) _
tZ(w)l/(” 2

where o(sg) > 1is as in Lemma Since

Jo(t[swe + (1 — $)way 1))

t2
= 5[52||w||§11 + (1= ) lwlF + 25(1 = ) {we,, w2 )]
t4 tP
+ — I- [Swe’l +(1— S)w%,l]qu - [Swe,l +(1 - S)MZO,l]pdx
q JrN P JrN
12 3.19
< 5[32+28(1*8)+(1*8)2]||w\|§{1 (319

C tP
+ —t9s? + (1 — s)9] / wldx — — max{s?, (1 — )} wPdz
q RN p RN

forall 0 < s <1 andeec SV, there exists t; > 0 such that, for any ¢t > t1,
Jo(t[swe + (1 — 8)w,,4]) < 22> forall 0 < s < 1 and for all e € S¥71. (3.20)

By (3.18)) and (3.20]), we only need to show that there exists I; > I such that, for
[ > 117

sup Jo(t[swe + (1 — 8)wsy1]) < 22> for all e € SV L.

a( _
(W)l/“3 D<t<ty

(3.21)
By Bahri-Li [6, Lemma 2.1], there exists C), > 0, such that, for any nonnegative
real numbers ¢, d,

(c+d)P > +dP +p(cp*1d—|— cdpfl) - Cpcp/2dp/2.
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Then, by , , and Lemma

Jo(t[swe, + (1 — 8)wz,.1])
2

t
< 5[52||w||§{1 + (1= )2 wl[F + 25(1 = 5)(we,1, wag 1))
14
+ — fo[swe + (1 — s)wy, 1|%dx
q JrN
P .
= — [ (swe)? + [(1 = s)wzoa]” + p(swe)?™ (1 = s)wsg )
P Jrwy
+ p(swe,)[(1 - S)“’Zo’l]p_l - Cp(swe,l)p/Q[(l - S)wZO,l]p/2dx (3.22)
< 20% — s(1 — $)2[7 (P2 + (1 — 5)P~2) — 1] / WP T g g
RN
td tiC
+ 1 fo[swe + (1 — s)wy, 1|%dx + 4-p / wf/IZwi’o/Qldx
q JrN P Jry
<2a% — Clo(so) — 1]/ wi?lw%ldw
RN 7
td rc
$ 8wt (= s tde+ 2 [ttt
q JrN p Jry 7
for all e € SV 1,
We first estimate [y wfjlwmldm. Set
Co= min w? ' (z)>0,
2€BN(0,1)
then by (3.1]) and (3.2)), for any € > 0,
/ wi’;lwz(),ldaj = / wP () )w(z — (20 — €))dx
RN RN
260/ w(z —1l(zg — e))dx
BN(0,1)
> CoA / exp(—(1+e¢)|x — (20 — €)|)dz
. o = U | (3.23)
> CoA. / exp(—(1+¢)|z| = I(1+¢)|e — 20])dz
BN (0,1)
> CoAc exp(—I(1+¢)le — zo)
> CoAcexp(=I(1 +¢)(1+ &))-

From (3.2) we have
[ bl
RN
D p p

< Bo/ exp(—L1a)) exp(=Lla — 1(z0 — €)|)da
. 2 2

< Bg/ exp(=2([z] + |z — 1(z0 — €))))der
o] < (1+0) 2

+ By / exp(—2 (2] + |z — (20 — &))))dz
|| (1460) 2
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< BgzN/ exp(= Ll + |z — (20 — €))))da
|z < (14+80) 2
1+ 60)pl
+ coBY exp(—w) / exp(—L(jz — I(e — 2)|))dz
2 || (1+60)1 2
DN pl ~ PP pl
< coBJl exp(—=|e — 2o|)dz + C'Bf exp(——=le — z])
|z < (1480) 2 2
PN pl
< Co Byl eXP(—E\e — 20])

< CoBEIY exp(—min{r_, g, g}(l — 60)l) for [ sufficiently large.
By (3.15)) and conditions (D1), (D2), we also have

fo[swe + (1 — s)wy, 1|%dx
RN

< q q
= (/RN f‘weﬂld“/w -, de) (3.24)

< Co BN exp(—min{r_, q}1)
< C’OBglN exp(— min{r_, g, g}(l —og)l) foril>1.
Since

min{r_,q, 5} -1
(min{r_,q, 5§} +1)

min{r_,q, 5} -1 )
2(min{r—_,q, 5} +1)

= min{r,, q, g}(l - 50))

we may take 0 < € < 1 such that

1+50=1+2

< min{r_,gq, g}(l —

(14+¢)(1+dp) < min{r_,q, ‘g}(l — o).

Then, by (3.22)—(3.24), there exists I; > max{l,1} such that (3.21) holds. Thus,

we can conclude that for any [ > [;,

sup Jo(t[swe,; + (1 — $)w,1]) < 2a™ forall0 <s<1andforallee sv-1,
>0

Moreover, by Lemma[2.4] (i), there is a unique to(swe, 4 (1 — s)ws,,1) > 0 such that
to(sweq + (1 — $)wz, 1) [swe + (1 — s)w, 1] € No.
This completes the proof. (Il

Theorem 3.3. Suppose that A = 0. Then we have

aO:ulenl\fIOJo(u)*ugll\Iwa (u) = a™.

where ag = ay with A = 0. Furthermore, Equation (1.3|) does not admit any ground
state solutions.
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Proof. Let we be as in (3.3). Then, by Lemmal2.4] (i), there is a unique to(we,;) > 0
such that to(we ;)we,; € Ny for all e € SN=1 that is

e =/ |t0(we,z)we,l|pd$+/ f-lto(we 1)we 1| dz
RN RN

[to(we,1)we 1|

or

toCwe )Pl = to(we)l? [ lweaPde + ltolwenl? [ F-foealtde (325
R R

Since
/ folwelidz — 0 asl — oo, (3.26)
RN

and

by (3.25), (3.26) and (3.27) we have to(we,;) — 1 as | — co. Thus,

llim Jo(to(we,1)we,) = llim I (to(we,)we, ) = > for all e € sV-1

2
we,ill3: = |we |Pdx = P> foralll >0 and for all e € SN=L(3.27)
UIE AL 2

Then
oy = uienlgo Jo(u) < ugﬁfm J®(u) = a™.
Let u € Ng. Then, by Lemma Jo(u) = sup,sq Jo(tu). Moreover, there is a
unique t*° > 0 such that t*°u € N*°. Thus,
Jo(u) > Jo(tu) > J<(t*°u) > o™
and so ag > a®. Therefore,

. . N
ao—ulenl\fIOJo(u)—ugll\Iwa (u) = a*.

Next, we will show that for A = 0, Equation does not admit any solution
ug such that Jy(ug) = ap. Suppose the contrary. Then we can assume that ug €
Ny such that Jo(ug) = «p. Then, by Lemma (i), Jo(uo) = sup;>g Jo(tuo).
Moreover, there is a unique t*(ug) > 0 such that ¢>°(ug)ug € N*°. Thus,

a® = uienl\flg JQ(’U,) = Jo(’u,o) Z Jo(too(’u,o)U())
= (e unyu) - L [ oo

£>° (ug)]?
S T g
q RN
which implies that [,y f-|ug|%dz = 0 and so
up=0 in {z e RN : f_(z) #0}, (3.28)
form conditions (D1) and (D2). Therefore,
o :uérll\};J (u) = J(t% (uo)uop).
Since [t*°(ug)ug| € N and J°(|t>°(ug)ug|) = J=(t*(ug)ug) = a*°, By Willem
[T, Theorem 4.3] and the maximum principle, we can assume that t>°(ug)ug is a

positive solution of Equation ([2.5)). This contradicts to (3.28]). This completes the
proof. O
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4. EXISTENCE OF A POSITIVE SOLUTION

First, we establish the existence of positive ground state solutions of Equation

(1.3) for A >0

Theorem 4.1. For each A > 0, Equation (1.3|) has a positive ground state solution

uy such that
J. = inf J .
M) = ot Sa(w) <a

Proof. By analogy with the proof of Ni and Takagi [28], one can show that by
the Ekeland variational principle (see [18]), there exists a minimizing sequence
{un} C N, such that

Ia(up) = irll\fI In(u) +o(1), Ji(un) = o(1) in HH(RYN).
u€Nx
Since inf,en, Ja(u) < a® from Proposition (i) and Corollary there exists
a subsequence {u,} and uy € Ny, a nonzero solution of Equation ([1.3)), such that

U, — uy strongly in H'(RY) and Jy(uy) = irg Jx(u).
ueN)

Since Jy(ux) = Jx(Jux|) and |uy| € Ny, by Lemmaand the maximum principle,
we obtain uy > 0 in R". This completes the proof. O

By Theorem for A = 0, Equation (1.3) does not admit any solution ugy such
that Jo(uo) = infyen, Jo(u) and
_ 3 _ 3 (e} _ oo
ap = ulenl\flo Jo(u) = uéﬁl:foo J®(u) = a™.

Moreover, we have the following result.

Lemma 4.2. Assume that A =0 and {u,} is a minimizing sequence for Jy in Ny.
Then

/ folun|?dz = o(1).
RN
Furthermore, {u,} is a (PS)q-sequence for J= in H*(RY).

Proof. For each n, there is a unique t,, > 0 such that t,u,, € N°°; that is,
Bllunlly =22 [ JunlPd
RN
Then, by Lemma (i),
14
Jo(un) > Jo(tatun) = J=(tauy,) + *"/ f-lun|?dz
q JrN
14
>a™ + —”/ f-lun|%de.
q JrN
Since Jy(un) = a® 4 o(1) from Theorem we have
14
—"/ f-lun|?dz = o(1).
q JrN

We will show that there exists ¢y > 0 such that t,, > ¢ for all n. Suppose the con-
trary. Then we may assume ¢, — 0 as n — oco. Since Jo(un) = a™ + o(1),
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by Lemma we have ||u,| is uniformly bounded and so ||t,un|/z1 — 0 or
J*®(tpu,) — 0, and this contradicts the fact that J*°(t,u,) > o™ > 0. Thus,

[ £l = o),
RN
which implies that
funlip = [ funlPdz + o)
RN

and

I (up) = a®™ + o(1).
Moreover, by Wang and Wu [30, Lemma 7], we have {u, } is a (PS)4-sequence for
Jo in HY(RM). O

For v € H'(RY), we define the center mass function from Ny to the unit ball
BN (0,1) in RV,
1

e [ @,
Hu”Lp(RN) RN |37|
Clearly, m is continuous from N to BV (0,1) and |m(u)| < 1. Let

O\ = inf{J\(u) : u € Ny, u >0, m(u) =0}.

Note that 8y = 0, with A = 0. Then we have the following result.

m(u) =

Lemma 4.3. Suppose that A = 0. Then there exists & > 0 such that a® < &y < 6.

Proof. Suppose the contrary. Then there exists a sequence {u,} C Ng and m(u,) =
0 for each m, such that Jy(u) = a® + o(1). By Lemma {un} is a (PS)gee-
sequence in H'(R™) for J>°. By the concentration-compactness principle (see Lions
[26, 27]) and the fact that o™ > 0, there exist a subsequence {u,}, a sequence
{z,} C RY, and a positive solution w € H*(RY) of Equation such that

lun () —w(x —x,)||gr — 0 as n — oco. (4.1)

Now we will show that |z,| — 0o as n — oco. Suppose the contrary. Then we may
assume that {x,} is bounded and z,, — o for some 2o € RY. Thus, by (4.1)),

[ f-tualtde = [ - @ote = e e+ o)
:/ F( + o) w(@)|%dz + o(1),

this contradicts the result of Lemma 4.2 u Jon f-lug|idz = 0(1). Hence we may
assume that ‘z"‘ — e asn — 0o, where e € SV =1, Then, by (4.1)) and the Lebesgue
dominated convergence theorem, we have

0 =m(uy,)
= luall ) || T len(@)Pda

_ T+ Ty
= ||wHLf(RN) /RN m|’w(a¢)|pd$+0(1)

=e+o0(l) asn— oo,

which is a contradiction. Therefore, there exists £y > 0 such that o™ < &, < 6. O
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By Lemma [2.4 and Proposition [3.2] if A = 0, for each e € S¥~1 and | > [ there
exists to(we,;) > 0 such that ¢o(we,)we; € No. Moreover, we have the following
result.

Lemma 4.4. Suppose that A\ = 0. Then there exists ly > l; such that, for any
1>

(1) a™ < Jo(to(we)we,) < & for all e € SN1

(ii) (m(to(we)wey),e) >0, for all e € SN~1.

Proof. (i) Follows from (3.13)—(3.15) and Theorem (3.3

(ii) For x € RN with z + le # 0, we have

x+le 1
LT )= |+ le| — ———(x + 1
(|x+le\’ e) = |x +le| |x+le|(x+ €,)
> |z +le| — |z| > lle] = 2]z| =1 — 2|x].
Then
(m(to (e e ). €) o [ (ol Pds
0(We,i)We 1), €) = 75— —s el
lee,lHZzp(RN) RN |3;‘|
1 l
S / Tl o wlrdz
T A A 2
1
> pi(l/ |w|pdx—2/ |m||w|pdm)
le”L;D(]RN) RN RN
200
= ]_ —_—
l )
where co = [[wl| .} g) Jen |z||w[Pdz. Thus, there exists Iy > I; such that
200
(m(to(we,)wey),e) > 1— - >0 foralll>ly.
This completes the proof. ([

In the following, we will use Bahri-Li’s minimax argument [6]. Let
B={uec H ®RY)\{0}:u>0and |Jul|g =1}.

We define
Iy(u) =sup Jo(tu) : B — R.

>0
Then, by Lemma (iii), for each u € H'(R™)\{0} there exists
to(u) )>0
such that ¢o(u)u € Nj and

To(u) = Jo(to(w)u) = Jo (to(m) Huﬁm) (4.2)

1 U

= ——lo(7—F—
fellzzn " | e

Next, we define a map hg from S¥~! to B by
w(z — le) We 1
ho(e) = = )
)= ot =10l el
where e € SY~!. Then, by (3.17) and (4.2), for [ > Iy sufficiently large, we have

Io(ho(e)) = Jo(to(we)we) < Oy for all e € SN7L.
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We define another map h* from BV (0,1) to B by

SWe,1 + (1 — S)'IUZ !
» . _ ; 0,
(et (L= 9020 = e+ (1 = S)wmln

where 0 < s < 1 and e € SV, It is clear that h*|sv—1 = hg. It follows from
Proposition [3.2 (i) and (4.2) that
Io(h*(se + (1 — s)z0)) = Jo(to(swe, + (1 — $)wWay1) [SWe,r + (1 — $)way )

4.3
< 90%° (4.3)

for all e € SN~1. We next define a min-max value. Let

Bo=inf max Ip(y(x)) (4.4)
Y€l 2eBN(0,1)

where

I'={yeC(BN(0,1),B) : vy|sv-1 = ho}. (4.5)
Note that S¥=t = 9BY(0,1). Then we have the following result.
Lemma 4.5. Suppose that A = 0. Then

a® <& <0y < Py <22,

Proof. By Lemmas and and by (4.3) and (4.2), we only need to show that
0o < Bp. For any v € T, there exists to(y(z)) > 0 such that to(y(x))y(x) € Ng and

to(y(z))y(x) = to(wy)w,, for all z € SVL.
Consider the homotopy H (s, x) : [0,1] x BY(0,1) — R defined by
H(s,x) = (1= s)m(to(y(x))v(x)) + sI(x),

where I denotes the identity map. Note that m(to(y(x))y(x)) = m(to(wy,1)wy,) for
all x € S. By Lemma (i), H(s,z) # 0 for z € S¥~! and s € [0, 1]. Therefore,

deg(m(to(y)y), BV (0,1),0) = deg(I, BY(0,1),0) = 1.
There exists xog € BY(0,1) such that
m(to(v(x0))7v(x0)) = 0.
Hence, for each v € T, we have
0o = inf{Jo(u) : u € Ng, u >0, m(u) =0}

< Io(v(x0))

< max_ Iy(y(x)).
z€BN(0,1)

This shows that 6y < (. O

Now, we assert that Equation (1.3) has a positive higher energy solution for
A<0.

Theorem 4.6. Suppose that A = 0. Then Equation (1.3) has a positive solution
o such that Jo(ug) = By > .
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Proof. By Lemma [4.5] and the minimax principle (see Ambrosetti and Rabinowitz
[]), there exists a sequence {u,} C B such that

Io(un) = Bo + o(1),
1o (un) 7z 8 = sup{Iy(un)e : ¢ € T, B, 4]l = 1} = o(1)

as n — oo, where a® < By < 22 and T,, B = {¢ € H*(RY) : (¢, u,) = 0}. By
an argument similar to the proof of Adachi and Tanaka [T, Proposition 1.7], there
exists to(un) > 0 such that to(u,)u, € Np and

JO(tO(un)un) = ﬁO + 0(1)7
Ty (to(un)un) = o(1) in H-H(RY), as n — oo.

Thus, by Corollary we can conclude that Equation (|1.3]) has a positive solution
170 such that Jo(ﬂo) = ﬂo. |

5. EXISTENCE OF TWO POSITIVE SOLUTIONS
We need the following result.

Lemma 5.1. Suppose that A = 0. Then there exists dy > 0 such that if u € Ny
and Jo(u) < a™ +dy, then

| 1vu o 20
RN |Z]
where Ng = Ny and Jy = Jy with A = 0.

Proof. Suppose the contrary. Then there exists a sequence {u,} C Ng such that
Jo(un) = a® + o(1) and
/ L (| Vun|? + u2)dz = 0.
RN |Z]

Moreover, by Lemma {un} is a (PS)ae-sequence in HY(RY) for J*°. By the
concentration-compactness principle (see Lions [26), 27]) and the fact that o> > 0,
there exist a subsequence {u,}, a sequence {z,} C RY, and a positive solution
w € HY(RY) of Equation such that

ln(x) —w(x —x,)||gr — 0 as n — oco. (5.1)

Now we will show that |z,| — 0o as n — oco. Suppose the contrary. Then we may
assume that {x,} is bounded and z,, — ¢ for some 2o € R". Thus, by (5.1,

[ fulrde = [ @l - a)lde + o)
= /RN fo(x 4+ xo)|w(x)|%dx + o(1),

which contradicts the result of Lemma Jg~ f-|un|?dz = o(1). Hence we may
assume é—:‘ — eg as n — oo, where eg € SV 1. Then, by the Lebesgue dominated
convergence theorem, we have
0= / i(|Vun|2 +u?)de = / MOVMQ + w?)dz + o(1)
RN |Z] By |2+ 2
2p

= mameo + 0(1)7
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which is a contradiction. This completes the proof. ([

For A > 0 and u € N,, by Lemma there is a unique to(u) > 0 such that
to(u)u € Ng where Ng = N, with A = 0. Moreover, we have the following result.

Lemma 5.2. There exists a continuous function A : [0,00) — [0, Sf;/(p_Q)) with
A(0) = 0 such that
to(w) < [1+ Al 1707550 (851772 — Q) a=r)/rpt/ =

for all A > 0 and u € Ny, where Sy, be the constant for the Sobolev embedding from
H' to LP.

Proof. Let u € N. Then we have

2/p
Sp( [ tulrde)"" <l = [ urde s [l
RN RN RN

S/ |u|pdx+)\/ folul|da
RN RN

_ a/p
< [ tupde e S ([ uran)™,
RN RN

which implies that there exists a continuous function A : [0,00) — [0, Sf;/ (e _2))
with A(0) = 0 such that

/ u[Pda > SE/(P72) — A(X) > 0. (5.2)
RN

We distinguish two cases.
Case (A): to(u) < 1. Since
L AL (85072 = AQ) PP > 1
forall A > 0 and p — ¢ > 0, we have
to(w) < 1< [L+ AF4 7% ) (55072 = A /7],

Lp/(p—a)\*p
Case (B): to(u) > 1. Since
o) [ Jude = o)l ulp +to(l? [ 1 fuptds
U full 7 _|u|%dz),
< o) (Julf + | | f-lulao)
by 7 we have

tou)p-1 < 1l S S-lultde

- fRN lulpdx

 Jew lulPde + [pn frlulfde + [pn £ |ulfda
N S~ |uPdz

~ Jew ulPdr X [on filul?de

o f]RN |u|Pdax

=14 )\fRN f+|u|qu

Jan luPdz
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_ (¢=p)/p
<TG ([ o)

)(q—p)/p

< T I (S5 = A

This completes the proof. ([

By the proof of Proposition there exist positive numbers ¢ (w, ;) and 71 such
that t(we,)we,; € Ny and

In(Er(We,)we,) < o for all I > lAl
Let A(\) be as in Lemma Then we have the following result.

Lemma 5.3. There exists a positive number Ao such that for every A € (0, \o), we
have

/ z |(|Vu\2+u )dz # 0
RN
for all uw € Ny with Jy(u) < a™

Proof. (i) Let u € Ny with Jy(u) < a®. Then, by Lemma there exists
to(u) > 0 such that tg(u)u € Ng. Moreover,

Ja(u) = §1>1E)J,\(tu) > Ja(to(u)u)

= Jo(to(wyu) = Mo ()" [ _filulde
R
Thus, by Lemma [5.2] and the Hoélder inequality,

Jo(to(u)u)
< Ia(u) + Alto(u / filulfdz (5.3)
< Ao+ ML I7LH 2 (85772 = A)) PP =D

for some ¢g > 0. Moreover, by (2.1] -,

-2
0% > Jy(w) > 45 =l

which implies

2qa>
Jull < ((]_72)1/2 (5.4)
for all w € N\ with Jy(u) < a®. Therefore, by (5.3) and (5.4),
Jo(to(u)u)
S _ _,2qa°
< @ Aol N4 70, 5 (55772 = Ao ol =) (L= ol

Let dy > 0 be as in Lemma [5.1] Then there exists a positive number Xy such that
for A € (0, Ao),
Jo(to(’u)u) < a®™ +dy. (55)

Since to(u)u € Ng and to(u) > 0, by Lemma [5.1] and (5.5),
[ (9t + (o £ 0.
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which implies that there exists a positive number \g such that for every A € (0, Ag),

/ L (1Vul? + u?)dz £ 0
R

~ |zl

for all w € N, with Jy(u) < a. O

In the following, we use an idea by Adachi and Tanaka [1]. For ¢ € R*, we define
[Jn<c¢={ueNy:u>0,Jy(u) <c}.
We then try to show that for a sufficiently small o > 0,
cat([Jy < a™ —0a]) > 2. (5.6)

To prove (5.6]), we need some preliminaries. Recall the definition of the Lusternik-
Schnirelman category.

Definition 5.4. (i) For a topological space X, we say that a non-empty, closed
subset Y C X is contractible to a point in X if and only if there exists a continuous
mapping € : [0,1] x Y — X such that, for some g € X

£0,z) =2 forallz €Y,

&(L,z)=x9 forallzeY.

(ii) We define
cat(X) = min {k € N : there exist closed subsets Y7,...,Y), C X such that
Y; is contractible to a point in X for all j and U?Zl Y; =X}
When there do not exist finitely many closed subsets Y7, ...,Y; C X such that Y;

is contractible to a point in X for all j and UleYj = X, we say that cat(X) = oo.
We need the following two lemmas.

Lemma 5.5. Suppose that X is a Hilbert manifold and F € C1(X,R). Assume
that there exist co € R and k € N such that

(i) F satisfies the Palais-Smale condition for energy levels ¢ < cy;
(ii) cat({x € X : F(z) <cp}) > k

Then F has at least k critical points in {x € X : F(x) < ¢o}.

For a proof of the above lemma see Ambrosetti [5], Theorem 2.3]. We have the
following results.

Lemma 5.6. Let X be a topological space. Suppose that there are two continuous
maps

.SV X, TU:Xx sV
such that U o ® is homotopic to the identity map of SN ™1, that is, there exists a

continuous map ¢ : [0,1] x SN=1 — SN=1 such that

€(0,2) = (Vo ®)(z) for each x € SN1,
¢(l,z) ==z for each x € SN~

Then cat(X) > 2.
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For a proof of the above lemma see Adachi and Tanaka [I, Lemma 2.5].
For | > Iy, we define a map ®,; : SV =! — HY(RY) by

Dy (e) = ta(we,)(we,y) foree shv-1

where ¢ (we,;)(we,1) is as in the proof of Proposition Then we have the following
result.

Lemma 5.7. There exists a sequence {o;} C R with oy — 0 as | — oo such that
@A’Z(S(Nil)) C [J)\ <a*® - O’l].
Proof. By Proposition for each [ > lAl we have ¢y (we,)(we,) € Ny and

sup Jx (tx(we,1)(we,)) < @™ forall e e sV,
l>lA1

Since @, ;(SM~1) is compact,
Ir(txa(we,i)(wey)) < a™ — oy,
so the conclusion follows. (]
From Lemma for A € (0, o), we define Uy : [Jy < a®®] — SNV~ by
Jon ﬁ(|Vu|2 + u?)dz

v = .
A(U) |IRN ﬁ(|VU|2+u2)dz|

Then we have the following results.
Lemma 5.8. Let Ag > 0 be as in Lemma [5.3  Then for each X € (0,Xg) there
exists lg > 1y such that for 1 > ly, the map
Wyody;: SN-1 , gN-1
is homotopic to the identity.
Proof. Let ¥ = {u € H'(RV)\{0} : Jen 131 |Vu|2 +u?)dz # 0}. We define ¥, :
¥ — SN-1 by
Jen rar( (|Vul? + u?)dx
e 2 (VP + 2)da]

Uy (u) =

an extension of Wy. Since w.; € X for all e € SN=1 and for [ sufficiently large,
we let 7 : [s1,52] — SV~ be a regular geodesic between W (w, ;) and Wy (P ;(e))
such that 7(31) Wy (wep),v(s2) = U(Py(e )) By an argument similar to that
in Lemma, there exists a positive number lo > l1 such that, for [ > lo,

;€Y forallee SV ! and 6 € [1/2,1).

w

A0y
We define (;(6,¢) : [0,1] x S¥=1 — SN-1 by
v(20(s1 — s2) + s2) for 6 € [0,1/2);
Cl(H,e) = \II)‘(wQ(f—e)vl) for 6 € [1/2, ].);
e for 6 = 1.

Then (;(0,e) = Ux(Py,(e)) = ¥x(Pyr,(e)) and (;(1,e) = e. First, we claim that
limg_q- (0,¢) = e and lim, 1~ (0, €) = Ux(we,).
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(a) limg_,1- (0, ¢e) = e: since

< 2 2
[ T V0 gy AP+ g 1)

v+ 5%
— [ (V@ + [u(@))ds

B |2+ 575

2
(prQ)aooe +o(l) asf— 17,
it follows that lim; 0 — 17¢;(0,¢e) = e.

(b) lim, 1- ¢(0,e) = Wx(we,): since Uy € C(X,SV 1), we obtain that

2

limaé{ G(0,e) = Wy (we;). Thus, ¢(0,e) € C([0,1] x SN=1, SV=1) and

G(0,e) = Wy (Pyy(e)) forallec SV
G(l,e)=e foralleecSVN™1,

provided [ > le. This completes the proof. ([l

Theorem 5.9. For each A € (0, ), the functional Jy has at least two critical
points in [Jy < a®]. In particular, Equation (E)) has two positive solutions uél)

and u(()Z) such that uéz) e N, fori=1,2.
Proof. Applying Lemmas for A € (0, \g), we have
cat([Jy < a® —ay]) > 2.

By Proposition and Lemma Jx(u) has at least two critical points in [Jy <
«®°]. This implies that Equation (1.3]) has two positive solutions uf\l) and uE\Q) such
that u(;) €N, fori=1,2. O

6. PROOF OF THEOREM [I.1]

Given a positive real number ro > p—ﬁq. Let
. Top
Ap = min{(—————— — 1), } > 0,
{(q(ro +1) ) }

where Ag > 0 is as in Lemma [5.3] Then we have the following results.

Lemma 6.1. We have

1 1 p—2
G D LI SN LT g N
TR ROV}
1 1 -
S — (1 Aett T
q p pg

for all A € (0, A).
Proof. Let

1 1 P—q
EQ) = =(1+N)™ — (1)t - =,
e p
Then £(0) = 0 and

1
K =101 ot - 100

14 M)
. o1+
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T0 ro+ 1

= (1+A)T0—1(; ——(1+N) >

for all A € (0,Ap). This implies that k() > 0 or

1 1
St Ao — —(1 4 N)ett 21

2 P Pq
By a similar argument, we have

>0 forall A € (0,Ap).

p

1 -2
L+ )™ = =(1+XA)" === >0 forall A € (0,Ao).
p

3
This completes the proof. O

We define

In(u) = sup Jy(tu) : B — R.
>0

Then we have the following result.

Lemma 6.2. For each A € (0,Ag) and u € B we have

AP —aq)
pq

142050 < Iy(u) < To(uw),

(T+X)""Iy(u) —
where Iy = I\ with A = 0.
Proof. Let v € B. Then by Lemmas and (4.2),
Ii(u) = sup a(tu) > Ja(to(u)u)

1 w)u? wu)?dz 1 u)u|?dx
| tatwl? + oo+ = [ - leo(wputd

2

1
—3/ f+\t0(u)u|qu—f/ ito (u)ulPdz
q JrN P JrN

E/RN |Vt0(u)u|2+(t0(u)u)2dac+$/RN £ Ito(u)ul%dz

2
1+ A Ap —
LA wyfrds — 22 =9
p RN

Y

1 BB

E/RN |V1€0(u)u|2 + (to(u)u)zdx + é /RN f-|to(w)u|?dx

2
[ IVt + (owude+ [ f-towpuds

_1+A
. Alp —q) If ”P/(p—(I)

p
+ll e/ (p—a)
:@fﬂ)/ Vto(uul® + (to(u)u)?dz

2
14 ( q) _
e [ ttwpaprds = 22

(p— )(21p+ A" / |Vt0(u)u|2+(to(u)u)2dm

# QOO [ rupulran - XE D g,

Lr/(p—a)
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= (1 + )\)_TO J()(to(u)u) -

1

> (1407 <§—7>/ [Vto(u)ul? + (to(u)u)?d

L0-nG =) [ etdar - 22Dy

> (14N [% /RN (Vo (u)ul® + (to(u)u)?dx + Q/RN f-lto(w)u|?dx

- %(/N Veo(uful® + (to(wu)da + /RN f—|to(u)u|qu)}

A( 9)
= WA

A( 9)

[ LA A

Lr/(p—a)*

_ . Alp — ) p/(p—q)
= A) "o A 74
(14+X)""Io(u) o (Fam

Moreover,

Ja(tu) < Jo(tu) < Ip(u) for all £ > 0.

Then I)(u) < Ip(u). This completes the proof.
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O

We observe that if A is sufficiently small, the minimax argument in Section 4
also works for Jy. Let | > max{lp,lp} be very large and let

B = inf  max Ix(y(y)),
€T ye BN (0,1)

where T is as in (4.5). Then by (4.4) and Lemma for A € (0,Ap), we have

(14 2)776 - <>

Moreover, we have the following result.

||f+||i/p(/1;p qq) < Bx < Bo- (6.1)

Theorem 6.3. There exists a positive number A, < Ag such that for X € (0,A,),

a™ < [y < 2a™

Furthermore, Equation (1.3|) has a positive solution u((JS) such that J,\(ugg)) = 0.
Proof. By Theorems and and Lemma we also have that

For any € > 0 there exists a positive number A < Ag such that for X € (O,Xl)7

Thus,

_ A
(40 = Ay i), < oy <o

a® —e<ay<a™

20 —e < a®™ 4+ ay < 2a™

Applying (6.1)) for any § > 0 there exists a positive number Ay < Ag such that for

A S (O,Xg),

Bo — 9 < B < Bo.

Moreover, by Theorem [£.6}

a™ < [y < 2a
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Fix a small 0 < € < 2a® — [y, choosing a § > 0 such that for A € (0, \,) we obtain
a® < By <2a™ —e < a™ +ay < 2a™,

where A, = min{\;, A\2}. Similar to the argument in the proof of Theorem |4.6
we can conclude that the Equation (|1.3) has a positive solution ué?’) such that
JA(uég)) = . This completes the proof. O

We can now complete the proof of Theorem By Theorems and
the results (i) and (ii) hold. (iii) By Theorems d there exists a positive

number A, such that for A € (0,A.), Equation (1.3) has three positive solutions
ul ul? and u'P with
0 »U 0
0< J,\(ugi)) <a® < JA(ué?’)) < 2a™ fori=1,2.

This completes the proof of Theorem [T.1]
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