
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 102, pp. 1–27.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR INDEFINITE SEMILINEAR ELLIPTIC PROBLEMS IN RN

YI-HSIN CHENG, TSUNG-FANG WU

Abstract. In this article, we study a class of indefinite semilinear elliptic
problems in RN . By using the fibering maps and studying some properties

of the Nehari manifold, we obtain the existence and multiplicity of positive

solutions.

1. Introduction

In this article, we consider the existence and multiplicity of positive solutions for
the semilinear elliptic problem

−∆u+ u = |u|p−2u+ f(x)|u|q−2u in RN ,

0 ≤ u ∈ H1(RN ),
(1.1)

where 2 < q ≤ p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, and 2∗ =∞ if N = 1, 2) and f
is a continuous function in RN .

When q = p and f > −1, Equation (1.1) becomes to the semilinear elliptic
equation with positive nonlinearity,

−∆u+ u = (1 + f(x))|u|p−2u in RN ,

u ∈ H1(RN ).
(1.2)

It is well known that if f ≡ 0, then Equation (1.2) has a unique positive solution
(see [24]) and infinitely many radially symmetric nodal solutions. Moreover, the
existence of positive solutions has been established by several authors under various
conditions. In [8, 26, 27], it was proved that if f ≥ lim|x|→∞ f(x) = 0, then
Equation (1.2) has a positive ground state solution and if f ≤ lim|x|→∞ f(x) = 0,
then Equation (1.2) has no any ground state solution. In [6, 7, 25], it was proved
that there is at least one positive solution to Equation (1.2) when lim|x|→∞(1 +
f(x)) = C0 > 0 and 0 > f(x) ≥ −C exp(−δ|x|) for some δ > 0 and 0 < C < 1. In
[12], it was proved that there is at least one positive solution to Equation (1.2) when
lim|x|→∞ f(x) = 0 and f(x) ≥ 2(2−p)/2 − 1, for 3 ≤ N < 8 and 1 < p < N/(N − 2)
if N = 3, 4; 1 < p < 8/N if 4 < N < 8. The multiplicities of solutions of
Equation (1.2) were studied in [35] as follows. Assume that N ≥ 5, (1 + f(x)) ≥
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lim|x|→∞(1 + f(x)) = C0 > 0 and that there exist positive constants C, γ and R0

such that f(x) ≥ C/|x|γ for |x| ≥ R0. Then (1.2) has at least one positive solution
and one nodal solution.

When q < p and f is non-positive or sign-changing, Equation (1.1) is the semi-
linear elliptic equation with indefinite nonlinearity. In fact, if Equation (1.1) is
considered in a bounded domain Ω with, say, a Dirichlet boundary condition, then
there is a vast literature on existence and multiplicity results (see [3, 13] and the
references cited therein). In particular, the authors of [3] seem to have been the
first authors to consider such indefinite problems in bounded domains. However,
little has been done for this type of problem in RN . We are only aware of works
[14, 20, 15, 17, 21] etc. that which studied the existence of solutions for the indefi-
nite elliptic problem

−∆u− λa(x)u = b(x)h(u) in RN ,

0 ≤ u ∈ D1,2(RN ),

where a, b ∈ C(RN ) change sign in RN and h is a nonlinear function with su-
perquadratic growth both at zero and at infinity.

Several papers have also been devoted in the past few years to the study of
nonlinearities with indefinite sign. Most of them, however, deal with problems that
are not directly comparable to those considered here (cf., e.g., [2, 11, 16, 19, 23, 32,
33, 34]).

Our work was motivated in part by recent papers [3, 6, 7]. The main purpose of
this paper is to use the shape of the graph of the function f to prove the existence
and multiplicity of positive solutions of (1.1). Here we consider the indefinite
semilinear elliptic equation

−∆u+ u = |u|p−2u+ fλ(x)|u|q−2u in RN ,

u ∈ H1(RN ),
(1.3)

where 2 < q < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, and 2∗ = ∞ if N = 1, 2) and
λ ∈ R. We assume that fλ(x) = λf+(x)−f−(x) and that the nonnegative functions
f+ and f− satisfy the following conditions:

(D1) f− ∈ C(RN )\{0} and there exists a positive number r− > 1 such that

f−(x) ≤ ĉ exp(−r−|x|) or some ĉ > 0 and for all x ∈ RN ;

(D2) f+ ∈ C(RN )∩Lp/(p−q)(RN ) and there exist positive numbers R0 and r+ <
min{r−, q} such that

f+(x) ≥ c0 exp(−r+|x|) for some c0 > 0 and for all x ∈ RN with |x| ≥ R0.

The following theorem is our main result.

Theorem 1.1. Suppose that the functions f± satisfy the conditions (D1) and (D2).
Then we have the following statements:

(i) Equation (1.3) has a positive higher energy solution and no any ground
state solution for λ = 0;

(ii) Equation (1.3) has a positive ground state solution for λ ∈ (0,∞);
(iii) there exists a positive number Λ∗ such that Equation (1.3) has at least three

positive solutions for λ ∈ (0,Λ∗).

Corollary 1.2. If in addition to conditions (D1) and (D2), we assume
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(D3) there exists a positive number 1 < r+ ≤ r+ such that

f+(x) ≤ c0 exp(−r+|x|) for some c0 > 0 and for all x ∈ RN ,
then we have the following statements:

(i) Equation (1.3) has a positive higher energy solution and no any ground
state solution for λ ∈ (−∞, 0];

(ii) Equation (1.3) has a positive ground state solution for λ ∈ (0,∞);
(iii) there exists a positive number Λ∗ such that Equation (1.3) has at least three

positive solutions for λ ∈ (0,Λ∗).

Next we prove Theorem 1.1, by using the variational methods to find positive
solutions of Equation (1.3). We consider, the energy functional Jλ in H1(RN )
associated with Equation (1.3),

Jλ(u) =
1
2
‖u‖2H1 −

1
p

∫
RN
|u|pdx− 1

q

∫
RN

fλ|u|qdx,

where

‖u‖H1 =
(∫

RN
|∇u|2 + u2dx

)1/2

is the standard norm in H1(RN ). It is well known that the solutions of Equation
(1.3) are the critical points of the energy functional Jλ in H1(RN ) (see Rabinowitz
[29]).

This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we give some estimates of the energy. In Section 4,
we establish the existence of a positive solution for all λ ∈ R. In Section 5, we
establish the existence of two positive solutions for λ sufficiently small. In Section
6, we prove Theorem 1.1.

2. Preliminaries

First, we define the Palais-Smale (or simply (PS)-) sequences, (PS)-values, and
(PS)-conditions in H1(RN ) for Jλ as follows.

Definition 2.1. (i) For β ∈ R, a sequence {un} is a (PS)β-sequence in H1(RN )
for Jλ if Jλ(un) = β+ o(1) and J ′λ(un) = o(1) strongly in H−1(RN ) as n→∞. (ii)
Jλ satisfies the (PS)β-condition in H1(RN ) if every (PS)β-sequence in H1(RN ) for
Jλ contains a convergent subsequence.

As the energy functional Jλ is not bounded from below on H1(RN ), it is useful
to consider the functional on the Nehari manifold

Nλ = {u ∈ H1(RN )\{0} : 〈J ′λ(u), u〉 = 0}.
Thus, u ∈ Nλ if and only if

‖u‖2H1 −
∫

RN
|u|pdx−

∫
RN

fλ|u|qdx = 0.

Define

ψλ(u) = ‖u‖2H1 −
∫

RN
|u|pdx−

∫
RN

fλ|u|qdx.

Then for u ∈ Nλ,

〈ψ′λ(u), u〉 = 2‖u‖2H1 − p
∫

RN
|u|pdx− q

∫
RN

fλ|u|qdx
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= (2− q)‖u‖2H1 + (q − p)
∫

RN
|u|pdx < 0

Furthermore, we have the following results.

Lemma 2.2. The energy functional Jλ is coercive and bounded from below on Nλ.

Proof. If u ∈ Nλ, then

Jλ(u) =
1
2
‖u‖2H1 −

1
p

∫
RN
|u|pdx− 1

q

∫
RN

fλ|u|qdx

=
q − 2

2q
‖u‖2H1 +

p− q
pq

∫
RN
|u|pdx

(2.1)

Thus, Jλ is coercive and bounded below on Nλ. �

Lemma 2.3. Suppose that u0 is a local minimizer for Jλ on Nλ. Then J ′λ(u0) = 0
in H−1(RN ).

The proof of the above lemma is essentially the same as that in Brown and Zhang
[11, Theorem 2.3] (or see Binding, Drábek and Huang [9]).

To get a better understanding of the Nehari manifold, we consider the function
mu : R+ → R defined by

mu(t) = t2−q‖u‖2H1 − tp−q
∫

RN
|u|pdx for t > 0.

Clearly, tu ∈ Nλ if and only if mu(t)−
∫

RN fλ|u|
qdx = 0, and mu(t̂(u)) = 0, where

t̂(u) =
( ‖u‖2H1∫

RN |u|pdx

)1/(p−2)

> 0. (2.2)

Moreover,

m′u(t) = t1−q
[
(2− q)‖u‖2H1 − (p− q)tp−2

∫
RN
|u|pdx

]
.

Thus,

m′u(t) < 0 for all t > 0,

which implies that mu is strictly decreasing on (0,∞) with limt→0+ mu(t) =∞ and
limt→∞mu(t) = −∞. Moreover, we have the following lemma.

Lemma 2.4. Suppose that λ ∈ R. Then for each u ∈ H1(RN )\{0} we have the
following.

(i) If
∫

RN fλ|u|
qdx ≤ 0, then there is a unique tλ(u) ≥ t̂(u) such that tλ(u)u ∈

Nλ. Furthermore,

Jλ(tλ(u)u) = sup
t≥0

Jλ(tu) = sup
t≥t̂(u)

Jλ(tu). (2.3)

(ii) If
∫

RN fλ|u|
qdx > 0, then there is a unique tλ(u) < t̂(u) such that tλ(u)u ∈

Nλ. Furthermore,

Jλ(tλ(u)u) = sup
t≥0

Jλ(tu) = sup
0≤t≤t̂(u)

Jλ(tu). (2.4)

(iii) tλ(u) is a continuous function for u ∈ H1(RN )\{0}.
(iv) tλ(u) = 1

‖u‖H1
tλ( u
‖u‖H1

).
(v) Nλ = {u ∈ H1(RN )\{0} : 1

‖u‖H1
tλ( u
‖u‖H1

) = 1}.
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Proof. Fix u ∈ H1(RN )\{0}. Let

hu(t) = Jλ(tu) =
t2

2
‖u‖2H1 −

tp

p

∫
RN
|u|pdx− tq

q

∫
RN

fλ|u|qdx.

Then

h′u(t) = t‖u‖2H1 − tp−1

∫
RN
|u|pdx− tq−1

∫
RN

fλ|u|qdx

= tq−1
(
t2−q‖u‖2H1 − tp−q

∫
RN
|u|pdx−

∫
RN

fλ|u|qdx
)

= tq−1
(
mu(t)−

∫
RN

fλ|u|qdx
)
.

(i) If
∫

RN fλ|u|
qdx ≤ 0, then the equation mu(t) −

∫
RN fλ|u|

qdx = 0 has a unique
solution tλ(u) ≥ t̂(u), which implies that h′u(tλ(u)) = 0 and tλ(u)u ∈ Nλ. More-
over, hu is strictly increasing on (0, tλ(u)) and strictly decreasing on (tλ(u),∞).
Therefore, (2.3) holds.

(ii) If
∫

RN fλ|u|
qdx > 0, then the equation mu(t) −

∫
RN fλ|u|

qdx = 0 has a
unique solution tλ(u) < t̂(u), which implies that h′u(tλ(u)) = 0 and tλ(u)u ∈
Nλ. Moreover, hu is strictly increasing on (0, tλ(u)) and strictly decreasing on
(tλ(u),∞). Therefore, (2.4) holds.

(iii) By the uniqueness of tλ(u) and the extrema property of tλ(u), we have tλ(u)
is a continuous function for u ∈ H1(RN )\{0}.

(iv) Let v = u
‖u‖H1

. Then by parts (i) and (ii), there is a unique tλ(v) > 0 such
that tλ(v)v ∈ Nλ or tλ( u

‖u‖H1
) u
‖u‖H1

∈ Nλ. Thus, by the uniqueness of tλ(v), we
can conclude that tλ(u) = 1

‖u‖H1
tλ( u
‖u‖H1

).
(v) For u ∈ Nλ. By parts (i)–(iii), tλ( u

‖u‖H1
) u
‖u‖H1

∈ Nλ. Since u ∈ Nλ, we
have tλ( u

‖u‖H1
) 1
‖u‖H1

= 1, which implies that

Nλ ⊂ {u ∈ H1(RN ) :
1

‖u‖H1
tλ(

u

‖u‖H1
) = 1}.

Conversely, let u ∈ H1(RN ) such that 1
‖u‖H1

tλ( u
‖u‖H1

) = 1. Then, by part (iii),

tλ(
u

‖u‖H1
)

u

‖u‖H1
∈ Nλ.

Thus,

Nλ = {u ∈ H1(RN )\{0} :
1

‖u‖H1
tλ(

u

‖u‖H1
) = 1}.

This completes the proof. �

Now we consider the elliptic problem

−∆u+ u = |u|p−2u in RN ,
lim
|x|→∞

u = 0. (2.5)

We consider the energy functional J∞ in H1(RN ) associated with (2.5),

J∞(u) =
1
2

∫
RN
|∇u|2 + u2dx− 1

p

∫
RN
|u|pdx.
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Consider the minimizing problem:

inf
u∈N∞

J∞(u) = α∞,

where

N∞ = {u ∈ H1(RN )\{0} : 〈(J∞)′(u), u〉 = 0}.

It is known that Equation (2.5) has a unique positive radial solution w(x) such that
J∞(w) = α∞ and w(0) = maxx∈RN w(x) (see [24]). Then we have the following
results.

Proposition 2.5. Let {un} be a (PS)β–sequence in H1(RN ) for Jλ. Then there
exist a subsequence {un}, m ∈ N, sequences {xin}∞n=1 in RN , and functions v0 ∈
H1(RN ), and 0 6= wi ∈ H1(RN ), for 1 ≤ i ≤ m such that:

(i) |xin| → ∞ and |xin − xjn| → ∞ as n→∞, for 1 ≤ i 6= j ≤ m;
(ii) −∆v0 + v0 = |v0|p−2v0 + fλ(x)|v0|q−2v0 in RN ;

(iii) −∆wi + wi = |wi|p−2wi in RN ;

(iv) un = v0 +
m∑
i=1

wi(· − xin) + o(1) strongly in H1(RN );

(v) Jλ(un) = Jλ(v0) +
∑m
i=1 J

∞(wi) + o(1).
In addition, if un ≥ 0, then v0 ≥ 0 and wi ≥ 0 for each 1 ≤ i ≤ m.

The proof of the above proposition is similar to the argument in Lions [26, 27].
For λ ∈ R, we define

αλ = inf
u∈Nλ

Jλ(u).

Then, by Proposition 2.5, we have the following compactness result.

Corollary 2.6. Suppose that {un} is a (PS)β-sequence in H1(RN ) for Jλ with
0 < β < α∞+min{αλ, α∞} and β 6= α∞. Then there exists a subsequence {un} and
a non-zero u0 in H1(RN ) such that un → u0 strongly in H1(RN ) and Jλ(u0) = β.
Furthermore, u0 is a non-zero solution of (1.3).

3. The estimate of energy

Let w(x) be a positive radial solution of Equation (2.5) such that J∞(w) = α∞.
Then by Gidas, Ni and Nirenberg [22] and Kwong [24], for any ε > 0, there exist
positive numbers Aε and B0 such that

Aε exp(−(1 + ε)|x|) ≤ w(x) ≤ B0 exp(−|x|) for all x ∈ RN . (3.1)

Let e ∈ SN−1 = {x ∈ RN : |x| = 1} and let z0 = (δ0, 0, . . . , 0) ∈ RN , where

0 < δ0 =
min{r−, q, p2} − 1

2(min{r−, q, p2}+ 1)
< 1.

Clearly,
1− δ0 ≤ |e− z0| ≤ 1 + δ0 for all e ∈ SN−1. (3.2)

Define
we,l(x) = w(x− le) for l ≥ 0 and e ∈ SN−1 (3.3)

and

wz0,l(x) = w(x− lz0) for l ≥ 0.
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Clearly, we,l and wz0,l are also least energy positive solutions of (2.5) for all l ≥ 0.
Moreover, by Lemma 2.4 for each u ∈ H1(RN )\{0} and λ ∈ R there is a unique
tλ(u) > 0 such that tλ(u)u ∈ Nλ. Let t̂ be as in (2.2). Then we have the following
results.

Lemma 3.1. For each s0 ∈ (0, 1) there exist l(s0) > 0 and σ(s0) > 1 such that for
any l > l(s0) we have

t̂p−2(swe,l + (1− s)wz0,l) >
σ(s0)

sp−2 + (1− s)p−2

for all e ∈ SN−1 and for all s ∈ (0, 1) with min{s, 1− s} ≥ s0.

Proof. Since

t̂p−2(swe,l + (1− s)wz0,l)

=
‖swe,l + (1− s)wz0,l‖2H1∫

RN |swe,l + (1− s)wz0,l|pdx

=
s2‖we,l‖2H1 + (1− s)2‖wz0,l‖2H1 + 2s(1− s)〈we,l, wz0,l〉∫

RN |swe,l + (1− s)wz0,l|pdx

=
s2‖w‖2H1 + (1− s)2‖w‖2H1 + 2s(1− s)〈we,l, wz0,l〉∫

RN |swe−z0,l + (1− s)w|pdx

(3.4)

for all s ∈ [0, 1] and for all e ∈ SN−1. Moreover, by

1− δ0 ≤ |e− z0| ≤ 1 + δ0 for all e ∈ SN−1, (3.5)

and ∫
RN

wp−1
e,l wz0,ldx = 〈we,l, wz0,l〉 =

∫
RN

we,lw
p−1
z0,l

dx. (3.6)

we have

〈we,l, wz0,l〉 =
∫

RN
wp−1wz0−e,ldx

≤ Bp0
∫

RN
exp(−(p− 1)|x|) exp(−|x− l(z0 − e)|)dx

≤ Bp0
∫
|x|<(1+δ0)l

exp(−(|x|+ |x− l(z0 − e)|))dx

+Bp0

∫
|x|≥(1+δ0)l

exp(−(|x|+ |x− l(z0 − e)|))dx

≤ Bp0 lN
∫
|x|<(1+δ0)

exp(−l(|x|+ |x− (z0 − e)|))dx

+ c0B
p
0 exp(−(1 + δ0)l)

∫
|x|≥(1+δ0)l

exp
(
− (|x− l(z0 − e)|)

)
dx

≤ c0Bp0 lN
∫
|x|<(1+δ0)

exp(−(1− δ0)l)dx+ C0B
p
0 exp(−(1 + δ0)l)

≤ C0B
p
0 l
N exp(−l(1− δ0)) for all l ≥ 1 and for all e ∈ SN−1,

which implies that

lim
l→∞
〈we,l, wz0,l〉 = 0 uniformly in e ∈ SN−1. (3.7)
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By (3.1), (3.5) and Brézis-Lieb lemma [10], for any s ∈ [0, 1] we have

lim
l→∞

∫
RN
|swe−z0,l + (1− s)w|p − |swe−z0,l|pdx

=
∫

RN
|(1− s)w|pdx uniformly in e ∈ SN−1.

(3.8)

Thus, by (3.4), (3.7) and (3.8), for any s ∈ [0, 1],

lim
l→∞

t̂p−2(swe,l + (1− s)wz0,l) =
(s2 + (1− s)2)‖w‖2H1

(sp + (1− s)p)
∫

RN |w|pdx

=
s2 + (1− s)2

sp + (1− s)p
uniformly in e ∈ SN−1.

(3.9)

Since
(s2 + (1− s)2)(sp−2 + (1− s)p−2)

sp + (1− s)p
= 1 +

s2(1− s)p−2 + (1− s)2sp−2

sp + (1− s)p

> 1 +
s2

0(1− s0)p−2 + (1− s0)2sp−2
0

sp0 + (1− s0)p

(3.10)

for all s ∈ (0, 1) with min{s, 1− s} > s0, by (3.9) and (3.10), there exist l(s0) > 0
and σ(s0) > 1 such that for any l > l(s0), we have

t̂p−2(swe,l + (1− s)wz0,l) >
σ(s0)

sp−2 + (1− s)p−2

for all e ∈ SN−1 and for all s ∈ (0, 1) with min{s, 1− s} ≥ s0. This completes the
proof. �

Proposition 3.2. (i) For each λ > 0, there exists l̂1 = l̂1(λ) > 0 such that for any
l ≥ l̂1,

sup
t≥0

Jλ(twe,l) < α∞ for all e ∈ SN−1.

Furthermore, there is a unique tλ(we,l) > 0 such that tλ(we,l)we,l ∈ Nλ.
(ii) There exists l1 > 0 such that for any l ≥ l1

sup
t≥0

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all 0 < s < 1 and e ∈ SN−1,

where J0 = Jλ with λ = 0. Furthermore, there is a unique tλ(swe,l+(1−s)wz0,l) > 0
such that

tλ(swe,l + (1− s)wz0,l)[swe,l + (1− s)wz0,l] ∈ Nλ.

Proof. (i) We have

Jλ(twe,l) =
t2

2
‖we,l‖2H1 −

tp

p

∫
RN
|we,l|pdx−

tq

q

∫
RN

fλ|we,l|qdx

=
t2

2
‖w‖2H1 −

tp

p

∫
RN

wpdx− λtq

q

∫
RN

f+w
q
e,ldx+

tq

q

∫
RN

f−w
q
e,ldx

≤ t2

2
‖w‖2H1 −

tp

p

∫
RN

wpdx+
ĉtq

q

∫
RN

wqdx.

(3.11)
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for all λ > 0. This implies that Jλ(twe,l)→ −∞ as t→∞ uniformly for e ∈ SN−1.
Thus, by Jλ(0) = 0 < α∞, Jλ ∈ C1(H1(RN ),R) and ‖we,l‖2H1 = 2p

p−2α
∞ for all

l ≥ 0, there exists t1, t2 > 0 such that

Jλ(twe,l) < α∞ for all t ∈ [0, t2] ∪ [t1,∞) and for all e ∈ SN−1. (3.12)

Moreover, by Brown and Zhang [11] and Willem [31], we know that

J∞(tw) =
t2

2
‖w‖2H1 −

tp

p

∫
RN

wpdx ≤ α∞ for all t > 0. (3.13)

Thus, by (3.11),

Jλ(twe,l) ≤ α∞ −
λtq

q

∫
RN

f+w
q
e,ldx+

tq

q

∫
RN

f−w
q
e,ldx for all t > 0. (3.14)

By (3.12) we only need to show that there exists l̂1 > 0 such that, for any l > l̂1,

sup
t2≤t≤t1

Jλ(twe,l) < α∞ for all e ∈ SN−1.

We set
C0 = min

x∈BN (0,1)

wq(x) > 0,

where BN (0, 1) = {x ∈ RN : |x| < 1}. Then, by condition (D2),∫
RN

f+w
q
e,ldx ≥

∫
|x|≥R0

f+w
q
e,ldx

=
∫
|x+le|≥R0

f+(x+ le)wq(x)dx ≥ C0

∫
BN (0,1)

f+(x+ le)dx

≥ C0 exp(−r+l) for all l ≥ 2 max{1, R0}.
Moreover, by (3.1) and condition (D1),∫

RN
f−w

q
e,ldx ≤ ĉB

q
0

∫
RN

exp(−r−|x|) exp(−q|x− le|)dx

≤ C1 exp(−min{r−, q}l)
(3.15)

Since r+ < min{r−, q} and t2 ≤ t ≤ t1, we can find l̂1 > 2 max{1, R0} such that,
for any l > l̂1,
tq

q

∫
RN

f−w
q
e,ldx <

λtq

q

∫
RN

f+w
p
e,ldx for all e ∈ S and for all t ∈ [t2, t1]. (3.16)

Thus, by (3.12)- (3.14) and (3.16), we obtain that for any l > l̂1,

sup
t≥0

Jλ(twe,l) < α∞ for all e ∈ SN−1.

Moreover, by Lemma 2.4, there is a unique tλ(we,l) > 0 such that tλ(we,l)we,l ∈ Nλ.
(ii) When s = 0 or 1, by a similar argument in part (i), there exists t̃1 > 0 such

that

max{sup
t≥0

J0(twe,l), sup
t≥0

J0(twz0,l)} ≤ α∞ +
t̃1C0

q
exp(−min{r+, q}l) (3.17)

for all e ∈ SN−1, this implies that there exists l̃1 > 0 such that, for any l > l̃1,

max{sup
t≥0

J0(twe,l), sup
t≥0

J0(twz0,l)} ≤
3
2
α∞ for all e ∈ SN−1.
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Therefore, since J0 ∈ C2(H1(RN ),R), there exist positive constants s0 and l̃ such
that, for any l > l̃,

sup
t≥0

J0(t[swe,l + (1− s)wz0,l]) < 2α∞

for all e ∈ SN−1 and for all min{s, 1− s} ≤ s0. In the following we always assume
that min{s, 1− s} ≥ s0. Since∫

RN
f−|(swe,l + (1− s)wz0,l)|qdx ≥ 0,

by Lemma 2.4 (i) and Lemma 3.1, we may show that there exists l1 ≥ l̃ such that,
for any l > l1,

sup
t≥(

σ(s0)
sp−2+(1−s)p−2 )1/(p−2)

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all e ∈ SN−1, (3.18)

where σ(s0) > 1 is as in Lemma 3.1. Since

J0(t[swe,l + (1− s)wz0,l])

=
t2

2
[s2‖w‖2H1 + (1− s)2‖w‖2H1 + 2s(1− s)〈we,l, wz0,l〉]

+
tq

q

∫
RN

f−[swe,l + (1− s)wz0,l]qdx−
tp

p

∫
RN

[swe,l + (1− s)wz0,l]pdx

≤ t2

2
[s2 + 2s(1− s) + (1− s)2]‖w‖2H1

+
C

q
tq[sq + (1− s)q]

∫
RN

wqdx− tp

p
max{sp, (1− s)p}

∫
RN

wpdx

≤ t2

2
‖w‖2H1 +

2C
q
tq
∫

RN
wqdx− tp

p2p

∫
RN

wpdx

(3.19)

for all 0 ≤ s ≤ 1 and e ∈ SN−1, there exists t1 > 0 such that, for any t ≥ t1,

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all 0 ≤ s ≤ 1 and for all e ∈ SN−1. (3.20)

By (3.18) and (3.20), we only need to show that there exists l1 ≥ l̃ such that, for
l > l1,

sup
(

σ(s0)
sp−2+(1−s)p−2 )1/(p−2)≤t≤t1

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all e ∈ SN−1.

(3.21)
By Bahri-Li [6, Lemma 2.1], there exists Cp > 0, such that, for any nonnegative
real numbers c, d,

(c+ d)p ≥ cp + dp + p(cp−1d+ cdp−1)− Cpcp/2dp/2.
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Then, by (3.13), (3.6), (3.19) and Lemma 3.1,

J0(t[swe,l + (1− s)wz0,l])

≤ t2

2
[s2‖w‖2H1 + (1− s)2‖w‖2H1 + 2s(1− s)〈we,l, wz0,l〉]

+
tq

q

∫
RN

f−[swe,l + (1− s)wz0,l]qdx

− tp

p

∫
RN

(swe,l)p + [(1− s)wz0,l]p + p(swe,l)p−1((1− s)wz0,l)

+ p(swe,l)[(1− s)wz0,l]p−1 − Cp(swe,l)p/2[(1− s)wz0,l]p/2dx

≤ 2α∞ − s(1− s)t2[tp−2(sp−2 + (1− s)p−2)− 1]
∫

RN
wp−1
e,l wz0,ldx

+
tq1
q

∫
RN

f−[swe,l + (1− s)wz0,l]qdx+
tp1Cp
p

∫
RN

w
p/2
e,l w

p/2
z0,l

dx

≤ 2α∞ − C2
0 [σ(s0)− 1]

∫
RN

wp−1
e,l wz0,ldx

+
tq1
q

∫
RN

f−[swe,l + (1− s)wz0,l]qdx+
tp1Cp
p

∫
RN

w
p/2
e,l w

p/2
z0,l

dx

(3.22)

for all e ∈ SN−1.
We first estimate

∫
RN w

p−1
e,l wz0,ldx. Set

C0 = min
x∈BN (0,1)

wp−1(x) > 0,

then by (3.1) and (3.2), for any ε > 0,∫
RN

wp−1
e,l wz0,ldx =

∫
RN

wp−1(x)w(x− l(z0 − e))dx

≥ C0

∫
BN (0,1)

w(x− l(z0 − e))dx

≥ C0Aε

∫
BN (0,1)

exp(−(1 + ε)|x− l(z0 − e)|)dx

≥ C0Aε

∫
BN (0,1)

exp(−(1 + ε)|x| − l(1 + ε)|e− z0|)dx

≥ C0Aε exp(−l(1 + ε)|e− z0|)
≥ C0Aε exp(−l(1 + ε)(1 + δ0)).

(3.23)

From (3.2) we have∫
RN

w
p/2
e,l w

p/2
z0,l

dx

≤ Bp0
∫

RN
exp(−p

2
|x|) exp(−p

2
|x− l(z0 − e)|)dx

≤ Bp0
∫
|x|<(1+δ0)l

exp(−p
2

(|x|+ |x− l(z0 − e)|))dx

+Bp0

∫
|x|≥(1+δ0)l

exp(−p
2

(|x|+ |x− l(z0 − e)|))dx
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≤ Bp0 lN
∫
|x|<(1+δ0)

exp(−p
2
l(|x|+ |x− (z0 − e)|))dx

+ c0B
p
0 exp(− (1 + δ0)pl

2
)
∫
|x|≥(1+δ0)l

exp(−p
2

(|x− l(e− z0)|))dx

≤ c0Bp0 lN
∫
|x|<(1+δ0)

exp(−pl
2
|e− z0|)dx+ C̃Bp0 exp(−pl

2
|e− z0|)

≤ C0B
p
0 l
N exp(−pl

2
|e− z0|)

≤ C0B
p
0 l
N exp(−min{r−, q,

p

2
}(1− δ0)l) for l sufficiently large.

By (3.15) and conditions (D1), (D2), we also have∫
RN

f−[swe,l + (1− s)wz0,l]qdx

≤
(∫

RN
f−w

q
e,ldx+

∫
RN

f−w
q
z0,l

dx
)

≤ C0B
q
0 l
N exp(−min{r−, q}l)

≤ C0B
q
0 l
N exp(−min{r−, q,

p

2
}(1− δ0)l) for l ≥ 1.

(3.24)

Since

1 + δ0 = 1 +
min{r−, q, p2} − 1

2(min{r−, q, p2}+ 1)

< min{r−, q,
p

2
}
(

1−
min{r−, q, p2} − 1

2(min{r−, q, p2}+ 1)

)
= min{r−, q,

p

2
}(1− δ0),

we may take 0 < ε� 1 such that

(1 + ε)(1 + δ0) < min{r−, q,
p

2
}(1− δ0).

Then, by (3.22)–(3.24), there exists l1 ≥ max{l̃, 1} such that (3.21) holds. Thus,
we can conclude that for any l > l1,

sup
t≥0

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all 0 ≤ s ≤ 1 and for all e ∈ SN−1.

Moreover, by Lemma 2.4 (i), there is a unique t0(swe,l+ (1− s)wz0,l) > 0 such that

t0(swe,l + (1− s)wz0,l)[swe,l + (1− s)wz0,l] ∈ N0.

This completes the proof. �

Theorem 3.3. Suppose that λ = 0. Then we have

α0 = inf
u∈N0

J0(u) = inf
u∈N∞

J∞(u) = α∞.

where α0 = αλ with λ = 0. Furthermore, Equation (1.3) does not admit any ground
state solutions.
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Proof. Let we,l be as in (3.3). Then, by Lemma 2.4 (i), there is a unique t0(we,l) > 0
such that t0(we,l)we,l ∈ N0 for all e ∈ SN−1, that is

‖t0(we,l)we,l‖2H1 =
∫

RN
|t0(we,l)we,l|pdx+

∫
RN

f−|t0(we,l)we,l|qdx

or

|t0(we,l)|2‖we,l‖2H1 = |t0(we,l)|p
∫

RN
|we,l|pdx+ |t0(we,l)|q

∫
RN

f−|we,l|qdx (3.25)

Since ∫
RN

f−|we,l|qdx→ 0 as l→∞, (3.26)

and

‖we,l‖2H1 =
∫

RN
|we,l|pdx =

2p
p− 2

α∞ for all l ≥ 0 and for all e ∈ SN−1, (3.27)

by (3.25), (3.26) and (3.27) we have t0(we,l)→ 1 as l→∞. Thus,

lim
l→∞

J0(t0(we,l)we,l) = lim
l→∞

J∞(t0(we,l)we,l) = α∞ for all e ∈ SN−1.

Then

α0 = inf
u∈N0

J0(u) ≤ inf
u∈N∞

J∞(u) = α∞.

Let u ∈ N0. Then, by Lemma 2.4, J0(u) = supt≥0 J0(tu). Moreover, there is a
unique t∞ > 0 such that t∞u ∈ N∞. Thus,

J0(u) ≥ J0(t∞u) ≥ J∞(t∞u) ≥ α∞

and so α0 ≥ α∞. Therefore,

α0 = inf
u∈N0

J0(u) = inf
u∈N∞

J∞(u) = α∞.

Next, we will show that for λ = 0, Equation (1.3) does not admit any solution
u0 such that J0(u0) = α0. Suppose the contrary. Then we can assume that u0 ∈
N0 such that J0(u0) = α0. Then, by Lemma 2.4 (i), J0(u0) = supt≥0 J0(tu0).
Moreover, there is a unique t∞(u0) > 0 such that t∞(u0)u0 ∈ N∞. Thus,

α∞ = inf
u∈N0

J0(u) = J0(u0) ≥ J0(t∞(u0)u0)

= J∞(t∞(u0)u0)− [t∞(u0)]q

q

∫
RN

f0|u0|qdx

≥ α∞ − [t∞(u0)]q

q

∫
RN

f0|u0|qdx,

which implies that
∫

RN f−|u0|qdx = 0 and so

u0 ≡ 0 in {x ∈ RN : f−(x) 6= 0}, (3.28)

form conditions (D1) and (D2). Therefore,

α∞ = inf
u∈N∞

J∞(u) = J∞(t∞(u0)u0).

Since |t∞(u0)u0| ∈ N∞ and J∞(|t∞(u0)u0|) = J∞(t∞(u0)u0) = α∞, By Willem
[31, Theorem 4.3] and the maximum principle, we can assume that t∞(u0)u0 is a
positive solution of Equation (2.5). This contradicts to (3.28). This completes the
proof. �
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4. Existence of a positive solution

First, we establish the existence of positive ground state solutions of Equation
(1.3) for λ > 0

Theorem 4.1. For each λ > 0, Equation (1.3) has a positive ground state solution
uλ such that

Jλ(uλ) = inf
u∈Nλ

Jλ(u) < α∞.

Proof. By analogy with the proof of Ni and Takagi [28], one can show that by
the Ekeland variational principle (see [18]), there exists a minimizing sequence
{un} ⊂ Nλ such that

Jλ(un) = inf
u∈Nλ

Jλ(u) + o(1), J ′λ(un) = o(1) in H−1(RN ).

Since infu∈Nλ
Jλ(u) < α∞ from Proposition 3.2 (i) and Corollary 2.6 there exists

a subsequence {un} and uλ ∈ Nλ, a nonzero solution of Equation (1.3), such that

un → uλ strongly in H1(RN ) and Jλ(uλ) = inf
u∈Nλ

Jλ(u).

Since Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈ Nλ, by Lemma 2.3 and the maximum principle,
we obtain uλ > 0 in RN . This completes the proof. �

By Theorem 3.3, for λ = 0, Equation (1.3) does not admit any solution u0 such
that J0(u0) = infu∈N0 J0(u) and

α0 = inf
u∈N0

J0(u) = inf
u∈N∞

J∞(u) = α∞.

Moreover, we have the following result.

Lemma 4.2. Assume that λ = 0 and {un} is a minimizing sequence for J0 in N0.
Then ∫

RN
f0|un|qdx = o(1).

Furthermore, {un} is a (PS)α∞-sequence for J∞ in H1(RN ).

Proof. For each n, there is a unique tn > 0 such that tnun ∈ N∞; that is,

t2n‖un‖2H1 = tpn

∫
RN
|un|pdx.

Then, by Lemma 2.4 (i),

J0(un) ≥ J0(tnun) = J∞(tnun) +
tqn
q

∫
RN

f−|un|qdx

≥ α∞ +
tqn
q

∫
RN

f−|un|qdx.

Since J0(un) = α∞ + o(1) from Theorem 3.3, we have

tqn
q

∫
RN

f−|un|qdx = o(1).

We will show that there exists c0 > 0 such that tn > c0 for all n. Suppose the con-
trary. Then we may assume tn → 0 as n → ∞. Since J0(un) = α∞ + o(1),
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by Lemma 2.2, we have ‖un‖ is uniformly bounded and so ‖tnun‖H1 → 0 or
J∞(tnun)→ 0, and this contradicts the fact that J∞(tnun) ≥ α∞ > 0. Thus,∫

RN
f−|un|qdx = o(1),

which implies that

‖un‖2H1 =
∫

RN
|un|pdx+ o(1)

and
J∞(un) = α∞ + o(1).

Moreover, by Wang and Wu [30, Lemma 7], we have {un} is a (PS)α∞ -sequence for
J∞ in H1(RN ). �

For u ∈ H1(RN ), we define the center mass function from Nλ to the unit ball
BN (0, 1) in RN ,

m(u) =
1

‖u‖p
Lp(RN )

∫
RN

x

|x|
|u(x)|pdx.

Clearly, m is continuous from Nλ to BN (0, 1) and |m(u)| < 1. Let

θλ = inf{Jλ(u) : u ∈ Nλ, u ≥ 0, m(u) = 0}.
Note that θ0 = θλ with λ = 0. Then we have the following result.

Lemma 4.3. Suppose that λ = 0. Then there exists ξ0 > 0 such that α∞ < ξ0 ≤ θ0.

Proof. Suppose the contrary. Then there exists a sequence {un} ⊂ N0 and m(un) =
0 for each n, such that J0(u) = α∞ + o(1). By Lemma 4.2, {un} is a (PS)α∞ -
sequence in H1(RN ) for J∞. By the concentration-compactness principle (see Lions
[26, 27]) and the fact that α∞ > 0, there exist a subsequence {un}, a sequence
{xn} ⊂ RN , and a positive solution w ∈ H1(RN ) of Equation (2.5) such that

‖un(x)− w(x− xn)‖H1 → 0 as n→∞. (4.1)

Now we will show that |xn| → ∞ as n→∞. Suppose the contrary. Then we may
assume that {xn} is bounded and xn → x0 for some x0 ∈ RN . Thus, by (4.1),∫

RN
f−|un|qdx =

∫
RN

f−(x)|w(x− xn)|qdx+ o(1)

=
∫

RN
f−(x+ x0)|w(x)|qdx+ o(1),

this contradicts the result of Lemma 4.2:
∫

RN f−|un|
qdx = o(1). Hence we may

assume that xn
|xn| → e as n→∞, where e ∈ SN−1. Then, by (4.1) and the Lebesgue

dominated convergence theorem, we have

0 = m(un)

= ‖un‖−pLp(RN )

∫
RN

x

|x|
|un(x)|pdx

= ‖w‖−p
Lp(RN )

∫
RN

x+ xn
|x+ xn|

|w(x)|pdx+ o(1)

= e+ o(1) as n→∞,

which is a contradiction. Therefore, there exists ξ0 > 0 such that α∞ < ξ0 ≤ θ0. �
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By Lemma 2.4 and Proposition 3.2, if λ = 0, for each e ∈ SN−1 and l > l1 there
exists t0(we,l) > 0 such that t0(we,l)we,l ∈ N0. Moreover, we have the following
result.

Lemma 4.4. Suppose that λ = 0. Then there exists l0 ≥ l1 such that, for any
l ≥ l0

(i) α∞ < J0(t0(we,l)we,l) < ξ0 for all e ∈ SN−1

(ii) 〈m(t0(we,l)we,l), e〉 > 0, for all e ∈ SN−1.

Proof. (i) Follows from (3.13)–(3.15) and Theorem 3.3.
(ii) For x ∈ RN with x+ le 6= 0, we have

(
x+ le

|x+ le|
, le) = |x+ le| − 1

|x+ le|
(x+ le, x)

≥ |x+ le| − |x| ≥ l|e| − 2|x| = l − 2|x|.
Then

〈m(t0(we,l)we,l), e〉 =
1

l‖we,l‖pLp(RN )

∫
RN

(
x

|x|
, le)|we,l|pdx

=
1

l‖w‖p
Lp(RN )

∫
RN

(
x+ le

|x+ le|
, le)|w|pdx

≥ 1
l‖w‖p

Lp(RN )

(
l

∫
RN
|w|pdx− 2

∫
RN
|x||w|pdx

)
= 1− 2c0

l
,

where c0 = ‖w‖−p
Lp(RN )

∫
RN |x||w|

pdx. Thus, there exists l0 ≥ l1 such that

〈m(t0(we,l)we,l), e〉 ≥ 1− 2c0
l
> 0 for all l ≥ l0.

This completes the proof. �

In the following, we will use Bahri-Li’s minimax argument [6]. Let

B = {u ∈ H1(RN )\{0} : u ≥ 0 and ‖u‖H1 = 1}.
We define

I0(u) = sup
t≥0

J0(tu) : B→ R.

Then, by Lemma 2.4 (iii), for each u ∈ H1(RN )\{0} there exists

t0(u) =
1

‖u‖H1
t0(

u

‖u‖H1
) > 0

such that t0(u)u ∈ N0 and

I0(u) = J0(t0(u)u) = J0

(
t0(

u

‖u‖H1
)

u

‖u‖H1

)
(4.2)

Next, we define a map h0 from SN−1 to B by

h0(e) =
w(x− le)

‖w(x− le)‖H1
=

we,l
‖we,l‖H1

,

where e ∈ SN−1. Then, by (3.17) and (4.2), for l > l0 sufficiently large, we have

I0(h0(e)) = J0(t0(we,l)we,l) < θ0 for all e ∈ SN−1.
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We define another map h∗ from BN (0, 1) to B by

h∗(se+ (1− s)z0) =
swe,l + (1− s)wz0,l

‖swe,l + (1− s)wz0,l‖H1

where 0 ≤ s ≤ 1 and e ∈ SN−1. It is clear that h∗|SN−1 = h0. It follows from
Proposition 3.2 (ii) and (4.2) that

I0(h∗(se+ (1− s)z0)) = J0(t0(swe,l + (1− s)wz0,l)[swe,l + (1− s)wz0,l])
< 2α∞

(4.3)

for all e ∈ SN−1. We next define a min-max value. Let

β0 = inf
γ∈Γ

max
x∈BN (0,1)

I0(γ(x)) (4.4)

where
Γ = {γ ∈ C(BN (0, 1),B) : γ|SN−1 = h0}. (4.5)

Note that SN−1 = ∂BN (0, 1). Then we have the following result.

Lemma 4.5. Suppose that λ = 0. Then

α∞ < ξ0 ≤ θ0 ≤ β0 < 2α∞.

Proof. By Lemmas 4.3 and 4.4, and by (4.3) and (4.2), we only need to show that
θ0 ≤ β0. For any γ ∈ Γ, there exists t0(γ(x)) > 0 such that t0(γ(x))γ(x) ∈ N0 and

t0(γ(x))γ(x) = t0(wx,l)wx,l for all x ∈ SN−1.

Consider the homotopy H(s, x) : [0, 1]×BN (0, 1)→ R defined by

H(s, x) = (1− s)m(t0(γ(x))γ(x)) + sI(x),

where I denotes the identity map. Note that m(t0(γ(x))γ(x)) = m(t0(wx,l)wx,l) for
all x ∈ S. By Lemma 4.4 (ii), H(s, x) 6= 0 for x ∈ SN−1 and s ∈ [0, 1]. Therefore,

deg(m(t0(γ)γ), BN (0, 1), 0) = deg(I,BN (0, 1), 0) = 1.

There exists x0 ∈ BN (0, 1) such that

m(t0(γ(x0))γ(x0)) = 0.

Hence, for each γ ∈ Γ, we have

θ0 = inf{J0(u) : u ∈ N0, u ≥ 0, m(u) = 0}
≤ I0(γ(x0))

≤ max
x∈BN (0,1)

I0(γ(x)).

This shows that θ0 ≤ β0. �

Now, we assert that Equation (1.3) has a positive higher energy solution for
λ ≤ 0.

Theorem 4.6. Suppose that λ = 0. Then Equation (1.3) has a positive solution
ũ0 such that J0(ũ0) = β0 > α∞.
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Proof. By Lemma 4.5 and the minimax principle (see Ambrosetti and Rabinowitz
[4]), there exists a sequence {un} ⊂ B such that

I0(un) = β0 + o(1),

‖I ′0(un)‖T∗unB ≡ sup{I ′0(un)φ : φ ∈ TunB, ‖φ‖H1 = 1} = o(1)

as n → ∞, where α∞ < β0 < 2α∞ and TunB = {φ ∈ H1(RN ) : 〈φ, un〉 = 0}. By
an argument similar to the proof of Adachi and Tanaka [1, Proposition 1.7], there
exists t0(un) > 0 such that t0(un)un ∈ N0 and

J0(t0(un)un) = β0 + o(1),

J ′0(t0(un)un) = o(1) in H−1(RN ), as n→∞.

Thus, by Corollary 2.6, we can conclude that Equation (1.3) has a positive solution
ũ0 such that J0(ũ0) = β0. �

5. Existence of two positive solutions

We need the following result.

Lemma 5.1. Suppose that λ = 0. Then there exists d0 > 0 such that if u ∈ N0

and J0(u) ≤ α∞ + d0, then ∫
RN

x

|x|
(|∇u|2 + u2)dx 6= 0,

where N0 = Nλ and J0 = Jλ with λ = 0.

Proof. Suppose the contrary. Then there exists a sequence {un} ⊂ N0 such that
J0(un) = α∞ + o(1) and ∫

RN

x

|x|
(|∇un|2 + u2

n)dx = 0.

Moreover, by Lemma 4.2, {un} is a (PS)α∞ -sequence in H1(RN ) for J∞. By the
concentration-compactness principle (see Lions [26, 27]) and the fact that α∞ > 0,
there exist a subsequence {un}, a sequence {xn} ⊂ RN , and a positive solution
w ∈ H1(RN ) of Equation (2.5) such that

‖un(x)− w(x− xn)‖H1 → 0 as n→∞. (5.1)

Now we will show that |xn| → ∞ as n→∞. Suppose the contrary. Then we may
assume that {xn} is bounded and xn → x0 for some x0 ∈ RN . Thus, by (5.1),∫

RN
f−|un|qdx =

∫
RN

f−(x)|w(x− xn)|qdx+ o(1)

=
∫

RN
f−(x+ x0)|w(x)|qdx+ o(1),

which contradicts the result of Lemma 4.2:
∫

RN f−|un|
qdx = o(1). Hence we may

assume xn
|xn| → e0 as n→∞, where e0 ∈ SN−1. Then, by the Lebesgue dominated

convergence theorem, we have

0 =
∫

RN

x

|x|
(|∇un|2 + u2

n)dx =
∫

RN

x+ xn
|x+ xn|

(|∇w|2 + w2)dx+ o(1)

=
2p
p− 2

α∞e0 + o(1),
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which is a contradiction. This completes the proof. �

For λ > 0 and u ∈ Nλ, by Lemma 2.4, there is a unique t0(u) > 0 such that
t0(u)u ∈ N0 where N0 = Nλ with λ = 0. Moreover, we have the following result.

Lemma 5.2. There exists a continuous function Λ : [0,∞) → [0, Sp/(p−2)
p ) with

Λ(0) = 0 such that

t0(u) ≤ [1 + λ‖f+‖p/(p−q)Lp/(p−q)
(Sp/(p−2)
p − Λ(λ))(q−p)/p]1/(p−q)

for all λ > 0 and u ∈ Nλ, where Sp be the constant for the Sobolev embedding from
H1 to Lp.

Proof. Let u ∈ Nλ. Then we have

Sp

(∫
RN
|u|pdx

)2/p

≤ ‖u‖2H1 =
∫

RN
|u|pdx+

∫
RN

fλ|u|qdx

≤
∫

RN
|u|pdx+ λ

∫
RN

f+|u|qdx

≤
∫

RN
|u|pdx+ λ‖f+‖p/(p−q)Lp/(p−q)

(∫
RN
|u|pdx

)q/p
,

which implies that there exists a continuous function Λ : [0,∞) → [0, Sp/(p−2)
p )

with Λ(0) = 0 such that∫
RN
|u|pdx ≥ Sp/(p−2)

p − Λ(λ) > 0. (5.2)

We distinguish two cases.
Case (A): t0(u) < 1. Since

1 + λ‖f+‖p/(p−q)Lp/(p−q)
(Sp/(p−2)
p − Λ(λ))(q−p)/p ≥ 1

for all λ ≥ 0 and p− q > 0, we have

t0(u) < 1 ≤
[
1 + λ‖f+‖p/(p−q)Lp/(p−q)

(Sp/(p−2)
p − Λ(λ))(q−p)/p]1/(p−q).

Case (B): t0(u) ≥ 1. Since

[t0(u)]p
∫

RN
|u|pdx = [t0(u)]2‖u‖2H1 + [t0(u)]q

∫
RN

f−|u|qdx

≤ [t0(u)]q
(
‖u‖2H1 +

∫
RN

f−|u|qdx
)
,

by (5.2), we have

[t0(u)]p−q ≤
‖u‖2H1 +

∫
RN f−|u|

qdx∫
RN |u|pdx

=

∫
RN |u|

pdx+
∫

RN fλ|u|
qdx+

∫
RN f−|u|

qdx∫
RN |u|pdx

=

∫
RN |u|

pdx+ λ
∫

RN f+|u|qdx∫
RN |u|pdx

= 1 + λ

∫
RN f+|u|qdx∫

RN |u|pdx
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≤ 1 + λ‖f+‖p/(p−q)Lp/(p−q)

(∫
RN
|u|pdx

)(q−p)/p

≤ 1 + λ‖f+‖p/(p−q)Lp/(p−q)

(
S

p
p−2
p − Λ(λ)

)(q−p)/p
.

This completes the proof. �

By the proof of Proposition 3.2, there exist positive numbers tλ(we,l) and l̂1 such
that t(we,l)we,l ∈ Nλ and

Jλ(tλ(we,l)we,l) < α∞ for all l > l̂1.

Let Λ(λ) be as in Lemma 5.2. Then we have the following result.

Lemma 5.3. There exists a positive number λ0 such that for every λ ∈ (0, λ0), we
have ∫

RN

x

|x|
(
|∇u|2 + u2

)
dx 6= 0

for all u ∈ Nλ with Jλ(u) < α∞.

Proof. (i) Let u ∈ Nλ with Jλ(u) < α∞. Then, by Lemma 2.4, there exists
t0(u) > 0 such that t0(u)u ∈ N0. Moreover,

Jλ(u) = sup
t≥0

Jλ(tu) ≥ Jλ(t0(u)u)

= J0(t0(u)u)− λ[t0(u)]q
∫

RN
f+|u|qdx.

Thus, by Lemma 5.2 and the Hölder inequality,

J0(t0(u)u)

≤ Jλ(u) + λ[t0(u)]q
∫

RN
f+|u|qdx

< α∞ + λc0[1 + λ‖f+‖p/(p−q)Lp/(p−q)
(Sp/(p−2)
p − Λ(λ))(q−p)/p]q/(p−q)‖u‖qH1

(5.3)

for some c0 > 0. Moreover, by (2.1),

α∞ > Jλ(u) ≥ q − 2
2q
‖u‖2H1 ,

which implies

‖u‖H1 < (
2qα∞

q − 2
)1/2 (5.4)

for all u ∈ Nλ with Jλ(u) < α∞. Therefore, by (5.3) and (5.4),

J0(t0(u)u)

< α∞λc0[1 + λ‖f+‖p/(p−q)Lp/(p−q)
(Sp/(p−2)
p − Λ(λ))(q−p)/p]q/(p−q)(

2qα∞

q − 2
)q/2.

Let d0 > 0 be as in Lemma 5.1. Then there exists a positive number λ0 such that
for λ ∈ (0, λ0),

J0(t0(u)u) < α∞ + d0. (5.5)
Since t0(u)u ∈ N0 and t0(u) > 0, by Lemma 5.1 and (5.5),∫

RN

x

|x|
(|∇(t0(u)u)|2 + (t0(u)u)2)dx 6= 0,
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which implies that there exists a positive number λ0 such that for every λ ∈ (0, λ0),∫
RN

x

|x|
(|∇u|2 + u2)dx 6= 0

for all u ∈ Nλ with Jλ(u) < α∞. �

In the following, we use an idea by Adachi and Tanaka [1]. For c ∈ R+, we define

[Jλ ≤ c] = {u ∈ Nλ : u ≥ 0, Jλ(u) ≤ c}.

We then try to show that for a sufficiently small σ > 0,

cat([Jλ ≤ α∞ − σ]) ≥ 2. (5.6)

To prove (5.6), we need some preliminaries. Recall the definition of the Lusternik-
Schnirelman category.

Definition 5.4. (i) For a topological space X, we say that a non-empty, closed
subset Y ⊂ X is contractible to a point in X if and only if there exists a continuous
mapping ξ : [0, 1]× Y → X such that, for some x0 ∈ X

ξ(0, x) = x for all x ∈ Y,
ξ(1, x) = x0 for all x ∈ Y.

(ii) We define

cat(X) = min
{
k ∈ N : there exist closed subsets Y1, . . . , Yk ⊂ X such that

Yj is contractible to a point in X for all j and ∪kj=1 Yj = X}.

When there do not exist finitely many closed subsets Y1, . . . , Yk ⊂ X such that Yj
is contractible to a point in X for all j and ∪kj=1Yj = X, we say that cat(X) =∞.

We need the following two lemmas.

Lemma 5.5. Suppose that X is a Hilbert manifold and F ∈ C1(X,R). Assume
that there exist c0 ∈ R and k ∈ N such that

(i) F satisfies the Palais-Smale condition for energy levels c ≤ c0;
(ii) cat({x ∈ X : F (x) ≤ c0}) ≥ k

Then F has at least k critical points in {x ∈ X : F (x) ≤ c0}.

For a proof of the above lemma see Ambrosetti [5, Theorem 2.3]. We have the
following results.

Lemma 5.6. Let X be a topological space. Suppose that there are two continuous
maps

Φ : SN−1 → X, Ψ : X → SN−1

such that Ψ ◦ Φ is homotopic to the identity map of SN−1; that is, there exists a
continuous map ζ : [0, 1]× SN−1 → SN−1 such that

ζ(0, x) = (Ψ ◦ Φ)(x) for each x ∈ SN−1,

ζ(1, x) = x for each x ∈ SN−1.

Then cat(X) ≥ 2.
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For a proof of the above lemma see Adachi and Tanaka [1, Lemma 2.5].
For l > l̂1, we define a map Φλ,l : SN−1 → H1(RN ) by

Φλ,l(e) = tλ(we,l)(we,l) for e ∈ SN−1,

where tλ(we,l)(we,l) is as in the proof of Proposition 3.2. Then we have the following
result.

Lemma 5.7. There exists a sequence {σl} ⊂ R+ with σl → 0 as l→∞ such that

Φλ,l(S(N−1)) ⊂ [Jλ ≤ α∞ − σl].

Proof. By Proposition 3.2, for each l > l̂1 we have tλ(we,l)(we,l) ∈ Nλ and

sup
l>bl1 Jλ(tλ(we,l)(we,l)) < α∞ for all e ∈ SN−1.

Since Φλ,l(SN−1) is compact,

Jλ(tλ(we,l)(we,l)) ≤ α∞ − σl,
so the conclusion follows. �

From Lemma 5.3, for λ ∈ (0, λ0), we define Ψλ : [Jλ < α∞]→ SN−1 by

Ψλ(u) =

∫
RN

x
|x| (|∇u|

2 + u2)dx

|
∫

RN
x
|x| (|∇u|2 + u2)dx|

.

Then we have the following results.

Lemma 5.8. Let λ0 > 0 be as in Lemma 5.3. Then for each λ ∈ (0, λ0) there
exists l̂0 ≥ l̂1 such that for l > l̂0, the map

Ψλ ◦ Φλ,l : SN−1 → SN−1

is homotopic to the identity.

Proof. Let Σ = {u ∈ H1(RN )\{0} :
∫

RN
x
|x| (|∇u|

2 + u2)dx 6= 0}. We define Ψλ :
Σ→ SN−1 by

Ψλ(u) =

∫
RN

x
|x| (|∇u|

2 + u2)dx

|
∫

RN
x
|x| (|∇u|2 + u2)dx|

,

an extension of Ψλ. Since we,l ∈ Σ for all e ∈ SN−1 and for l sufficiently large,
we let γ : [s1, s2]→ SN−1 be a regular geodesic between Ψλ(we,l) and Ψλ(Φλ,l(e))
such that γ(s1) = Ψλ(we,l), γ(s2) = Ψλ(Φλ,l(e)). By an argument similar to that
in Lemma 5.1, there exists a positive number l̂0 ≥ l̂1 such that, for l > l̂0,

w e
2(1−θ) ,l

∈ Σ for all e ∈ SN−1 and θ ∈ [1/2, 1).

We define ζl(θ, e) : [0, 1]× SN−1 → SN−1 by

ζl(θ, e) =


γ(2θ(s1 − s2) + s2) for θ ∈ [0, 1/2);
Ψλ(w e

2(1−θ) ,l
) for θ ∈ [1/2, 1);

e for θ = 1.

Then ζl(0, e) = Ψλ(Φλ,l(e)) = Ψλ(Φλ,l(e)) and ζl(1, e) = e. First, we claim that
limθ→1− ζl(θ, e) = e and limθ→ 1

2
− ζl(θ, e) = Ψλ(we,l).
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(a) limθ→1− ζl(θ, e) = e: since∫
RN

x

|x|
(|∇[w e

2(1−θ) ,l
]|2 + [w e

2(1−θ) ,l
]2)dx

=
∫

RN

x+ le
2(1−θ)

|x+ le
2(1−θ) |

(|∇[w(x)]|2 + [w(x)]2)dx

=
( 2p
p− 2

)
α∞e+ o(1) as θ → 1−,

it follows that limt θ → 1−ζl(θ, e) = e.
(b) limθ→ 1

2
− ζl(θ, e) = Ψλ(we,l): since Ψλ ∈ C(Σ,SN−1), we obtain that

limθ→ 1
2
− ζl(θ, e) = Ψλ(we,l). Thus, ζl(θ, e) ∈ C([0, 1]× SN−1,SN−1) and

ζl(0, e) = Ψλ(Φλ,l(e)) for all e ∈ SN−1,

ζl(1, e) = e for all e ∈ SN−1,

provided l > l̂0. This completes the proof. �

Theorem 5.9. For each λ ∈ (0, λ0), the functional Jλ has at least two critical
points in [Jλ < α∞]. In particular, Equation (Eλ) has two positive solutions u(1)

0

and u(2)
0 such that u(i)

0 ∈ Nλ for i = 1, 2.

Proof. Applying Lemmas 5.6, 5.8, for λ ∈ (0, λ0), we have

cat([Jλ ≤ α∞ − σl]) ≥ 2.

By Proposition 2.6 and Lemma 5.5, Jλ(u) has at least two critical points in [Jλ <
α∞]. This implies that Equation (1.3) has two positive solutions u(1)

λ and u(2)
λ such

that u(i)
λ ∈ Nλ for i = 1, 2. �

6. Proof of Theorem 1.1

Given a positive real number r0 >
q
p−q . Let

Λ0 = min{
( r0p

q(r0 + 1)
− 1
)
, λ0} > 0,

where λ0 > 0 is as in Lemma 5.3. Then we have the following results.

Lemma 6.1. We have
1
2

(1 + λ)r0 − 1
p

(1 + λ)r0+1 − p− 2
2p

> 0,

1
q

(1 + λ)r0 − 1
p

(1 + λ)r0+1 − p− q
pq

> 0

for all λ ∈ (0,Λ0).

Proof. Let

k(λ) =
1
q

(1 + λ)r0 − 1
p

(1 + λ)r0+1 − p− q
pq

.

Then k(0) = 0 and

k′(λ) =
r0

q
(1 + λ)r0−1 − r0 + 1

p
(1 + λ)r0



24 Y. H. CHENG, T. F. WU EJDE-2014/102

= (1 + λ)r0−1(
r0

q
− r0 + 1

p
(1 + λ)) > 0

for all λ ∈ (0,Λ0). This implies that k(λ) > 0 or

1
2

(1 + λ)l0 − 1
p

(1 + λ)r0+1 − p− q
pq

> 0 for all λ ∈ (0,Λ0).

By a similar argument, we have
1
2

(1 + λ)r0 − 1
p

(1 + λ)r0+1 − p− 2
2p

> 0 for all λ ∈ (0,Λ0).

This completes the proof. �

We define
Iλ(u) = sup

t≥0
Jλ(tu) : B→ R.

Then we have the following result.

Lemma 6.2. For each λ ∈ (0,Λ0) and u ∈ B we have

(1 + λ)−r0I0(u)− λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)
≤ Iλ(u) ≤ I0(u),

where I0 = Iλ with λ = 0.

Proof. Let u ∈ B. Then by Lemmas 2.4, 6.1 and (4.2),

Iλ(u) = sup
t≥0

Jλ(tu) ≥ Jλ(t0(u)u)

=
1
2

∫
RN
|∇t0(u)u|2 + (t0(u)u)2dx+

1
q

∫
RN

f−|t0(u)u|qdx

− λ

q

∫
RN

f+|t0(u)u|qdx− 1
p

∫
RN
|t0(u)u|pdx

≥ 1
2

∫
RN
|∇t0(u)u|2 + (t0(u)u)2dx+

1
q

∫
RN

f−|t0(u)u|qdx

− 1 + λ

p

∫
RN
|t0(u)u|pdx− λ(p− q)

pq
‖f+‖p/(p−q)Lp/(p−q)

=
1
2

∫
RN
|∇t0(u)u|2 + (t0(u)u)2dx+

1
q

∫
RN

f−|t0(u)u|qdx

− 1 + λ

p
[
∫

RN
|∇t0(u)u|2 + (t0(u)u)2dx+

∫
RN

f−|t0(u)u|qdx]

− λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)

= (
1
2
− 1 + λ

p
)
∫

RN
|∇t0(u)u|2 + (t0(u)u)2dx

+ (
1
q
− 1 + λ

p
)
∫

RN
f−|t0(u)u|qdx− λ(p− q)

pq
‖f+‖p/(p−q)Lp/(p−q)

≥ (p− 2)(1 + λ)−r0

2p

∫
RN
|∇t0(u)u|2 + (t0(u)u)2dx

+
(p− q)(1 + λ)−r0

pq

∫
RN

f−|t0(u)u|qdx− λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)
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≥ (1 + λ)−r0(
1
2
− 1
p

)
∫

RN
|∇t0(u)u|2 + (t0(u)u)2dx

+ (1− λ)−r0(
1
q
− 1
p

)
∫

RN
f−|t0(u)u|qdx− λ(p− q)

pq
‖f+‖p/(p−q)Lp/(p−q)

≥ (1 + λ)−r0
[1

2

∫
RN
|∇t0(u)u|2 + (t0(u)u)2dx+

1
q

∫
RN

f−|t0(u)u|qdx

− 1
p

(∫
RN
|∇t0(u)u|2 + (t0(u)u)2dx+

∫
RN

f−|t0(u)u|qdx
)]

− λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)

= (1 + λ)−r0J0(t0(u)u)− λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)

= (1 + λ)−r0I0(u)− λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)
.

Moreover,
Jλ(tu) ≤ J0(tu) ≤ I0(u) for all t > 0.

Then Iλ(u) ≤ I0(u). This completes the proof. �

We observe that if λ is sufficiently small, the minimax argument in Section 4
also works for Jλ. Let l > max{l0, l̂0} be very large and let

βλ = inf
γ∈Γ

max
y∈BN (0,1)

Iλ(γ(y)),

where Γ is as in (4.5). Then by (4.4) and Lemma 6.2, for λ ∈ (0,Λ0), we have

(1 + λ)−r0β0 −
λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)
≤ βλ ≤ β0. (6.1)

Moreover, we have the following result.

Theorem 6.3. There exists a positive number Λ∗ ≤ Λ0 such that for λ ∈ (0,Λ∗),

α∞ < βλ < 2α∞.

Furthermore, Equation (1.3) has a positive solution u
(3)
0 such that Jλ(u(3)

0 ) = βλ.

Proof. By Theorems 3.3 and 4.1, and Lemma 6.2, we also have that

(1 + λ)−r0α∞ − λ(p− q)
pq

‖f+‖p/(p−q)Lp/(p−q)
≤ αλ < α∞.

For any ε > 0 there exists a positive number λ1 ≤ Λ0 such that for λ ∈ (0, λ1),

α∞ − ε < αλ < α∞.

Thus,
2α∞ − ε < α∞ + αλ < 2α∞.

Applying (6.1) for any δ > 0 there exists a positive number λ2 ≤ Λ0 such that for
λ ∈ (0, λ2),

β0 − δ < βλ ≤ β0.

Moreover, by Theorem 4.6,
α∞ < β0 < 2α∞.
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Fix a small 0 < ε < 2α∞− β0, choosing a δ > 0 such that for λ ∈ (0, λ∗) we obtain

α∞ < βλ < 2α∞ − ε < α∞ + αλ < 2α∞,

where Λ∗ = min{λ1, λ2}. Similar to the argument in the proof of Theorem 4.6,
we can conclude that the Equation (1.3) has a positive solution u

(3)
0 such that

Jλ(u(3)
0 ) = βλ. This completes the proof. �

We can now complete the proof of Theorem 1.1: By Theorems 3.3, 4.1 and 4.6,
the results (i) and (ii) hold. (iii) By Theorems 5.9 and 6.3, there exists a positive
number Λ∗ such that for λ ∈ (0,Λ∗), Equation (1.3) has three positive solutions
u

(1)
0 , u

(2)
0 and u

(3)
0 with

0 < Jλ(u(i)
0 ) < α∞ < Jλ(u(3)

0 ) < 2α∞ for i = 1, 2.

This completes the proof of Theorem 1.1.
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