Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 105, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SECOND-ORDER NONLINEAR INTEGRO-DYNAMIC EQUATIONS ON TIME SCALES

RAVI P. AGARWAL, SAID R. GRACE, DONAL O'REGAN, AĞACIK ZAFER

Abstract

In this article, we study the asymptotic behavior of non-oscillatory solutions of second-order integro-dynamic equations as well as the oscillatory behavior of forced second order integro-dynamic equations on time scales. The results are new for the continuous and discrete cases. Examples are provided to illustrate the relevance of the results.

1. Introduction

We are concerned with the asymptotic behavior of non-oscillatory solutions of the second-order integro-dynamic equation on time scales of the form

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta}+\int_{0}^{t} a(t, s) F(s, x(s)) \Delta s=0 \tag{1.1}
\end{equation*}
$$

and the oscillatory behavior of the second-order forced integro-dynamic equation

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)\right)^{\Delta}+\int_{0}^{t} a(t, s) F(s, x(s)) \Delta s=e(t) \tag{1.2}
\end{equation*}
$$

We take $\mathbb{T} \subseteq \mathbb{R}_{+}=[0, \infty)$ to be an arbitrary time-scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=$. By $t \geq s$ we mean as usual $t \in[s, \infty) \cap \mathbb{T}$.

We shall assume throughout that:
(i) $e, r: \mathbb{T} \rightarrow \mathbb{R}$ and $a: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ are rd-continuous and $r(t)>0$, and $a(t, s) \geq 0$ for $t>s, \alpha$ is the ratio of positive odd integers and

$$
\begin{equation*}
\sup _{t \geq t_{0}} \int_{0}^{t_{0}} a(t, s) \Delta s:=k<\infty, \quad t_{0} \geq 0 \tag{1.3}
\end{equation*}
$$

(ii) $F: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and assume that there exist continuous functions $f_{1}, f_{2}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $F(t, x)=f_{1}(t, x)-f_{2}(t, x)$ for $t \geq 0$;
(iii) there exist constants β and γ being the ratios of positive odd integers and functions $p_{i} \in C_{r d}(\mathbb{T},(0, \infty)), i=1,2$, such that

$$
\begin{array}{ll}
x f_{1}(t, x) \geq p_{1}(t) x^{\beta+1} & \text { for } x \neq 0 \text { and } t \geq 0 \\
x f_{2}(t, x) \leq p_{2}(t) x^{\gamma+1} & \text { for } x \neq 0 \text { and } t \geq 0
\end{array}
$$

[^0]We consider only those solutions of equation (1.1) (resp, (1.2)) which are nontrivial and differentiable for $t \geq 0$. The term solution henceforth applies to such solutions of equation (1.1). A solution x is said to be oscillatory if for every $t_{0}>0$ we have $\inf _{t \geq t_{0}} x(t)<0<\sup _{t \geq t_{0}} x(t)$ and it is said to be non-oscillatory otherwise.

Dynamic equations on time-scales is a fairly new topic. For general basic ideas and background, we refer the reader to the seminal book [2].

Although the oscillation and nonoscillation theory of differential equations and difference equations is well developed, the problem for integro-differential equations of Volterra type was discussed only in a few papers in the literature, see [3, 7, 10, 8, 4, 11] and their references. We refer the reader to [4, 5] for some initial papers on the oscillation and nonoscillation of integro-dynamic and integral equations on time scales.

To the best of our knowledge, there are no results on the asymptotic behavior of non-oscillatory solutions of 1.1 and the oscillatory behavior of 1.2 . Therefore, the main goal of this article is to establish some new criteria for the asymptotic behavior of non-oscillatory solutions of equation (1.1) and the oscillatory behavior of equation 1.2 .

2. Asymptotic behavior of the non-oscillatory solutions of 1.1)

In this section we study the asymptotic behavior of all non-oscillatory solutions of equation (1.1) with all possible types of nonlinearities. We will employ the following two lemmas, the second of which is actually a consequence of the first.
Lemma 2.1 (Young inequality [6). Let X and Y be nonnegative real numbers, $n>1$ and $\frac{1}{n}+\frac{1}{m}=1$. Then

$$
X Y \leq \frac{1}{n} X^{n}+\frac{1}{m} Y^{m}
$$

Equality holds if and only if $X=Y$.
Lemma 2.2 ([1]). If X and Y are nonnegative real numbers, then

$$
\begin{align*}
& X^{\lambda}+(\lambda-1) Y^{\lambda}-\lambda X Y^{\lambda-1} \geq 0 \quad \text { for } \lambda>1 \tag{2.1}\\
& X^{\lambda}-(1-\lambda) Y^{\lambda}-\lambda X Y^{\lambda-1} \leq 0 \quad \text { for } \lambda<1 \tag{2.2}
\end{align*}
$$

where the equality holds if and only if $X=Y$.
We define

$$
R\left(t, t_{0}\right)=\int_{t_{0}}^{t}\left(\frac{s}{r(s)}\right)^{1 / \alpha} \Delta s, \quad t>t_{0} \geq 0
$$

Note that due to monotonicity

$$
\begin{equation*}
\lim _{t \rightarrow \infty} R\left(t, t_{0}\right) \neq 0 \tag{2.3}
\end{equation*}
$$

Our first result is the following.
Theorem 2.3. Let conditions (i)-(iii) hold with $\gamma=1$ and $\beta>1$ and suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v<\infty \tag{2.4}
\end{equation*}
$$

for some $t_{0} \geq 0$. If x is a non-oscillatory solution of (1.1), then

$$
\begin{equation*}
x(t)=O\left(R\left(t, t_{0}\right)\right), \quad \text { as } t \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Proof. Let x be a non-oscillatory solution of equation (1.1). Hence x is either eventually positive or eventually negative. First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Using conditions (ii) and (iii) with $\beta>1$ and $\gamma=1$ in equation 1.1 , for $t \geq t_{1}$, we obtain

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s+\int_{t_{1}}^{t} a(t, s)\left[p_{2}(s) x(s)-p_{1}(s) x^{\beta}\right] \Delta s \tag{2.6}
\end{equation*}
$$

If we apply 2.1 with $\lambda=\beta, X=p_{1}^{1 / \beta} x$, and $Y=\left(\frac{1}{\beta} p_{2} p_{1}^{-1 / \beta}\right)^{\frac{1}{\beta-1}}$ we have

$$
\begin{equation*}
p_{2}(t) x(t)-p_{1}(t) x^{\beta}(t) \leq(\beta-1) \beta^{\frac{\beta}{1-\beta}} p_{1}^{\frac{1}{1-\beta}}(t) p_{2}^{\frac{\beta}{\beta-1}}(t), \quad t \geq t_{1} . \tag{2.7}
\end{equation*}
$$

Substituting 2.7 into 2.6 gives

$$
\begin{align*}
& \left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \\
& \leq-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s+(\beta-1) \beta^{\frac{\beta}{1-\beta}} \int_{t_{1}}^{t} a(t, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \tag{2.8}
\end{align*}
$$

for all $t \geq t_{1} \geq 0$. Let

$$
m:=\max \left\{|F(t, x(t))|: t \in\left[0, t_{1}\right] \cap \mathbb{T}\right\}
$$

By assumption (i), we have

$$
\begin{equation*}
\left|-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s\right| \leq \int_{0}^{t_{1}} a(t, s)|F(s, x(s))| \Delta s \leq m k:=b \tag{2.9}
\end{equation*}
$$

Hence from 2.8 and 2.9, we obtain

$$
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq b+(\beta-1) \beta^{\frac{\beta}{1-\beta}} \int_{t_{1}}^{t} a(t, s) p_{1}^{\frac{1}{11-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s
$$

Integrating this inequality from t_{1} to t leads to

$$
\begin{aligned}
& \left(x^{\Delta}(t)\right)^{\alpha} \\
& \leq \frac{r\left(t_{1}\right)\left|\left(x^{\Delta}\left(t_{1}\right)\right)^{\alpha}\right|}{r(t)}+b \frac{t-t_{1}}{r(t)}+\frac{(\beta-1) \beta^{\frac{\beta}{1-\beta}}}{r(t)} \int_{t_{1}}^{t} \int_{t_{1}}^{u} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u
\end{aligned}
$$

or

$$
\left(x^{\Delta}(t)\right)^{\alpha} \leq \frac{c_{0} t}{r(t)}+\frac{(\beta-1) \beta^{\frac{\beta}{1-\beta}}}{r(t)} \int_{t_{1}}^{t} \int_{t_{1}}^{u} a(t, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u
$$

where

$$
c_{0}=\frac{r\left(t_{1}\right)\left|\left(x^{\Delta}\left(t_{1}\right)\right)^{\alpha}\right|}{t_{1}}+b
$$

By employing the well-known inequality

$$
\begin{equation*}
\left(a_{1}+b_{1}\right)^{\lambda} \leq \sigma_{\lambda}\left(a_{1}^{\lambda}+b_{1}^{\lambda}\right) \quad \text { for } a_{1} \geq 0, b_{1} \geq 0, \text { and } \lambda>0 \tag{2.10}
\end{equation*}
$$

where $\sigma_{\lambda}=1$ if $\lambda<1$ and $\sigma_{\lambda}=2^{\lambda-1}$ if $\lambda \geq 1$ we see that there exists positive constants c_{1} and c_{2} depending on α such that

$$
x^{\Delta}(t) \leq c_{1}\left(\frac{t}{r(t)}\right)^{1 / \alpha}+c_{2}\left(\frac{1}{r(t)} \int_{t_{1}}^{t} \int_{t_{1}}^{u} a(t, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u\right)^{1 / \alpha}
$$

Integrating this inequality from t_{1} to $t \geq t_{1}$, we obtain

$$
\begin{align*}
|x(t)| \leq & \left|x\left(t_{1}\right)\right|+c_{1} R\left(t, t_{1}\right) \\
& +c_{2} \int_{t_{1}}^{t}\left(\frac{1}{r(v)} \int_{t_{1}}^{v} \int_{t_{1}}^{u} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v \\
\leq & \left|x\left(t_{1}\right)\right|+c_{1} R\left(t, t_{0}\right) \tag{2.11}\\
& +c_{2} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{1}{1-\beta}}(s) p_{2}^{\frac{\beta}{\beta-1}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v .
\end{align*}
$$

Dividing both sides of 2.11) by $R\left(t, t_{0}\right)$ and using 2.3 and 2.4, we see that 2.5 holds. The proof is similar if x is eventually negative.

Next, we present the following simple result.
Theorem 2.4. Let conditions (i) and (ii) hold with $f_{2}=0$ and $x f_{1}(t, x)>0$ for $x \neq 0$ and $t \geq 0$. If x is a non-oscillatory solution of equation (1.1), then 2.5) holds.

Proof. Let $x(t)$ be a non-oscillatory solution of equation 1.1 with $f_{2}=0$. First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. From (1.1) we find that

$$
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta}=-\int_{0}^{t} a(t, s) f_{1}(s, x(s)) \Delta s \leq \int_{0}^{t_{1}} a(t, s) f_{1}(s, x(s)) \Delta s
$$

Using (1.3) (see 2.9) in the above inequality, we obtain $\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq b$. The rest of the proof is similar to that of Theorem 2.3 and hence is omitted.
Theorem 2.5. Let conditions (i)-(iii) hold with $\beta=1$ and $\gamma<1$ and suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v<\infty \tag{2.12}
\end{equation*}
$$

for some $t_{0} \geq 0$. If x is a non-oscillatory solution of equation (1.1), then 2.5 holds.

Proof. Let x be a non-oscillatory solution of 1.1 . First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. From conditions (ii) and (iii) with $\beta=1$ and $\gamma<1$ in equation (1.1) we have

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s+\int_{t_{1}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-p_{1}(s) x\right] \Delta s \tag{2.13}
\end{equation*}
$$

for all $\mathrm{t} \geq t_{1}$. Hence,

$$
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq b+\int_{t_{1}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-p_{1}(s) x\right] \Delta s
$$

where b is as in 2.9. Applying 2.2 with $\lambda=\gamma, X=p_{2}^{1 / \gamma} x$ and $Y=\left(\frac{1}{\gamma} p_{1} p_{2}^{\frac{-1}{\gamma}}\right)^{\frac{1}{\gamma-1}}$, we obtain

$$
\begin{equation*}
p_{2}(t) x^{\gamma}(t)-p_{1}(t) x(t) \leq(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} p_{1}^{\frac{\gamma}{\gamma-1}}(t) p_{2}^{\frac{1}{1-\gamma}}(t), \quad t \geq t_{1} \tag{2.14}
\end{equation*}
$$

Using 2.14 in 2.13 we have

$$
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq b+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} \int_{t_{1}}^{t} a(t, s) p_{1}^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s) \Delta s \quad t \geq t_{1}
$$

The rest of the proof is similar to that of Theorem 2.3 and hence is omitted.
Theorem 2.6. Let conditions (i)-(iii) hold with $\beta>1$ and $\gamma<1$ and assume that there exists a positive rd-continuous function $\xi: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s)\right. \tag{2.15}\\
& \left.\times\left[c_{1} \xi^{\frac{\beta}{\beta-1}}(s) p_{1}^{\frac{1}{1-\beta}}(s)+c_{2} \xi^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s)\right] \Delta s \Delta u\right)^{1 / \alpha} \Delta v<\infty
\end{align*}
$$

for some $t_{0} \geq 0$, where $c_{1}=(\beta-1) \beta^{\frac{\beta}{1-\beta}}$ and $c_{2}=(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}}$. If x is a nonoscillatory solution of equation (1.1), then 2.5 holds.

Proof. Let x be a non-oscillatory solution of equation 1.1. First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Using (ii) and (iii) in equation 1.1 we obtain

$$
\begin{aligned}
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \leq & -\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s+\int_{t_{1}}^{t} a(t, s)\left[\xi(s) x(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s \\
& +\int_{t_{1}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-\xi(s) x(s)\right] \Delta s
\end{aligned}
$$

As in the proof of Theorems 2.3 and 2.5 , one can easily show that

$$
\begin{aligned}
(r & \left.(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \\
\leq & -\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s \\
& +\int_{t_{1}}^{t} a(t, s)\left[(\beta-1) \beta^{\frac{\beta}{1-\beta}} \xi^{\frac{\beta}{\beta-1}}(s) p_{1}^{\frac{1}{1-\beta}}(s)+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} \xi^{\frac{\gamma}{1-\gamma}}(s) p_{2}^{\frac{1}{1-\gamma}}(s)\right] \Delta s .
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 2.3 and hence is omitted.
Theorem 2.7. Let conditions (i)-(iii) hold with $\beta>1$ and $\gamma<1$ and suppose that there exists a positive rd-continuous function $\xi: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s) \xi^{\frac{\beta}{\beta-1}}(s) p_{1}^{\frac{1}{1-\beta}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v<\infty
$$

and

$$
\lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s) \xi^{\frac{\gamma}{\gamma-1}}(s) p_{2}^{\frac{1}{1-\gamma}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v<\infty
$$

for some $t_{0} \geq 0$. If x is a non-oscillatory solution of equation (1.1), then 2.5) holds.

For the cases when both f_{1} and f_{2} are superlinear $(\beta>\gamma>1)$ or else sublinear ($1>\beta>\gamma>0$), we have the following result.

Theorem 2.8. Let conditions (i)-(iii) hold with $\beta>\gamma$ and assume

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v} \int_{t_{0}}^{u} a(u, s) p_{1}^{\frac{\gamma}{\gamma-\beta}}(s) p_{2}^{\frac{\beta}{\beta-\gamma}}(s) \Delta s \Delta u\right)^{1 / \alpha} \Delta v<\infty \tag{2.16}
\end{equation*}
$$

for some $t_{0} \geq 0$. If x is a non-oscillatory solution of equation (1.1), then 2.5 holds.

Proof. Let x be a non-oscillatory solution of 1.1. First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Using conditions (ii) and (iii) in equation 1.1 we have

$$
\begin{align*}
& \left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta} \\
& \leq-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s+\int_{t_{1}}^{t} a(t, s)\left[p_{2}(s) x^{\gamma}(s)-p_{1}(s) x^{\beta}(s)\right] \Delta s . \tag{2.17}
\end{align*}
$$

By applying Lemma 2.1 with

$$
n=\frac{\beta}{\gamma}, \quad X=x^{\gamma}(s), \quad Y=\frac{\gamma p_{2}(s)}{\beta p_{1}(s)}, \quad m=\frac{m}{\beta-\gamma}
$$

we obtain

$$
\begin{aligned}
p_{2}(s) x^{\gamma}(s)-p_{1}(s) x^{\beta}(s) & =\frac{\beta}{\gamma} p_{1}(s)\left[x^{\gamma}(s) \frac{\gamma}{\beta} \frac{p_{2}(s)}{p_{1}(s)}-\frac{\gamma}{\beta}\left(x^{\gamma}(s)\right)^{\beta / \gamma}\right] \\
& =\frac{\beta}{\gamma} p_{1}(s)\left[X Y-\frac{1}{n} X^{n}\right] \\
& \leq \frac{\beta}{\gamma} p_{1}(s)\left(\frac{1}{m} Y^{m}\right) \\
& =\left(\frac{\beta-\gamma}{\gamma}\right)\left[\frac{\gamma}{\beta} p_{2}(s)\right]^{\frac{\beta}{\beta-\gamma}}\left(p_{1}(s)\right)^{\frac{\gamma}{\gamma-\beta}}
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 2.3 and hence is omitted.
Remark 2.9. If in addition to the hypotheses of Theorems $2.3,2.8$,

$$
\lim _{t \rightarrow \infty} R\left(t, t_{0}\right)<\infty
$$

then every non-oscillatory solution of 1.1 is bounded.
Remark 2.10. The results given above hold for equations of the form

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)^{\alpha}\right)^{\Delta}+\int_{0}^{t} a(t, s) F(s, x(s)) \Delta s=e(t) \tag{2.18}
\end{equation*}
$$

if the additional condition

$$
\lim _{t \rightarrow \infty} \frac{1}{R\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(\frac{1}{r(v)} \int_{t_{0}}^{v}|e(s)| \Delta s\right)^{1 / \alpha} \Delta v<\infty
$$

is satisfied.

3. Oscillation results for 1.2)

This section we study of the oscillatory properties of 1.2 . For this end hypotheses (i) and (ii) are replaced by the assumptions:
(I) $e, r: \mathbb{T} \rightarrow \mathbb{R}$ and $a: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ are rd-continuous, $r(t)>0$ and $a(t, s) \geq 0$ for $t>s$ and there exist rd-continuous functions $k, m: \mathbb{T} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
a(t, s) \leq k(t) m(s), \quad t \geq s \tag{3.1}
\end{equation*}
$$

with

$$
k_{1}:=\sup _{t \geq 0} k(t)<\infty, \quad k_{2}:=\sup _{t \geq 0} \int_{0}^{t} m(s) \Delta s<\infty
$$

In this case condition $\sqrt[1.3]{ }$ is satisfied with $k=k_{1} k_{2}$.
(II) $F: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and assume that there exists rd-continuous function, $q: \mathbb{T} \rightarrow(0, \infty)$ and a real number β with $0<\beta \leq 1$ such that

$$
\begin{equation*}
x F(t, x) \leq q(t) x^{\beta+1}, \quad \text { for } x \neq 0 \text { and } t \geq 0 \tag{3.2}
\end{equation*}
$$

In what follows

$$
\begin{equation*}
g_{ \pm}(t, p)=e(t) \mp k_{1}(1-\beta) \beta^{\beta /(1-\beta)} \int_{0}^{t} p^{\beta /(\beta-1)}(s) q(s)^{1 /(1-\beta)} m^{1 /(1-\beta)}(s) \Delta s \tag{3.3}
\end{equation*}
$$

where $0<\beta<1, p \in C_{r d}(\mathbb{T},(0, \infty))$.
We first give sufficient conditions under which non-oscillatory solutions x of equation 1.2 satisfy

$$
\begin{equation*}
x(t)=O(t), \quad \text { as } t \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Theorem 3.1. Let $0<\beta<1$, conditions (I) and (II) hold, assume the function $t / r(t)$ is bounded, and for some $t_{0} \geq 0$,

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{s}{r(s)} \Delta s<\infty \tag{3.5}
\end{equation*}
$$

Let $p \in C_{r d}(\mathbb{T},(0, \infty))$ such that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} s p(s) \Delta s<\infty \tag{3.6}
\end{equation*}
$$

If

$$
\begin{gather*}
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} g_{-}(s, p) \Delta s \Delta u<\infty \tag{3.7}\\
\liminf _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} g_{+}(s, p) \Delta s \Delta u>-\infty
\end{gather*}
$$

then every non-oscillatory solution $x(t)$ of (1.2) satisfies

$$
\limsup _{t \rightarrow \infty} \frac{|x(t)|}{t}<\infty
$$

Proof. Let x be a non-oscillatory solution of 1.1. First assume x is eventually positive, say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$.

Using condition (3.2) in (1.2) we have

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)\right)^{\Delta} \leq e(t)-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s+\int_{t_{1}}^{t} a(t, s) q(s) x^{\beta}(s) \Delta s \tag{3.8}
\end{equation*}
$$

for $t \geq t_{1}$. Let

$$
c:=\max _{0 \leq t \leq t_{1}} \mid F(t, x(t) \mid<\infty
$$

By assumption (3.1), we obtain

$$
\left|-\int_{0}^{t_{1}} a(t, s) F(s, x(s)) \Delta s\right| \leq c \int_{0}^{t_{1}} a(t, s) \Delta s \leq c k_{1} k_{2}=: b, \quad t \geq t_{1}
$$

Hence from (3.8) we have

$$
\begin{align*}
\left(r(t)\left(x^{\Delta}(t)\right)\right)^{\Delta} \leq & e(t)+b+k_{1} \int_{t_{1}}^{t}\left[m(s) q(s) x^{\beta}(s)-p(s) x(s)\right] \Delta s \\
& +k_{1} \int_{t_{1}}^{t} p(s) x(s) \Delta s, \quad t \geq t_{1} \tag{3.9}
\end{align*}
$$

Applying (2.2) of Lemma 2.2 with

$$
\lambda=\beta, \quad X=(q m)^{1 / \beta} x, \quad Y=\left(\frac{1}{\beta} p(m q)^{-1 / \beta}\right)^{\frac{1}{\beta-1}}
$$

we have

$$
m(s) q(s) x^{\beta}(s)-p(s) x(s) \leq(1-\beta) \beta^{\beta /(1-\beta)} p^{\beta /(\beta-1)}(s) m^{1 /(1-\beta)}(s) q^{1 /(1-\beta)}(s) .
$$

Thus, we obtain

$$
\begin{equation*}
\left(r(t)\left(x^{\Delta}(t)\right)\right)^{\Delta} \leq g_{+}(t, p)+b+k_{1} \int_{t_{1}}^{t} p(s) x(s) \Delta s \quad \text { for } t \geq t_{1} . \tag{3.10}
\end{equation*}
$$

Integrating (3.10) from t_{1} to t we have

$$
\begin{equation*}
r(t) x^{\Delta}(t) \leq r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right)+\int_{t_{1}}^{t} g_{+}(s, p) \Delta s+b\left(t-t_{1}\right)+k_{1} \int_{t_{1}}^{t} \int_{t_{1}}^{u} p(s) x(s) \Delta s \Delta u, \tag{3.11}
\end{equation*}
$$

for $t \geq t_{1}$. Employing [10, Lemma 3] to interchange the order of integration, we obtain

$$
r(t) x^{\Delta}(t) \leq r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right)+\int_{t_{1}}^{t} g_{+}(s, p) \Delta s+b\left(t-t_{1}\right)+k_{1} t \int_{t_{1}}^{t} p(s) x(s) \Delta s, \quad t \geq t_{1}
$$

and so,

$$
x^{\Delta}(t) \leq \frac{r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right)}{r(t)}+\frac{1}{r(t)} \int_{t_{1}}^{t} g_{+}(s) \Delta s+\frac{b\left(t-t_{1}\right)}{r(t)}+\frac{k_{1} t}{r(t)} \int_{t_{1}}^{t} p(s) x(s) \Delta s, \quad t \geq t_{1} .
$$

Integrating this inequality from t_{1} to t and using (3.5) and the fact that the function $t / r(t)$ is bounded for $t \geq t_{1}$, say by k_{3} we see that

$$
\begin{aligned}
x(t) \leq & x\left(t_{1}\right)+r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right) \int_{t_{1}}^{t} \frac{1}{r(s)} \Delta s+\int_{t_{1}}^{t} \frac{1}{r(u)} \int_{t_{1}}^{u} g_{+}(s) \Delta s \Delta u \\
& +b \int_{t_{1}}^{t} \frac{s}{r(s)} \Delta s+k_{1} k_{3} \int_{t_{1}}^{t} \int_{t_{1}}^{u} p(s) x(s) \Delta s \Delta u, \quad t \geq t_{1} .
\end{aligned}
$$

Once again, using [10, Lemma 3] we have

$$
\begin{align*}
x(t) \leq & x\left(t_{1}\right)+r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right) \int_{t_{1}}^{t} \frac{1}{r(s)} \Delta s+\int_{t_{1}}^{t} \frac{1}{r(u)} \int_{t_{1}}^{u} g_{+}(s) \Delta s \Delta u \\
& +b \int_{t_{1}}^{t} \frac{s}{r(s)} \Delta s+k_{1} k_{3} t \int_{t_{1}}^{t} p(s) x(s) \Delta s, \quad t \geq t_{1} \tag{3.12}
\end{align*}
$$

and so,

$$
\begin{equation*}
\frac{x(t)}{t} \leq c_{1}+c_{2} \int_{t_{1}}^{t} s p(s)\left(\frac{x(s)}{s}\right) \Delta s, \quad t \geq t_{1} \tag{3.13}
\end{equation*}
$$

note (3.5) and (3.7), $c_{2}=k_{1} k_{3}$ and c_{1} is an upper bound for

$$
\frac{1}{t}\left[x\left(t_{1}\right)+r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right) \int_{t_{1}}^{t} \frac{1}{r(s)} \Delta s+\int_{t_{1}}^{t} \frac{1}{r(u)} \int_{t_{1}}^{u} g_{+}(s) \Delta s \Delta u+b \int_{t_{1}}^{t} \frac{s}{r(s)} \Delta s\right]
$$

for $t \geq t_{1}$. Applying Gronwall's inequality [2, Corollary 6.7] to inequality (3.13) and then using condition (3.6) we have

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{x(t)}{t}<\infty . \tag{3.14}
\end{equation*}
$$

If $x(t)$ is eventually negative, we can set $y=-x$ to see that y satisfies equation (1.2) with $e(t)$ replaced by $-e(t)$ and $F(t, x)$ replaced by $-F(t,-y)$. It follows in a similar manner that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{-x(t)}{t}<\infty \tag{3.15}
\end{equation*}
$$

The proof is complete.
Next, by employing Theorem 3.1 we present the following oscillation result for equation 1.2 .
Theorem 3.2. Let $0<\beta<1$, conditions (I), (II), 3.5, 3.6, and 3.7 hold, assume the function $t / r(t)$ is bounded, and there is a function $p \in C_{r d}(\mathbb{T},(0, \infty))$ such that (3.6) holds. If for every $0<M<1$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty}\left[M t+\int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} g_{-}(s, p) \Delta s \Delta u\right]=\infty \\
& \liminf _{t \rightarrow \infty}\left[M t+\int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} g_{+}(s, p) \Delta s \Delta u\right]=-\infty \tag{3.16}
\end{align*}
$$

then (1.2) is oscillatory.
Proof. Let x be a non-oscillatory solution of equation 1.2 , say $x(t)>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. The proof when $x(t)$ is eventually negative is similar. Proceeding as in the proof of Theorem 3.1 we arrive at 3.12 . Therefore,

$$
\begin{aligned}
x(t) \leq & x\left(t_{1}\right)+r\left(t_{1}\right) x^{\Delta}\left(t_{1}\right) \int_{t_{1}}^{\infty} \frac{1}{r(s)} \Delta s+\int_{t_{1}}^{t} \frac{1}{r(u)} \int_{t_{1}}^{u} g_{+}(s, p) \Delta s \Delta u \\
& +b \int_{t_{1}}^{\infty} \frac{s}{r(s)} \Delta s+k_{1} k_{3} t \int_{t_{1}}^{\infty} s p(s)\left(\frac{x(s)}{s}\right) \Delta s, \quad t \geq t_{1}
\end{aligned}
$$

Clearly, the conclusion of Theorem 3.1 holds. This together with 3.5 imply that

$$
\begin{equation*}
x(t) \leq M_{1}+M t+\int_{t_{1}}^{t} \frac{1}{r(u)} \int_{t_{1}}^{u} g_{+}(s, p) \Delta s \Delta u \tag{3.17}
\end{equation*}
$$

where M_{1} and M are positive real numbers. Note that we make $M<1$ possible by increasing the size of t_{1}. Finally, taking liminf in (3.17) as $t \rightarrow \infty$ and using (3.16) result in a contradiction with the fact that $x(t)$ is eventually positive.

Corollary 3.3. Let $0<\beta<1$ and condition (I), (II), 3.5, and 3.6) hold, assume the function $t / r(t)$ is bounded, and for some $t_{0} \geq 0$ suppose

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} e(s) \Delta s \Delta u<\infty, \quad \liminf _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} e(s) \Delta s \Delta u>-\infty \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} p^{\beta /(\beta-1)}(s) q(s)^{1 /(1-\beta)} m^{1 /(1-\beta)}(s) \Delta s \Delta u<\infty \tag{3.19}
\end{equation*}
$$

If for every $0<M<1$,

$$
\begin{gather*}
\limsup _{t \rightarrow \infty}\left[M t+\int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} e(s) \Delta s \Delta u\right]=\infty \tag{3.20}\\
\liminf _{t \rightarrow \infty}\left[M t+\int_{t_{0}}^{t} \frac{1}{r(u)} \int_{t_{0}}^{u} e(s) \Delta s \Delta u\right]=-\infty
\end{gather*}
$$

then 1.2 is oscillatory.
Similar reasoning to that in the sublinear case guarantees the following theorems for the integro-dynamic equation $\sqrt{1.2}$ when $\beta=1$.

Theorem 3.4. Let $\beta=1$, conditions (I), (II), 3.5 and 3.18 hold, assume the function $t / r(t)$ is bounded, and for some $t_{0} \geq 0$ suppose

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t} \operatorname{sm}(s) q(s) \Delta s<\infty \tag{3.21}
\end{equation*}
$$

Then every non-oscillatory solution of equation 1.2 satisfies

$$
\limsup _{t \rightarrow \infty} \frac{|x(t)|}{t}<\infty
$$

Theorem 3.5. Let $\beta=1$, conditions (I), (II), 3.5, 3.18, 3.20, and 3.21) hold, assume the function $t / r(t)$ is bounded. Then (1.2) is oscillatory.

Remark 3.6. We note that the results of Section 3 can be obtained by using the hypothesis (i) with the additional assumption that the function $a(t, s)$ is nonincreasing with respect to the first variable. In this case, $k_{1} m(t)$ which appeared in the proofs and $m(t)$ which appeared in the statements of the theorems should be replaced by $a(t, t)$. The details are left to the reader.

4. Examples

As we already mentioned the results of the present paper are new for the cases when $\mathbb{T}=\mathbb{R}$ (the continuous case) or when $\mathbb{T}=\mathbb{Z}$ (the discrete case).

Example 4.1. Consider the integro-differential equations

$$
\begin{equation*}
\left(\frac{1}{t}\left(x^{\prime}(t)\right)^{3}\right)^{\prime}+\int_{0}^{t} \frac{t}{t^{2}+s^{2}}\left[s^{a} x^{5}(s)-x^{3}(s)\right] d s=0, \quad t>0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{t^{2}}\left(x^{\prime}(t)\right)^{1 / 3}\right)^{\prime}+\int_{0}^{t} \frac{t}{t^{2}+s^{2}}\left[s^{b} x^{5 / 7}(s)-s^{c} x^{3 / 7}(s)\right] d s=0, \quad t>0 \tag{4.2}
\end{equation*}
$$

where a, b, and c are nonnegative real numbers satisfying $3 a<2$ and $3 b-2<5 c \leq$ $3 b$.

For (4.1), take $\alpha=3, r(t)=1 / t, a(t, s)=t /\left(t^{2}+s^{2}\right), p_{1}(t)=t^{a}, p_{2}(t)=1$, $\beta=5, \gamma=3, R(t, 0)=(3 / 5) t^{5 / 3}$. Since

$$
\begin{aligned}
& t^{-5 / 3} \int_{0}^{t}\left(v \int_{0}^{v} \frac{1}{u} \int_{0}^{u} \frac{u^{2}}{u^{2}+s^{2}} s^{-3 a / 2} d s d u\right)^{1 / 3} d v \\
& \leq c_{1} t^{-5 / 3} \int_{0}^{t}\left(v \int_{0}^{v} u^{-3 a / 2} d u\right)^{1 / 3} d v \\
& =c_{2} t^{-a / 2}
\end{aligned}
$$

where c_{1} and c_{2} are certain constants, condition 2.16 holds.
For (4.2), take $\alpha=1 / 3, r(t)=1 / t^{2}, a(t, s)=t /\left(t^{2}+s^{2}\right), p_{1}(t)=t^{b}, p_{2}(t)=t^{c}$, $\beta=5 / 7, \gamma=3 / 7, R(t, 0)=(1 / 10) t^{10}$. Condition 2.16 holds, because

$$
t^{-10} \int_{0}^{t}\left(v^{2} \int_{0}^{v} \frac{1}{u} \int_{0}^{u} \frac{u^{2}}{u^{2}+s^{2}} s^{-3 a / 2+5 c / 2} d s d u\right)^{3} d v
$$

$$
\begin{aligned}
& \leq d_{1} t^{-10} \int_{0}^{t}\left(v^{2} \int_{0}^{v} u^{-3 b / 2+5 c / 2} d u\right)^{3} d v \\
& =d_{2} t^{-9 b / 2+15 c / 2}
\end{aligned}
$$

where d_{1} and d_{2} are certain constants.
As a result, we may conclude from Theorem 2.8 that every non-oscillatory solution of 4.1 and of 4.2 satisfies $x=O\left(t^{5 / 3}\right)$ and $x=O\left(t^{10}\right)$, respectively, as $t \rightarrow \infty$.

Example 4.2. Consider the integro-differential equation

$$
\begin{equation*}
\left((1+t)^{3} x^{\prime}\right)^{\prime}+\int_{0}^{t} \frac{x^{\beta}(s)}{\left(t^{2}+1\right)\left(s^{4}+\right)} d s=t^{4} \sin t \tag{4.3}
\end{equation*}
$$

where $\beta=1 / 3$ or $\beta=1$.
We observe that $r(t)=(1+t)^{3}, k(t)=1 /\left(t^{2}+1\right), m(s)=1 /\left(s^{4}+1\right), q(t)=1$, $e(t)=t^{4} \sin t$. Letting $p(t)=m(t)$, we see that the integral appearing in the definition of $g_{ \pm}(t, p)$ given by (3.3) becomes bounded. It is then not difficult to show that all conditions of Theorem 3.2 for $\beta=1 / 3$ are satisfied. On the other hand, all conditions of Theorem 3.5 for $\beta=1$ are also satisfied. Therefore, every solution of equation (4.3) is oscillatory for $\beta=1 / 3$ and $\beta=1$.

References

[1] R. P. Agarwal, S. R. Grace, D. O'Regan; Oscillation Theory for Second Order Linear, Halflinear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht, 2002. MR2091751 (2005i:34001).
[2] M. Bohner, A. Peterson; Dynamic Equations on Time Scales. An Introduction with Applications, Birkhusser, Boston, 2001. MR1843232 (2002c:34002).
[3] K. Gopalsamy; Stability, instability, oscillation and nonoscillation in scalar integrodifferential systems, Bull. Austral. Math. Soc. 28 (1983), 233-246. MR0729010 (85k:45018).
[4] S. R. Grace, J. R. Graef, A. Zafer; Oscillation of integro-dynamic equations on time scales, Appl. Math. Lett. 26 (2013), 383-386.
[5] S. R. Grace, A. Zafer; Oscillatory behavior of integro-dynamic and integral equations on time scales (submitted).
[6] G. Hardy, J. E. Littlewood, G.Polya; Inequalities, Cambridge University Press,Cabridge,1959.
[7] J. J. Levin; Boundedness and oscillation of some Volterra and delay equations, J. Differential Equations, 5 (1969), 369-398. MR0236642 (38 \#4937).
[8] H. Onose; On oscillation of Volterra integral equation and first order functional differential equations, Hiroshima Math.J. 20 (1990), 223-229. MR1063361 (91g:45002).
[9] N. Parhi, N. Misra; On oscillatory and nonoscillatory behaviour of solutions of Volterra integral equations, J. Math. Anal. Appl. 94 (1983), 137-149. MR0701453 (84g:45003).
[10] A. H. Nasr; Asymptotic behaviour and oscillation of classes of integrodifferential equations. Proc. Amer. Math. Soc. 116 (1992), 143-148. MR1094505 (92k:34097).
[11] B. Singh; On the oscillation of a Volterra integral equation, Czech. Math. J. 45 (1995), 699-707. MR1354927 (96i:45003).

Ravi P. Agarwal
Department of Mathematics, Texas A\&M University - Kingsville, Kingsville, TX 78363, USA

E-mail address: agarwal@tamuk.edu
Said R. Grace
Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt

E-mail address: saidgrace@yahoo.com

Donal O'Regan
School of Mathematics, Statistics and Applied mathematics, National University of Ireland, Galway, Ireland

E-mail address: donal.oregan@nuigalway.ie
AĞACIK ZAFER
College of Engineering and Technology, American University of the Middle East, Block 3, Egaila, Kuwait

E-mail address: agacik.zafer@gmail.com

[^0]: 2000 Mathematics Subject Classification. 34N05, 45D05, 34C10.
 Key words and phrases. Integro-dynamic equation; oscillation; time scales.
 © 2014 Texas State University - San Marcos.
 Submitted September 11, 2013. Published April 15, 2014.

