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MULTIPLE SOLUTIONS FOR PERTURBED p-LAPLACIAN
BOUNDARY-VALUE PROBLEMS WITH IMPULSIVE EFFECTS

MASSIMILIANO FERRARA, SHAPOUR HEIDARKHANI

Abstract. We establish the existence of three distinct solutions for a per-
turbed p-Laplacian boundary value problem with impulsive effects. Our ap-

proach is based on variational methods.

1. Introduction

In this work, we show the existence of at least three solutions for the nonlinear
perturbed problem

−(ρ(x)Φp(u′(x)))′ + s(x)Φp(u′(x)) = λf(x, u(x)) + µg(x, u(x)) a.e. x ∈ (a, b),

α1u
′(a+)− α2u(a) = 0, β1u

′(b−) + β2u(b) = 0
(1.1)

with the impulsive conditions

∆(ρ(xj)Φp(u′(xj))) = Ij(u(xj)), j = 1, 2, . . . , l (1.2)

where a, b ∈ R with a < b, p > 1, Φp(t) = |t|p−2t, ρ, s ∈ L∞([a, b]) with ρ0 :=
ess infx∈[a,b] ρ(x) > 0, s0 := ess infx∈[a,b] s(x) > 0, ρ(a+) = ρ(a) > 0, ρ(b−) =
ρ(b) > 0, α1, α2, β1, β2 are positive constants, f, g : [a, b] × R → R are two
L1-Carathéodory functions, x0 = a < x1 < x2 < · · · < xl < xl+1 = b,

∆(ρ(xj)Φp(u′(xj))) = ρ(x+
j )Φp(u′(x+

j ))− ρ(x−j )Φp(u′(x−j ))

where z(y+) and z(y−) denote the right and left limits of z(y) at y, respectively,
Ij : R → R for j = 1, . . . , l are continuous satisfying the condition

∑p
j=1(Ij(t1) −

Ij(t2))(t1 − t2) ≥ 0 for every t1, t2 ∈ R, λ is a positive parameter and µ is a
non-negative parameter.

The theory of impulsive differential equations describes processes which expe-
rience a sudden change of their state at certain moments. Processes with such a
character arise naturally and often, especially in phenomena studied in mechanical
systems with impact, biological systems such as heart beats, population dynam-
ics, theoretical physics, radiophysics, pharmacokinetics, mathematical economy,
chemical technology, electric technology, metallurgy, ecology, industrial robotics,
biotechnology processes, chemistry, engineering, control theory and so on. For the
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background, theory and applications of impulsive differential equations, we refer
the interest readers to [3, 4, 10, 13, 14, 16, 19, 21].

Existence and multiplicity of solutions for impulsive differential equations have
been studied by several authors and, for an overview on this subject, we refer the
reader to the papers [1, 2, 15, 18, 23, 24, 26, 27]. For instance, Tian and Ge in
[23], using variational methods, have studied the existence of at least two positive
solutions for the nonlinear impulsive boundary-value problem

−(ρ(t)Φp(u′(t)))′ + s(t)Φp(u′(t)) = f(t, u(t)) a.e. t 6= ti, t ∈ (a, b),

∆(ρ(ti)Φp(u′(tj))) = Ii(u(ti)), i = 1, 2, . . . , l

αu′(a)− βu(a) = A, γu′(b) + σu(b) = B,

where a, b ∈ R with a < b, p > 1, Φp(t) = |t|p−2t, ρ, s ∈ L∞([a, b]) with
ess inft∈[a,b] ρ(t) > 0, ess inft∈[a,b] s(t) > 0, 0 < ρ(a), ρ(b) < +∞, A ≤ 0, B ≥ 0,
α, β, γ, σ are positive constants, Ii ∈ C([0,+∞), [0,+∞)) for i = 1, . . . , l,
f ∈ C([a, b] × [0,+∞), [0,+∞)), f(t, 0) 6= 0 for t ∈ [a, b], t0 = a < t1 < t2 · · · <
tl < tl+1 = b, ∆(ρ(ti)Φp(u′(ti))) = ρ(t+i )Φp(u′(t+i ))− ρ(t−i )Φp(u′(t−i )) where x(t+i )
(respectively x(t−i )) denotes the right limit (respectively left limit) of x(t) at t = ti
for i = 1, . . . , l. Also, Tain and Ge in [24] have studied the existence of positive
solutions to the linear and nonlinear Sturm-Liouville impulsive problem by using
variational methods. In fact they have generalized the results of [18, 23]. In [1],
Bai and Dai by using critical point theory, some criteria have obtained to guarantee
that the impulsive problem

−(ρ(t)Φp(u′(t)))′ + s(t)Φp(u′(t)) = λf(t, u(t)) a.e. t 6= ti, t ∈ (a, b),

∆(ρ(ti)Φp(u′(tj))) = Ii(u(ti)), i = 1, 2, . . . , l

αu′(a)− βu(a) = A, γu′(b) + σu(b) = B,

where a, b ∈ R with a < b, p > 1, Φp(t) = |t|p−2t, ρ, s ∈ L∞([a, b]) with
ess inft∈[a,b] ρ(t) > 0, ess inft∈[a,b] s(t) > 0, 0 < ρ(a), ρ(b) < +∞, λ is a positive
parameter, A,B are constant, α, β, γ, σ are positive constants, f : [a, b]×R→ R is
a continuous function, Ii : R→ R for i = 1, . . . , l are continuous functions, t0 = a <
t1 < t2 · · · < tl < tl+1 = b, ∆(ρ(ti)Φp(u′(ti))) = ρ(t+i )Φp(u′(t+i ))− ρ(t−i )Φp(u′(t−i ))
where x(t+i ) (respectively x(t−i )) denotes the right limit (respectively left limit) of
x(t) at t = ti for i = 1, . . . , l, has at least one solution, two solutions and infinitely
many solutions when the parameter lies in different intervals. In particular, in [2],
Bai and Dai, employing a three critical points theorem due to Ricceri [20] have
ensured the existence of at least three solutions for (1.1)-(1.2) in the case µ = 0.

In this article, motivated by [2], employing a three critical points theorem ob-
tained in [5] which we recall in the next section (Theorem 2.1), we ensure the
existence of at least three weak solutions for the problem (1.1)-(1.2). We explic-
itly observe that in [2], µ = 0 and no exact estimate of λ for which the problem
(1.1)-(1.2) admits multiple solutions is ensured. The aim of this work is to establish
precise values of λ and µ for which the problem (1.1)-(1.2) admits at least three
weak solutions.

Theorem 2.1 has been used for establishing the existence of at least three solu-
tions for eigenvalue problems in the papers [6, 7, 8, 12]. Fora review on the subject,
we refer the reader to [11].
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2. Preliminaries

Our main tool is the following three critical points theorem.

Theorem 2.1 ([5, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X →
R be a coercive continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗, and Ψ : X → R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact, such that Φ(0) = Ψ(0) = 0. Assume that there exist
r > 0 and x ∈ X, with r < Φ(x) such that

(a1) 1
r supΦ(x)≤r Ψ(x) < Ψ(x)

Φ(x) ,

(a2) for each λ ∈ Λr :=] Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x) [ the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical
points in X.

Let X := W 1,p([a, b]) equipped with the norm

‖u‖ :=
(∫ b

a

ρ(x)|u′(x)|pdx+
∫ b

a

s(x)|u(x)|pdx
)1/p

which is equivalent to the usual one. The following lemma is useful for proving our
main result.

Lemma 2.2 ([23, Lemma 2.6]). Let u ∈ X. Then

‖u‖∞ = max
x∈[a,b]

|u(x)| ≤M‖u‖ (2.1)

where

M = 21/q max
{ 1

(b− a)1/ps
1/p
0

,
(b− a)1/p

ρ
1/p
0

}
,

1
p

+
1
q

= 1.

By a classical solution of the problem (1.1)-(1.2), we mean a function u ∈ {u(x) ∈
X : ρ(x)Φp(u′)(.) ∈W 1,∞(xj , xj+1), j = 0, 1, . . . , l} such that u satisfies (1.1)-(1.2).
We say that a function u ∈ X is a weak solution of the problem (1.1)-(1.2) if∫ b

a

ρ(x)Φp(u′(x))v′(x)dx+
∫ b

a

s(x)Φp(u(x))v(x)dx

+ ρ(a)Φp
(α2u(a)

α1

)
v(a) + ρ(b)Φp

(β2u(b)
β1

)
v(b) +

l∑
j=1

Ij(u(xj))v(xj)

− λ
∫ b

a

f(x, u(x))v(x)dx− µ
∫ b

a

g(x, u(x))v(x)dx = 0

for every v ∈ X.
For the sake of convenience, in the sequel, we define

F (x, t) =
∫ t

0

f(x, ξ)dξ for all (x, t) ∈ [a, b]× R,

G(x, t) =
∫ t

0

g(x, ξ)dξ for all (x, t) ∈ [a, b]× R,

C1 =
Mp

p

(ρ(a)αp−1
2

αp−1
1

+
ρ(b)βp−1

2

βp−1
1

)
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C2 =
1
p
−

l∑
j=1

bj
γj + 1

Mγj+1,

C3 =
1
p

+
l∑

j=1

bj
γj + 1

Mγj+1,

C4 =
l∑

j=1

(
ajM +

bj
γj + 1

Mγj+1
)
.

For given constants δ1, δ2, η1 and η2 put

K1 :=
(

(b− a)
( δ1
η1

+
δ2
η2

)
+
α1

α2
δ1 +

β1

β2
δ2

)
/
(

(b− a)
( 1
η1

+
1
η2
− 1
))
,

K2 := |δ1|p
∫ a+ b−a

η1

a

ρ(x)dx+ |K1|p
∫ b− b−aη2

a+ b−a
η1

ρ(x)dx+ |δ2|p
∫ b

b− b−aη1

ρ(x)dx,

K3 = max
{α1

α2
|δ1|,

(b− a
η1

+
α1

α2

)
|δ1|,

(b− a
η2

+
β1

β2

)
|δ2|,

β1

β2
|δ2|
}
,

K4 := (C1 + C3)
(
K2 +Kp

3

∫ b

a

s(x)dx
)

+ C4

(
K2 +Kp

3

∫ b

a

s(x)dx
)1/p

,

h1(x) = δ1

(
x+

α1

α2
− a
)
, h2(x) = K1

(
x− a− b− a

η1

)
+ δ1

(b− a
η1

+
α1

α2

)
,

h3(x) = δ2

(
x− β1

β2
− b
)
,

and

KF :=
∫ a+ b−a

η1

a

F (x, h1(x))dx+
∫ b− b−aη2

a+ b−a
η1

F (x, h2(x))dx+
∫ b

b− b−aη2

F (x, h3(x))dx.

In this article, we assume throughout, and without further mention, that the
following condition holds:

(A1) The impulsive functions Ij have sublinear growth, i.e., there exist constants
aj > 0, bj > 0, and γj ∈ [0, p− 1) for j = 1, 2, . . . , l such that

|Ij(t)| ≤ aj + bj |t|γj for very t ∈ R, j = 1, 2, . . . , l.

Moreover, set Gθ :=
∫

Ω
max|t|≤θ G(x, t)dt for all θ > 0, and Gη := infΩ×[0,η]G for

all η > 0. If g is sign-changing, then clearly, Gθ ≥ 0 and Gη ≤ 0.
A special case of our main results is the following theorem, whose proof we delay

until the end of the paper.

Theorem 2.3. Assume that C ′2 := 1
p −

∑l
j=1

bj
γj+12

γj+1
q > 0. Let f : R → R be a

non-negative continuous function. Put F (t) =
∫ t

0
f(ξ)dξ for each t ∈ R. Suppose

that

lim inf
ξ→0

F (ξ)
C′2

2p/q
ξp − C′4

21/q ξ
= lim sup

ξ→+∞

F (ξ)
C′2

2p/q
ξp − C′4

21/q ξ
= 0

where

C ′4 :=
l∑

j=1

(
aj21/q +

bj
γj + 1

2
γj+1
q

)
.
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Then, there is λ∗ > 0 such that for each λ > λ∗ and for every L1-Carathéodory
function g : [0, 1]× R→ R satisfying the condition

lim sup
|t|→∞

supx∈[0,1]

∫ t
0
g(x, s)ds

C′2
2p/q

tp − C′4
21/q t

< +∞,

there exists δ∗λ,g > 0 such that, for each µ ∈ [0, δ∗λ,g[, the problem

−(Φp(u′(x)))′ + Φp(u′(x)) = λf(u(x)) + µg(x, u(x)) a.e. x ∈ (0, 1),

u′(0+)− u(0) = 0, u′(1−) + u(1) = 0

with the impulsive conditions

∆(ρ(xj)Φp(u′(xj))) = Ij(u(xj)), j = 1, 2, . . . , l

admits at least three weak solutions.

We need the following proposition in the proof our main result.

Proposition 2.4. Let T : X → X∗ be the operator defined by

T (u)v =
∫ b

a

ρ(x)Φp(u′(x))h′(x)dx+
∫ b

a

s(x)Φp(u(x))h(x)dx

+ ρ(a)Φp
(α2u(a)

α1

)
h(a) + ρ(b)Φp

(β2u(b)
β1

)
h(b)

+
l∑

j=1

Ij(u(xj))v(xj)

for every u, h ∈ X. Then T admits a continuous inverse on X∗.

Proof. For any u ∈ X \ {0},

lim
‖u‖→∞

〈T (u), u〉
‖u‖

= lim
‖u‖→∞

(∫ b
a
ρ(x)Φp(u′(x))u′(x)dx+

∫ b
a
s(x)Φp(u(x))u(x)dx

‖u‖

+
ρ(a)Φp

(
α2u(a)
α1

)
u(a) + ρ(b)Φp

(
β2u(b)
β1

)
u(b) +

∑l
j=1 Ij(u(xj))u(xj)

‖u‖

)
= lim
‖u‖→∞

(∫ b
a
ρ(x)|u′(x)|pdx+

∫ b
a
s(x)|u(x)|pdx

‖u‖

+
ρ(a)Φp

(
α2u(a)
α1

)
u(a) + ρ(b)Φp

(
β2u(b)
β1

)
u(b) +

∑l
j=1 Ij(u(xj))u(xj)

‖u‖

)
= lim
‖u‖→∞

‖u‖p + ρ(a)Φp
(
α2u(a)
α1

)
u(a) + ρ(b)Φp

(
β2u(b)
β1

)
u(b)

‖u‖

+

∑l
j=1 Ij(u(xj))u(xj)

‖u‖
=∞.

Thus, the map T is coercive.
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For any u ∈ X and v ∈ X, we have

〈T (u)− T (v), u− v〉

=
∫ b

a

(
ρ(x)(Φp(u′(x))− Φp(v′(x)))(u′(x)− v′(x))

+ s(x)(Φp(u(x))− Φp(u(x)))(u(x)− v(x))
)
dx

+ ρ(a)(Φp
(α2u(a)

α1

)
− Φp

(α2v(a)
α1

)
)(u(a)− v(a)) + ρ(b)(Φp

(β2u(b)
β1

)
− Φp

(β2v(b)
β1

)
)(u(b)− v(b)) +

l∑
j=1

(Ij(u(xj))− Ij(v(xj)))(u(xj)− v(xj)).

Hence, from our assumptions on the data, we have

〈T (u)− T (v), u− v〉 ≥
∫ b

a

(
ρ(x)(Φp(u′(x))− Φp(v′(x)))(u′(x)− v′(x))

+ s(x)(Φp(u(x))− Φp(u(x)))(u(x)− v(x))
)
dx.

Now, taking into account [22, (2.)], there exist cp, dp > 0 such that

〈T (u)− T (v), u− v〉

≥

cp
∫ b
a

(
ρ(x)|u′(x)− v′(x)|p + s(x)|u(x)− v(x)|p

)
dx if p ≥ 2,

dp
∫ b
a

(
ρ(x)|u′(x)−v′(x))|2
(|u′(x)|+|v′(x)|)2−p + s(x)|u(x)−v(x))|2

(|u(x)|+|v(x)|)2−p

)
dx if 1 < p < 2.

(2.2)

At this point, if p ≥ 2, then it follows that

〈T (u)− T (v), u− v〉 ≥ cp‖u− v‖p,
so T is uniformly monotone. By [25, Theorem 26.A (d)], T−1 exists and is contin-
uous on X∗. On the other hand, if 1 < p < 2, by Hölder’s inequality, we obtain∫ b

a

s(x)|u(x)− v(x)|pdx

≤
(∫ b

a

s(x)|u(x)− v(x)|2

(|u(x)|+ |v(x)|)2−p dx
)p/2(∫ b

a

s(x)(|u(x)|+ |v(x)|)pdx
)(2−p)/2

≤
(∫ b

a

s(x)|u(x)− v(x)|2

(|u(x)|+ |v(x)|)2−p dx
)p/2

2
(p−1)(2−p)

2

(∫ b

a

s(x)(|u(x)|p + |v(x)|p)dx
) 2−p

2

≤ 2
(p−1)(2−p)

2

(∫ b

a

s(x)|u(x)− v(x)|2

(|u(x)|+ |v(x)|)2−p dx
)p/2(

‖u‖+ ‖v‖
)(2−p)p/2

.

(2.3)
Similarly, one has∫ b

a

ρ(x)|u′(x)− v′(x)|pdx

≤ 2
(p−1)(2−p)

2

(∫ b

a

ρ(x)|u′(x)− v′(x)|2

(|u′(x)|+ |v′(x)|)2−p dx
)p/2(

‖u‖+ ‖v‖
)(2−p)p/2

.

(2.4)

Then, relation (2.2) together with (2.3) and (2.4), yields

〈T (u)− T (v), u− v〉
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≥ 2
(p−1)(2−p)

2 dp
(‖u‖+ ‖v‖)2−p

((∫ b

a

ρ(x)|u′(x)− v′(x)|pdx
)2/p

+
(∫ b

a

s(x)|u(x)− v(x)|pdx
)2/p)

≥ 2p−2dp
(‖u‖+ ‖v‖)2−p

(∫ b

a

ρ(x)|u′(x)− v′(x)|pdx+
∫ b

a

s(x)|u(x)− v(x)|pdx
)2/p

= 2p−2dp
‖u− v‖2

(‖u‖+ ‖v‖)2−p .

Thus, T is strictly monotone. By [25, Theorem 26.A (d)], T−1 exists and is
bounded. Moreover, given g1, g2 ∈ X∗, by the inequality

〈T (u)− T (v), u− v〉 ≥ 2p−2dp
‖u− v‖2

(‖u‖+ ‖v‖)2−p ,

choosing u = T−1(g1) and v = T−1(g2) we have

‖T−1(g1)− T−1(g2)‖ ≤ 1
2p−2dp

(‖T−1(g1)‖+ ‖T−1(g2)‖)2−p‖g1 − g2‖X∗ .

So T−1 is locally Lipschitz continuous and hence continuous. This completes the
proof. �

3. Main results

To introduce our result, we fix three constants θ > 0, δ1 and δ2 such that

K4

KF
<

C2
Mp θ

p − C4
M θ∫ b

a
sup|t|≤θ F (x, t)dx

and taking

λ ∈ Λ :=
] K4

KF
,

C2
Mp θ

p − C4
M θ∫ b

a
sup|t|≤θ F (x, t)dx

[
,

we set

δλ,g := min
{ C2
Mp θ

p − C4
M θ − λ

∫ b
a

sup|t|≤θ F (x, t)dx
Gθ

,
K4 − λKF

(b− a)Gη

}
(3.1)

and

δλ,g := min
{
δλ,g,

1

max{0, (b− a) lim sup|t|→∞
supx∈[a,b] G(x,t)

C2
Mp t

p−C4
M t

}

}
, (3.2)

where we define r
0 = +∞, so that, for instance, δλ,g = +∞ when

lim sup
|t|→∞

supx∈[a,b]G(x, t)
C2
Mp tp − C4

M t
≤ 0,

and Gη = Gθ = 0.
Now, we formulate our main result.
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Theorem 3.1. Assume that C2 > 0 and there exist constants δ1 and δ2, and
positive constants θ, η1 and η2 with δ2

1 + δ2
2 6= 0, η1 + η2 < η1η2 and

K
1/p
2 >

θ

M
> (

C4

C1
)1/(p−1)

such that

(A2)
R b
a

sup|t|≤θ F (x,t)dx
C2
Mp θ

p−C4
M θ

< KF

K4
;

(A3) lim sup|t|→+∞
supx∈[a,b] F (x,t)

C2
Mp t

p−C4
M t

≤ 0.

Then, for each

λ ∈ Λ :=
] K4

KF
,

C2
Mp θ

p − C4
M θ∫ b

a
sup|t|≤θ F (x, t)dx

[
and for every L1-Caratéodory function g : [a, b]× R→ R satisfying the condition

lim sup
|t|→∞

supx∈[a,b]G(x, t)
C2
Mp tp − C4

M t
< +∞,

there exists δλ,g > 0 given by (3.2) such that, for each µ ∈ [0, δλ,g[, the problem
(1.1)-(1.2) admits at least three distinct weak solutions in X.

Proof. To apply Theorem 2.1 to our problem, we introduce the functionals Φ,Ψ :
X → R for each u ∈ X, as follows

Φ(u) =
1
p
‖u‖p +

l∑
j=1

∫ u(xj)

0

Ij(t)dt+
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p, ,

Ψ(u) =
∫ b

a

[F (x, u(x)) +
µ

λ
G(x, u(x))]dx.

Now we show that the functionals Φ and Ψ satisfy the required conditions. It is well
known that Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =
∫ b

a

[f(x, u(x)) +
µ

λ
g(x, u(x))]v(x)dx,

for every v ∈ X, as well as, is sequentially weakly upper semicontinuous. Further-
more, Ψ′ : X → X∗ is a compact operator. Indeed, it is enough to show that Ψ′

is strongly continuous on X. For this, for fixed u ∈ X, let un → u weakly in X
as n→ +∞. Then we have un converges uniformly to u on [a, b] as n→ +∞ (see
[25]). Since f and g are L1-Carathéodory functions, f and g are continuous in R for
every x ∈ [a, b]. So f(x, un) + µ

λg(x, un)→ f(x, u) + µ
λg(x, u) strongly as n→ +∞,

from which follows Ψ′(un)→ Ψ′(u) strongly as n→ +∞. Thus we have established
that Ψ′ is strongly continuous on X, which implies that Ψ′ is a compact operator
by Proposition 26.2 of [25]. Moreover, Φ is continuously differentiable and whose
differential at the point u ∈ X is

Φ′(u)v =
∫ b

a

ρ(x)Φp(u′(x))v′(x)dx+
∫ b

a

s(x)Φp(u(x))v(x)dx

+ ρ(a)Φp
(α2u(a)

α1

)
v(a) + ρ(b)Φp

(β2u(b)
β1

)
v(b) +

l∑
j=1

Ij(u(xj))v(xj)
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for every v ∈ X, while Proposition 2.4 gives that Φ′ admits a continuous inverse
on X∗. Furthermore, Φ is sequentially weakly lower semicontinuous. Indeed, let
for fixed u ∈ X, assume un → u weakly in X as n → +∞. The continuity and
convexity of ‖u‖p imply ‖u‖p is sequentially weakly lower semicontinuous, which
combining the continuity of Ij for j = 1, . . . , l yields that

lim
n→+∞

(1
p
‖un‖p +

l∑
j=1

∫ un(xj)

0

Ij(t)dt+
ρ(a)αp−1

2

pαp−1
1

|un(a)|p +
ρ(b)βp−1

2

pβp−1
1

|un(b)|p
)

≥ 1
p
‖u‖p +

l∑
j=1

∫ u(xj)

0

Ij(t)dt+
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p,

namely
lim inf
n→+∞

Φ(un) ≥ Φ(u)

which means Φ is sequentially weakly lower semicontinuous. Clearly, the weak
solutions of the problem (1.1) are exactly the solutions of the equation Φ′(u) −
λΨ′(u) = 0. Put r = C2

Mp θ
p − C4

M θ and

w(x) =


h1(x), x ∈ [a, a+ b−a

η1
),

h2(x), x ∈ [a+ b−a
η1
, b− b−a

η1
],

h3(x), x ∈ (a+ b−a
η1
, b].

(3.3)

It is easy to see that w ∈ X and, in particular, in view of∫ b

a

ρ(x)|w′(x)|pdx = K2 and 0 ≤
∫ b

a

s(x)|w(x)|pdx ≤ Kp
3

∫ b

a

s(x)dx,

we have

‖w‖ ≤
(
K2 +Kp

3

∫ b

a

s(x)dx
)1/p

,

which in conjunction with the inequality

Φ(u) ≤ (C1 + C3)‖u‖p + C4‖u‖ (3.4)

for all u ∈ X (see[2]), yields
Φ(w) ≤ K4. (3.5)

Moreover, by the same reasoning as given given in the proof [2, Lemma 5], using
(3.5), from the condition

K
1/p
2 >

θ

M
>
(C4

C1

)1/(p−1)

one has 0 < r < Φ(w). Taking (2.1) into account, by the same arguing as given in
the proof [2, Lemma 5] we have

Φ−1(]−∞, r]) ⊆ {u ∈ X; ‖u‖∞ ≤ θ} ,
and it follows that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

∫ b

a

[F (x, u(x)) +
µ

λ
G(x, u(x))]dx

≤
∫ b

a

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ.
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On the other hand, from the definition of Ψ, we infer

Ψ(w) =
∫ b

a

F (x,w(x))dx+
µ

λ

∫ b

a

G(x,w(x))dx

= KF +
µ

λ

∫ b

a

G(x,w(x))dx

≥ KF + (b− a)
µ

λ
inf

[a,b]]×[0,η]
G

= KF + (b− a)
µ

λ
Gη.

Therefore, owing to Assumption (A2) and (3.5), we have

supu∈Φ−1(]−∞,r]) Ψ(u)
r

=
supu∈Φ−1(]−∞,r])

∫ b
a

[F (x, u(x)) + µ
λG(x, u(x))]dx

r

≤
∫ b
a

sup|t|≤θ F (x, t)dx+ µ
λG

θ

C2
Mp θp − C4

M θ

(3.6)

and
Ψ(w)
Φ(w)

≥
KF + µ

λ

∫ b
a
G(x,w(x))dx
K4

≥
∫ b
a
F (x,w(x))dx+ (b− a)µλGη

K4
.

(3.7)

Since µ < δλ,g, one has

µ <
C2
Mp θ

p − C4
M θ − λ

∫ b
a

sup|t|≤θ F (x, t)dx
Gθ

,

which means ∫ b
a

sup|t|≤θ F (x, t)dx+ µ
λG

θ

C2
Mp θp − C4

M θ
<

1
λ
.

Furthermore,

µ <
K4 − λKF

(b− a)Gη
,

and this means
KF + (b− a)µλGη

K4
>

1
λ
.

Then ∫ b
a

sup|t|≤θ F (x, t)dx+ µ
λG

θ

C2
Mp θp − C4

M θ
<

1
λ
<
KF + (b− a)µλGη

K4
. (3.8)

Hence from (3.6)-(3.8), the condition (a1) of Theorem 2.1 is verified.
Finally, since µ < δλ,g, we can fix l > 0 such that

lim sup
|t|→∞

supx∈[a,b]G(x, t)
C2
Mp tp − C4

M t
< l

and µl < Mp. Therefore, there exists a function h ∈ L1([a, b]) such that

G(x, t) ≤ l( C2

Mp
tp − C4

M
t) + h(x) for all x ∈ [a, b] and for all t ∈ R.
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Now, fix 0 < ε < Mp

λ −
µl
λ . From (A3) there is a function hε ∈ L1([a, b]) such that

F (x, t) ≤ ε( C2

Mp
tp − C4

M
t) + hε(x) for all x ∈ [a, b]and for all t ∈ R.

Using (3.4), it follows that, for each u ∈ X,

Φ(u)− λΨ(u)

=
1
p
‖u‖p +

l∑
j=1

∫ u(xj)

0

Ij(t)dt+
ρ(a)αp−1

2

pαp−1
1

|u(a)|p +
ρ(b)βp−1

2

pβp−1
1

|u(b)|p

− λ
∫

Ω

[F (x, u(x)) +
µ

λ
G(x, u(x))]dx

≥ (C2 − λε
C2

Mp
− µl C2

Mp
)‖u‖p − (C4 + λε

C4

M
+ µl

C4

M
)‖u‖ − λ‖hε‖1 − µ‖h‖1,

and thus
lim

‖u‖→+∞
(Φ(u)− λΨ(u)) = +∞,

which means the functional Φ− λΨ is coercive, and the condition (a2) of Theorem
2.1 is satisfied. Since, from (3.6) and (3.8),

λ ∈
]Φ(w)
Ψ(w)

,
r

supΦ(x)≤r Ψ(x)
[
,

Theorem 2.1, with x = w, assures the existence of three critical points for the
functional Φ− λΨ, and the proof is complete. �

Here, we exhibit an example whose construction is motivated by [2, Example 1],
in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.2. Consider the problem

−((x+ 3)|u′(x)|u′(x))′ + (2x+ 2)|u(x)|u(x) = λf(x, u(x)) + µg(x, u(x))

a.e. x ∈ (1, 2),

u′(1+)− u(1) = 0, u′(2−) + u(2) = 0,

∆((x1 + 3)|u′(x1)|u′(x1) = −(
1
12

+
5
24
|u(x1)|3/2), x1 ∈ (1, 2)

(3.9)

where

f(x, t) =

{
x(3t2 − 2t) if (x, t) ∈ [1, 2]× (−∞, 1],
xt if (x, t) ∈ [1, 2]× [1,+∞).

g(x, t) = ex−tt3 for all x ∈ [1, 2] and t ∈ R, and I1(u(x1)) = −( 1
12 + 5

24 |u(x1)|3/2)
satisfying the condition (|v(x1)|3/2 − |u(x1)|3/2)(u(x1) − v(x1)) ≥ 0 for all u, v ∈
W 1,3([1, 2]). A direct calculation shows

F (x, t) =

{
x(t3 − t2) if (x, t) ∈ [1, 2]× (−∞, 1],
x
2 (t2 − 1) if (x, t) ∈ [1, 2]× [1,+∞).

In view of Lemma 2.2, M = 1. Choose η1 = η2 = 4, δ1 = 1, δ2 = −1 and θ = 1. We
observe that C1 = 3, C2 = 1

4 , C3 = 5/12, C4 = 1/6, K1 = 0, K2 = 9/4, K3 = 5/4,



12 M. FERRARA, S. HEIDARKHANI EJDE-2014/106

K4 ≈ 1
12×2.011×10−3 , KF ≈ 3.125× 10−1 and

∫ 2

1
sup|t|≤θ F (x, t)dx ≤ 0. So, since

lim sup
|t|→+∞

supx∈[1,2] F (x, t)
t3

4 −
t
6

= 0,

we see that all assumptions of Theorem 3.1 are satisfied. Hence, for each λ >
1

12×2.011×10−3

3.125×10−1 and every µ ≥ 0 (since g∞ = 0), the problem (3.9) has at least three
solutions in W 1,3([1, 2]).

The following example illustrates the result in Theorem 2.3.

Example 3.3. Consider the problem

−(|u′(x)|u′(x))′ + |u(x)|u(x) = λe−u(x)u2(x)(3− u(x)) + µex−u(x)+
(u(x)+)γ ,

a.e. x ∈ (0, 1)

u′(0+)− u(0) = 0, u′(1−) + u(1) = 0,

∆((x1 + 3)|u′(x1)|u′(x1) = −(
1
12

+
5
24
|u(x1)|3/2), x1 ∈ (0, 1)

(3.10)
where u+ = max{u, 0}, I1(u(x1)) = −( 1

12 + 5
24 |u(x1)|3/2) satisfying the condition

(|v(x1)|3/2 − |u(x1)|3/2)(u(x1) − v(x1)) ≥ 0 for all u, v ∈ W 1,3([1, 2]) and γ is a
positive real number. It is obvious that C ′2 = 1/4 and C ′4 = 1/6. Also a direct
calculation shows F (t) = e−tt3 for all t ∈ R. So, one has

lim inf
ξ→0

F (ξ)
1
16ξ

3 − 1
6 3√4

ξ
= lim sup

ξ→+∞

F (ξ)
1
16ξ

3 − 1
6 3√4

ξ
= 0.

Hence, using Theorem 2.3, there is λ∗ > 0 such that, since g∞ = 0, for each λ > λ∗

and µ ≥ 0, the problem (3.10) admits at least three solutions.

Proof of Theorem 2.3. Fix λ > λ∗ := K′4
K′F

for some constants δ1 and δ2, and posi-
tive constants η1 and η2 with δ2

1 + δ2
2 6= 0, η1 + η2 < η1η2 where

K ′4 := (C ′1 + C ′3)
( |δ1|p

4
+

5p

2p+1
(|δ1|+ |δ2|)p +

|δ2|p

4
+ (

5
4

max{|δ1|, |δ2|})p
)

+ C ′4

( |δ1|p
4

+
5p

2p+1
(|δ1|+ |δ2|)p +

|δ2|p

4
+ (

5
4

max{|δ1|, |δ2|})p
)1/p

where C ′1 := 2p

p and C ′3 = 1
p +

∑l
j=1

bj
γj+12

γj+1
q , and

K ′F :=
∫ 1/4

0

F (|δ1|(x+ 1))dx+
∫ 3/4

1/4

F
(
− 5

2
(|δ1|+ |δ2|)(x−

1
4

) +
5|δ1|

4

)
dx

+
∫ 1

3/4

F (|δ2|(x− 2))dx.

Recalling that

lim inf
ξ→0

F (ξ)
C′2

2p/q
ξp − C′4

21/q ξ
= 0,

there is a sequence {θn} ⊂]0,+∞[ such that limn→∞ θn = 0 and

lim
n→∞

sup|ξ|≤θn F (ξ)
C′2

2p/q
θpn − C′4

21/q θn
= 0.
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Indeed, one has

lim
n→∞

sup|ξ|≤θn F (ξ)
C′2

2p/q
θpn − C′4

21/q θn
= lim
n→∞

F (ξθn)
C2

2p/q
ξpθn −

C′4
21/q ξθn

C′2
2p/q

ξpθn −
C′4

21/q ξθn
C′2

2p/q
θpn − C′4

21/q θn
= 0,

where F (ξθn) = sup|ξ|≤θn F (ξ). Hence, there exists θ > 0 such that

sup|ξ|≤θ F (ξ)
C′2

2p/q
θ
p − C′4

21/q θ
< min

{ K ′F

(b− a)K ′4
;

1
(b− a)λ

}
and ( |δ1|p

4
+

5p

2p+1
(|δ1|+ |δ2|)p +

|δ2|p

4

)1/p

>
θ

21/q
> (

C ′4
C ′1

)1/(p−1).

The conclusion follows by using Theorem 3.1 with η1 = η2 = 4. �

Remark 3.4. The methods used here can be applied studying discrete boundary
value problems as in [9], and also non-smooth variational problems as in [17].
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