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EXISTENCE OF SOLUTIONS TO A NORMALIZED F -INFINITY
LAPLACIAN EQUATION

HUA WANG, YIJUN HE

Abstract. In this article, for a continuous function F that is twice differ-

entiable at a point x0, we define the normalized F -infinity Laplacian ∆N
F ;∞

which is a generalization of the usual normalized infinity Laplacian. Then for a

bounded domain Ω ⊂ Rn, f ∈ C(Ω) with infΩ f(x) > 0 and g ∈ C(∂Ω), we ob-
tain existence and uniqueness of viscosity solutions to the Dirichlet boundary-

value problem

∆N
F ;∞u = f, in Ω,

u = g, on ∂Ω.

1. Introduction

Let F : Rn → [0,+∞) be a function which satisfies the following conditions:
(a) F ∈ C2(Rn \ {0}), F (0) = 0, F (p) > 0, for any p ∈ Rn \ {0};
(b) F is positively homogeneous of degree 1: F (tp) = tF (p), for any t > 0 and

p ∈ Rn;
(c) Hess(F 2) is positive definite in Rn \ {0}.

Let Ω be a bounded domain in Rn. For a C2(Ω) function u, we define the F -infinity
Laplacian ∆F ;∞ and the normalized F -infinity Laplacian ∆N

F ;∞ by

∆F ;∞u = F 2(Du)
n∑

i,j=1

∂2u

∂xi∂xj

∂F

∂pi
(Du)

∂F

∂pj
(Du), (1.1)

∆N
F ;∞u =

n∑
i,j=1

∂2u

∂xi∂xj

∂F

∂pi
(Du)

∂F

∂pj
(Du) (1.2)

respectively. Clearly when F (p) = p, they are the usual infinity Laplacian and the
normalized infinity Laplacian, respectively.

The operator ∆F ;∞ is a kind of Aronsson operator. A general Aronsson operator
AH is defined by

AHu(x) = 〈DxH(Du(x), u(x), x), Hp(Du(x), u(x), x)〉
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for a function H : Rn × R × Ω → R, where Hp denotes the gradient of H(p, s, x)
with respect to the first variable and DxH(Du(x), u(x), x) is the gradient of the
map x 7→ H(Du(x), u(x), x). Clearly, ∆F ;∞ is the Aronsson operator AH for
H(p, s, x) = 1

2F
2(p).

The Aronsson equation AH = 0 was proposed by Aronsson in 1960’s [1, 2, 3],
which is the Euler-Lagrange equation associated with the variational problem for
L∞-functional

F (u,Ω) = ess sup
x∈Ω

H(Du(x), u(x), x), u ∈W 1,∞(Ω).

In recent years, there have been many studies of properties of the Aronsson
equation, especially of the infinity Laplace equation ∆∞u = 0 which is correspond-
ing to the special case H(p) = 1

2 |p|
2, see [4, 5, 7, 9, 16, 18, 20, 21, 23, 25], etc.

Uniqueness of the viscosity solution of the homogeneous infinity Laplacian equa-
tion was established by Jensen in [15]. Later, Barles and Busca gave a second proof
of the uniqueness of the infinity harmonic function in [7], their proof is quite differ-
ent from Jensen’s work and applies to many degenerate elliptic equations without
zeroth-order term.

But, largely due to the degeneracy of Aronsson operator, even the basic exis-
tence and uniqueness questions have been proven difficult. Several approaches were
developed to overcome this difficulty, including the notion of viscosity solutions [11]
and the method of comparison with cones [8, 12, 13, 14].

In [24], the authors studied the existence of viscosity solutions for the Dirichlet
problem of the inhomogeneous equation F−h(Du)∆F ;∞u = f , where 0 ≤ h < 2.
The special case F (p) = p was studied in [18] and [17]. The existence and unique-
ness of the viscosity solutions of the Dirichlet problem ∆N

∞u = f were established
by Peres, Schramm, Sheffield and Wilson in [22] using differential game theory
and later reproved by Lu and Wang in [19] using the theory of partial differential
equations.

In this paper, we study the existence of viscosity solutions for the Dirichlet
problem of the inhomogeneous normalized F -infinity Laplacian equation.

In this paper, Ω is always assumed to be a bounded open subset of Rn, f ∈ C(Ω)
with infΩ f(x) > 0 or supΩ f(x) < 0 and g ∈ C(∂Ω), we concentrate on the Dirichlet
problem

∆N
F ;∞u = f, in Ω,
u = g, on ∂Ω.

(1.3)

We find the “radial” solution to

∆N
F ;∞u = f, (1.4)

where f = 2a is a constant. Additionally, we obtain the existence and uniqueness of
solutions to the Dirichlet problem in the viscosity sense. When F (p) = 1

2 |p|
2, these

reduce to the cases discussed in [22] and [19]. We employ the classical Perron’s
method to get the result of existence.

The rest of this paper is organized as follows. In Section 2, we give the notations,
definitions related to ∆N

F ;∞u. In Section 3, we give the “radial” solution of the
equation ∆N

F ;∞u = 1, and the properties of this solution. In Section 4, we prove
our main existence result by Perron’s method.
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2. Preliminaries

In this paper, Ω will always be a bounded open subset of Rn. We denote the
set of continuous functions on a set V ⊂ Rn by C(V ). If V is a subset of Rn, ∂V
denotes its boundary and V its closure. The notation V ⊂⊂ Ω means that V is
an open subset of Ω whose closure V is a compact subset of Ω. o(ε) means that
limε→0

o(ε)
ε = 0. 〈·, ·〉 denotes the usual Euclidean inner product. | · | denotes the

Euclidean norm.
Sn×n denotes the set of all n × n symmetric matrices with real entries. u ∈

USC(Ω) denotes the set of all upper semi-continuous functions and u ∈ LSC(Ω)
denotes the set of all lower semi-continuous functions.
u ≺x0 φ means u − φ has a local maximum at x0. On the other hand, u �x0 φ

means u − φ has a local minimum at x0. Almost always in this paper, u ≺x0 φ
(resp. u �x0 φ) is understood as u(x) ≤ φ(x) (resp. u(x) ≥ φ(x)) for all x ∈ Ω in
interest and u(x0) = φ(x0), as subtracting a constant from φ does not cause any
problem in the standard viscosity solution argument applied in the paper.

We define F ∗ : Rn → [0,∞) to be

F ∗(x) = sup
ξ 6=0

〈x, ξ〉
F (ξ)

, for any x ∈ Rn, (2.1)

then F ∗ has same properties (a), (b), (c) as F . Let

α = inf
ξ 6=0

|ξ|
F (ξ)

, β = sup
ξ 6=0

|ξ|
F (ξ)

,

then, by (2.1) and the conditions (a), (b) on F , we have 0 < α ≤ β and

α|x| ≤ F ∗(x) ≤ β|x|, for any x ∈ Rn. (2.2)

From (2.2), we easily get

F ∗(−x) ≤ β

α
F ∗(x), for any x ∈ Rn. (2.3)

Definition 2.1. For y ∈ Rn and r > 0, we define B+
r (y) by B+

r (y) = {x ∈
Rn : F ∗(x − y) < r}, B−r (y) by B−r (y) = {x ∈ Rn : F ∗(y − x) < r}, S+

r (y) by
S+
r (y) = {x ∈ Rn : F ∗(x− y) = r}, S−r (y) by S−r (y) = {x ∈ Rn : F ∗(y − x = r}.

For u ∈ C(Ω), x0 ∈ Ω, and r > 0 with B+
r (x0) ∪B−r (x0) ⊂ Ω, we define g(r) =

maxF∗(x−x0)=r u(x) and h(r) = minF∗(x0−x)=r u(x). In addition, x+
r denotes any

point with F ∗(x+
r − x0) = r such that u(x+

r ) = g(r), while x−r denotes any point
with F ∗(x0 − x−r ) = r such that u(x−r ) = h(r).

If x0 ∈ Ω and u ∈ C(Ω) such that u is twice differentiable at x0, we define the
set of maximum directions of u at x0 to be the set

E+(x0) = {e = lim
k

x+
rk
− x0

rk
for some sequence rk ↓ 0}

and the set of minimum directions of u at x0 to be the set

E−(x0) = {e = lim
k

x−rk − x0

rk
for some sequence rk ↓ 0}.

Definition 2.2. If u ∈ C(Ω) is twice differentiable at x0, we define the upper
F -infinity Laplacian of u at x0 to be ∆+

F ;∞u(x0) = 〈D2u(x0)e, e〉, where e is any
maximum direction of u at x0 .
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Similarly, the lower F -infinity Laplacian of u at x0 is defined to be ∆−F ;∞u(x0) =
〈D2u(x0)e, e〉, where e is any minimum direction of u at x0 .

Remark 2.3. From Proposition 2.5 which will be proved below, the definition of
∆+
F ;∞u(x0) (resp. ∆−F ;∞u(x0)) is independent of the choice of maximum (resp.

minimum) direction of u at x0.

Lemma 2.4 ([6, page 7]). For any y ∈ Rn \ {0} and w ∈ Rn, we have

w ·DF (y) ≤ F (w), (2.4)

and equality holds if and only of w = αy for some α ≥ 0.

Proposition 2.5. Suppose u ∈ C(Ω) is twice differentiable at x0.
(1) If Du(x0) 6= 0, then

∆+
F ;∞u(x0) = ∆−F ;∞u(x0) = 〈D2u(x0)DF (Du(x0)), DF (Du(x0))〉.

(2) If Du(x0) = 0, then

∆+
F ;∞u(x0) = max{〈D2u(x0)e, e〉 : F ∗(e) = 1},

∆−F ;∞u(x0) = min{〈D2u(x0)e, e〉 : F ∗(e) = 1}.

Proof. (1) There exists a positive-valued function ρ with ρ(r)→ 0 as r ↓ 0, defined
for all small positive numbers r, such that

|u(x)− u(x0)−Du(x0) · (x− x0)| ≤ ρ(r)r (2.5)

for all x with F ∗(x− x0) = r.
Take x̃+

r = x0 + rDF (Du(x0)). Then

u(x0) +Du(x0) · (x+
r − x0)− ρ(r)r

≤ u(x+
r ) ≤ u(x0) +Du(x0) · (x̃+

r − x0) + ρ(r)r.

The second inequality is due to the choice of x̃+
r and Lemma 2.4. So, Du(x0) ·(x+

r −
x̃+
r ) ≤ 2ρ(r)r.

On the other hand, the chain of inequalities

u(x0) +Du(x0) · (x̃+
r − x0)− ρ(r)r

≤ u(x̃+
r ) ≤ u(x+

r ) ≤ u(x0) +Du(x0) · (x+
r − x0) + ρ(r)r

implies Du(x0) · (x+
r − x̃+

r ) ≥ −2ρ(r)r. So

|Du(x0) · x
+
r − x0

r
− F (Du(x0))| = |Du(x0) · x

+
r − x̃+

r

r
| ≤ 2ρ(r). (2.6)

Thus,

lim
r↓0

Du(x0) · x
+
r − x0

r
= F (Du(x0)). (2.7)

Then, for any rk ↓ 0 such that limk
x+
rk
−x0

rk
= DF (y0) exists, we must have Du(x0) ·

DF (y0) = F (Du(x0)). So, by Lemma 2.4, DF (y0) = DF (Du(x0)). Thus, for
any e ∈ E+(x0), e = DF (Du(x0)) holds. Similarly, E−(x0) = {−DF (Du(x0))}.
Therefore,

∆+
F ;∞u(x0) = ∆−F ;∞u(x0) = 〈D2u(x0)DF (Du(x0)), DF (Du(x0))〉.
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(2) If Du(x0) = 0, then there exists a positive-valued function ρ with ρ(r) → 0
as r ↓ 0, defined for all small positive numbers r, such that

|u(x)− u(x0)− 〈D2u(x0)(x− x0), x− x0〉| ≤ ρ(r)r2 (2.8)

for all x with F ∗(x− x0) = r.
Let λ+ = max{〈D2u(x0)e, e〉 : F ∗(e) = 1} and e+ ∈ S+

1 (0) be such that λ+ =
〈D2u(x0)e+, e+〉. Take x̃+

r = x0 + re+. Then

u(x0) + 〈D2u(x0)(x+
r − x0), x+

r − x0〉 − ρ(r)r2

≤ u(x+
r )

≤ u(x0) + 〈D2u(x0)(x̃+
r − x0), x̃+

r − x0〉+ ρ(r)r2.

So,

〈D2u(x0)(x+
r − x0), x+

r − x0〉 − 〈D2u(x0)(x̃+
r − x0), x̃+

r − x0〉 ≤ 2ρ(r)r2.

On the other hand, the chain of inequalities

u(x0) + 〈D2u(x0)(x̃+
r − x0), x̃+

r − x0〉 − ρ(r)r2

≤ u(x̃+
r ) ≤ u(x+

r )

≤ u(x0) + 〈D2u(x0)(x+
r − x0), x+

r − x0〉+ ρ(r)r2

implies

〈D2u(x0)(x+
r − x0), x+

r − x0〉 − 〈D2u(x0)(x̃+
r − x0), x̃+

r − x0〉 ≥ −2ρ(r)r2.

So

|〈D2u(x0)(
x+
r − x0

r
),
x+
r − x0

r
〉 − λ+| ≤ 2ρ(r). (2.9)

Then, take any rk ↓ 0 such that limk
x+
rk
−x0

rk
= e ∈ E+(x0), we see ∆+

F ;∞u(x0) =
λ+.

Similarly, we have ∆−F ;∞u(x0) = min{〈D2u(x0)e, e〉 : F ∗(e) = 1}. �

We are then concerned with the viscosity solutions of (1.4) given in the following
definition.

Definition 2.6. u : Ω→ R is called a viscosity subsolution of the partial differential
equation ∆N

F ;∞u(x) = f(x) in Ω, if for any x0 ∈ Ω and any test function φ ∈ C2(Ω)
with u ≺x0 φ, there holds

∆+
F ;∞φ(x0) ≥ f(x0).

In this case, we say ∆N
F ;∞u ≥ f in the viscosity sense.

Similarly, u : Ω→ R is called a viscosity supersolution of the partial differential
equation ∆N

F ;∞u(x) = f(x) in Ω, if for any x0 ∈ Ω and any test function φ ∈ C2(Ω)
with u �x0 φ, there holds

∆−F ;∞φ(x0) ≤ f(x0).

In this case, we say ∆N
F ;∞u ≤ f in the viscosity sense.

A viscosity solution of the partial differential equation ∆N
F ;∞u(x) = f(x) in Ω is

both a viscosity subsolution and viscosity supersolution of the equation.

Furthermore, viscosity solutions of the Dirichlet problem (1.3) are defined as
follows.
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Definition 2.7. A function u : Ω → R is called a viscosity subsolution (resp.,
supersolution) of (1.3) if u is a viscosity subsolution (resp., supersolution) in Ω of
(1.4) and u ≤ g (resp., u ≥ g) on ∂Ω. Furthermore, u : Ω → R is a viscosity
solution of (1.3) if it is both a viscosity subsolution and a viscosity supersolution
of (1.3).

We will need the concepts of superjets and subjets in our approach.

Definition 2.8. Suppose u ∈ C(Ω). The second-order superjet of u at x0 is defined
to be the set

J2,+
Ω u(x0) = {(Dφ(x0), D2φ(x0)) : φ is C2 and u ≺x0 φ},

whose closure is defined to be

J̄2,+
Ω u(x0) =

{
(p,X) ∈ Rn × Sn×n : ∃(xn, pn, Xn) ∈ Ω× Rn × Sn×n

such that

(pn, Xn) ∈ J2,+
Ω u(xn) and (xn, u(xn), pn, Xn)→ (x0, u(x0), p,X)

}
.

The second-order subjet of u at x0 is defined to be the set

J2,−
Ω u(x0) = {(Dφ(x0), D2φ(x0)) : φ is C2 and u �x0 φ},

whose closure is defined to be

J̄2,−
Ω u(x0) =

{
(p,X) ∈ Rn × Sn×n : ∃(xn, pn, Xn) ∈ Ω× Rn × Sn×n such that

(pn, Xn) ∈ J2,−
Ω u(xn) and (xn, u(xn), pn, Xn)→ (x0, u(x0), p,X)}.

Lemma 2.9 ([10]). (i)

F ∗(DF (p)) = 1 for p ∈ Rn \ {0}, (2.10)

F (DF ∗(x)) = 1 for x ∈ Rn \ {0}; (2.11)

(ii) the map FDF : Rn → Rn is invertible and

FDF = (F ∗DF ∗)−1. (2.12)

Here, and in what follows, FDF and F ∗DF ∗ are continued by 0 at 0.

Remark 2.10. We note we only assume F to be positively homogenous of degree
1, not homogenous of degree 1, so F (−x) 6= F (x) in general, thus F ∗(−x) 6= F ∗(x)
in general either.

Lemma 2.11. (1) I is an index set, f ∈ C(Ω), for any λ ∈ I, ∆N
F ;∞uλ ≥ f in

Ω in the viscosity sense, u(x) = supx∈Ω uλ(x) < ∞, then ∆N
F ;∞u ≥ f in Ω in the

viscosity sense. (2) I is an index set, f ∈ C(Ω), for any λ ∈ I, ∆N
F ;∞uλ ≤ f in

Ω in the viscosity sense, u(x) = infx∈Ω uλ(x) > −∞, then ∆N
F ;∞u ≤ f in Ω in the

viscosity sense.

Proof. Because the proof of (2) is similar to that of (1), we only present the proof
of (1). Suppose ∆N

F ;∞u ≥ f in the viscosity sense is not true in Ω. Then there
exists a point x0 ∈ Ω and a test function φ ∈ C2(Ω) such that u ≺x0 φ and
∆+
F ;∞φ(x0) < f(x0). If we replace φ by φδ defined by

φδ(x) = φ(x) + δ|x− x0|2
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with δ > 0, then u − φδ has a strict maximum at point x0; i.e., u(x0) = φδ(x0),
u(x) < φδ(x), x 6= x0, and we have

∆+
F ;∞φδ(x0) = ∆+

F ;∞φ(x0) +O(δ) < f(x0),

if δ > 0 is taken small enough. So we can assume that the original test function φ
satisfies

φ(x) ≥ u(x) + δ|x− x0|2

for some δ > 0.
We claim that ∆+

F ;∞φ(x) < f(x) in an open neighborhood Br(x0) of x0. In fact,
we prove the claim via a dichotomy.

If Dφ(x0) 6= 0, then Dφ(x) 6= 0 in a neighborhood BR(x0) of x0. The continuity
of f and D2φ implies that in a neighborhood Br(x0) ⊂ BR(x0) of x0,

∆+
F ;∞φ(x) = 〈D2φ(x)DF (Dφ(x)), DF (Dφ(x))〉 < f(x).

If Dφ(x0) = 0, then ∆+
F ;∞φ(x0) = max{〈D2φ(x0)e, e〉 : F ∗(e) = 1} < f(x0). So in

a neighborhood Br(x0) of x0,

∆+
F ;∞φ(x) ≤ max{〈D2φ(x)e, e〉 : F ∗(e) = 1} < f(x).

The claim is proved.
For any ε with 0 < ε < δr2, there exists λ ∈ I such that uλ(x0) > u(x0)− ε. Let

φ̂(x) = φ(x)− ε. Then φ̂(x0) < uλ(x0) and

φ̂(x) ≥ u(x)− ε+ δ|x− x0|2 > u(x) ≥ uλ(x)

on ∂Br(x0). So there exists x∗ ∈ Br(x0) such that uλ − φ̂ has maximum at x∗. As
∆+
F ;∞uλ ≥ f in Ω in the viscosity sense and uλ ≺x∗ φ̂, we have

∆+
F ;∞φ̂(x∗) ≥ f(x∗),

which is a contradiction with the claim we just have derived,

∆+
F ;∞φ̂(x) = ∆+

F ;∞φ(x) < f(x)

in Br(x0). �

3. Solutions of the equation ∆N
F ;∞u = 2a

Let u(x) = a[F ∗(x)]2 + BF ∗(x) + C, where a 6= 0, B, C are all constants.
Suppose {x ∈ Rn \ {0} : 2aF ∗(x) +B > 0} is a nonempty domain, in this domain,
we calculate:

∂u

∂xi
= [2aF ∗(x) +B]

∂F ∗

∂xi
, (3.1)

∂2u

∂xi∂xj
= 2a

∂F ∗

∂xi
· ∂F

∗

∂xj
+ [2aF ∗(x) +B]

∂2F ∗

∂xi∂xj
. (3.2)

As F is positively homogeneous of degree 1, ∂F
∂pi

is positively homogeneous of degree
0. So by (2.11) and (2.12), we have

∂F

∂pi
(DF ∗(x)) =

xi
F ∗(x)

. (3.3)

Thus, by (2.11), (3.1) and (3.3), we obtain

F (Du(x)) = 2aF ∗(x) +B, (3.4)
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∂F

∂pi
(Du(x)) =

xi
F ∗(x)

. (3.5)

Since F ∗ is of class C2(Rn \ {0}) and positively homogeneous of degree 1, we have
n∑
i=1

∂F ∗

∂xi
xi = F ∗(x),

n∑
i=1

∂2F ∗

∂xi∂xj
xi = 0, for all x 6= 0. (3.6)

Using (3.2), (3.4), (3.5) and (3.6), through direct calculation, we obtain

∆N
F ;∞u =

n∑
i,j=1

∂2u

∂xi∂xj
· ∂F
∂pi

(Du(x)) · ∂F
∂pj

(Du(x)) = 2a.

Thus, we proved that u(x) = a[F ∗(x)]2 +BF ∗(x) +C is a solution of the equation

∆N
F ;∞u = 2a (3.7)

in the domain {x ∈ Rn \ {0} : 2aF ∗(x) +B > 0}.
Since (3.7) is invariant by translation,

Ψx0,BC(x) = a[F ∗(x− x0)]2 +BF ∗(x− x0) + C

is its C2 solution in

D+(x0, B) := {x ∈ Rn \ {x0} : 2aF ∗(x− x0) +B > 0}.
In particular, we have the following lemma.

Lemma 3.1. Ψx0,BC(x) is a viscosity solution of (3.7) in D+(x0, B).

Proof. The fact that a classical solution is a viscosity solution follows easily from
the definition of a viscosity solution. �

Remark 3.2. Similarly, let

Φx0,BC(x) = −a[F ∗(x0 − x)]2 +BF ∗(x0 − x) + C,

D−(x0, B) = {x ∈ Rn \ {x0} : 2aF ∗(x0 − x) +B > 0},

then Φx0,BC(x) is a viscosity solution of equation

∆N
F ;∞u = −2a (3.8)

in D−(x0, B).

For simplicity, taking a = 1/2. Letting B = 0, Ψx0(x) = 1
2 [F ∗(x−x0)]2 +C and

D(x0) = D+(x0, B) = Rn \ {x0}.

4. A strict comparison principle

Theorem 4.1. For j = 1, 2, suppose uj ∈ C(Ω) and

∆N
F ;∞u1 ≤ f1, ∆N

F ;∞u2 ≥ f2

in Ω, where f1 < f2, and fj ∈ C(Ω). Then supΩ(u2 − u1) ≤ max∂Ω(u2 − u1).

Proof. Without the loss of generality, we may assume u2 ≤ u1 on ∂Ω and intend
to prove u2 ≤ u1 in Ω. Furthermore, for any small δ > 0, let uδ = u2 − δ. Then
uδ < u1 on ∂Ω and ∆N

F ;∞uδ ≥ f2 in Ω. If we can show that uδ < u1 in Ω for every
small δ > 0, then it follows that u2 ≤ u1 in Ω. So we may additionally assume
u2 < u1 on ∂Ω in the following proof.
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We apply the sup- and inf-convolution technique here. Take any

A ≥ max{‖u1‖L∞(Ω), ‖u2‖L∞(Ω)}.

For any sufficiently small real number ε > 0, we take δ = 3
√
Aε and Ωδ = {x ∈ Ω :

dist(x, ∂Ω) > δ}. We define, on Rn,

u1,ε(x) = inf
y∈Ω

(u1(y) +
1
2ε
|x− y|2), (4.1)

uε2(x) = sup
y∈Ω

(u2(y)− 1
2ε
|x− y|2) (4.2)

For any y ∈ Ω such that |y − x| ≥ 2
√
Aε, u1(y) + 1

2ε |x− y|
2 ≥ u1(x) holds. So, in

Ωδ,

u1,ε(x) = inf
y∈Ω,|x−y|≤2

√
Aε

(u1(y) +
1
2ε
|x− y|2) = inf

|z|≤2
√
Aε

(u1(x+ z) +
1
2ε
|z|2), (4.3)

as x+ z ∈ Ω for any x ∈ Ωδ and |z| ≤ 2
√
Aε. Similarly, for x ∈ Ωδ,

uε2(x) = sup
y∈Ω,|x−y|≤2

√
Aε

(u2(y)− 1
2ε
|x− y|2) = sup

|z|≤2
√
Aε

(u2(x+ z)− 1
2ε
|z|2), (4.4)

Let

f ε1(x) = sup
x+z∈Ω,|z|≤2

√
Aε

f1(x+ z) = sup
|z|≤2

√
Aε

f1(x+ z), (4.5)

f2,ε(x) = inf
x+z∈Ω,|z|≤2

√
Aε
f2(x+ z) = inf

|z|≤2
√
Aε
f2(x+ z), (4.6)

for x ∈ Ωδ. Clearly, f ε1 is upper-semicontinuous. It is continuous due to the
equicontinuity of the one parameter family of the functions x 7→ f1(x + z) in any
compact subset of Ω. f2,ε is continuous for a similar reason.

We notice that, for every z with |z| ≤ 2
√
Aε and x ∈ Ωδ,

∆N
F ;∞(u1(x+ z) +

1
2ε
|z|2) ≤ f1(x+ z) ≤ f ε1(x), (4.7)

∆N
F ;∞(u2(x+ z)− 1

2ε
|z|2) ≥ f2(x+ z) ≥ f2,ε(x). (4.8)

Lemma 2.11 implies that ∆N
F ;∞u1,ε ≤ f ε1 and ∆N

F ;∞u
ε
2 ≥ f2,ε in Ωδ in the viscosity

sense.
By [5, Proposition 6.4], we have the following result.

Proposition 4.2. −u1,ε and uε2 are semi-convex in Rn. u1,ε ≤ u1 and uε2 ≥ u2 in
Ω. u1,ε and uε2 converge locally uniformly to u1 and u2 in Ω, as ε→ 0. u1,ε and uε2
are both differentiable at the maximum points of uε2 − u1,ε.

As a result, if we take the value of ε smaller if necessary, then u1,ε > uε2 on ∂Ωδ,
∆N
F ;∞u1,ε ≤ f ε1 and ∆N

F ;∞u
ε
2 ≥ f2,ε in Ωδ, and f ε1 < f2,ε in Ωδ.

If we can prove uε2 ≤ u1,ε in Ωδ for any small ε > 0 and δ = 3
√
Aε, then u2 ≤ u1

in Ω holds. So we may without loss of generality assume that −u1 and u2 are
semi-convex in Rn.

Suppose u1(x0) < u2(x0) for some x0 ∈ Ω. Without the loss of generality, we
assume that u2(x0) − u1(x0) = maxΩ(u2 − u1). Then ∃δ > 0 such that for any
h ∈ Rn with |h| < δ, we have u1(x0) < u2(x0 +h), while u2(·+h) < u1(·) in Ω\Ωδ,
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and f2(x+ h) > f1(x), for all x ∈ Ωδ. For any small positive number ε and h ∈ Rn
with |h| < δ, we define

wε,h(x, y) = u2(x+ h)− u1(y)− 1
2ε
|x− y|2, (4.9)

for all (x, y) ∈ Ωδ × Ωδ. Let

M0 = max
Ω

(u2 − u1), (4.10)

Mh = max
Ωδ

(u2(·+ h)− u1(·)), (4.11)

Mε,h = max
Ωδ×Ωδ

wε,h = u2(xε,h)− u1(yε,h)− 1
2ε
|xε,h − yε,h|2 (4.12)

for some (xε,h, yε,h) ∈ Ωδ × Ωδ. Our assumption implies Mh > 0 for all h with
0 ≤ |h| < δ, and clearly limh→0Mh = M0.

As the semi-convex functions u2(·+h) and −u1 are locally Lipschitz continuous,
the function Mh is Lipschitz continuous in h ∈ Rn with |h| < δ, if δ is taken smaller.

By [11, Lemma 3.1], we know that

lim
ε↓0

Mε,h = Mh, (4.13)

lim
ε↓0

1
2ε
|xε,h − yε,h|2 = 0, (4.14)

lim
ε↓0

(u2(xε,h + h)− u1(yε,h)) = Mh. (4.15)

As a result of the second equality, limε↓0 |xε,h − yε,h| = 0.
As Mh > 0 ≥ max∂Ωδ(u2(· + h) − u1(·)), we know xε,h, yε,h ∈ Ω1 for some

Ω1 ⊂⊂ Ωδ and all small ε > 0.
Then [11, Theorem 3.2] implies that there exist X = Xε,h, Y = Yε,h ∈ Sn×n such

that (xε,h−yε,hε , X) ∈ J̄2,+
Ω u2(xε + h), (xε,h−yε,hε , Y ) ∈ J̄2,−

Ω u1(yε) and

− 3
ε

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3
ε

(
I −I
−I I

)
. (4.16)

In particular, X ≤ Y .
Again, we solve the problem via a dichotomy.
Case 1. Suppose that ∃h with |h| < δ, and εk → 0 such that xεk,h 6= yεk,h. Then

it is easy to see that

f2(xεk,h) ≤ 〈X(DF (
xεk,h − yεk,h

εk
)), DF (

xεk,h − yεk,h
εk

)〉

≤ 〈Y (DF (
xεk,h − yεk,h

εk
)), DF (

xεk,h − yεk,h
εk

)〉

≤ f1(yεk,h).

For a subsequence of {εk}, xεk,h → xh and yεk,h → yh. As limε↓0 |xεk,h−yεk,h| = 0,
we know that xh = yh, which leads to a contradiction with the assumption f1(xh) <
f2(xh).

Case 2. For every h ∈ Rn with |h| < δ, xε,h = yε,h holds for every small ε > 0.
Then Mε,h = u2(xε,h + h) − u1(yε,h) = Mh. We simply write xε,h = yε,h = xh.
The semi-convexity of u2(· + h) and −u1(·) implies that the two functions are
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differentiable at the maximum point xh of their sum. The definition of xh shows
that

u2(xh + h)− u1(xh) ≥ u2(y + h)− u1(xh)− 1
2ε
|xh − y|2, (4.17)

which in turn implies

u2(xh + h) ≥ u2(y + h)− 1
2ε
|xh − y|2, (4.18)

for small ε > 0. So Du2(xh + h) = Du1(xh) = 0.
For small h, k ∈ Rn,

Mh = u2(xh + h)− u1(xh) ≥ u2(xk + h)− u1(xk)

= Mk + u2(xk + h)− u2(xk + k) ≥Mk − o(|h− k|),

as Du2(xk +k) = 0. So DMh = 0 a.e. as Mh is Lipschitz continuous, which implies
Mh = M0 for all small h ∈ Rn.

At x0, either f1(x0) < 0 or f2(x0) > 0 holds due to the fact f1 < f2. Without
loss of generality, we assume that f2(x0) > 0. The proof for the case f1(x0) < 0 is
parallel. So u2 is ∞-subharmonic in a neighborhood of x0.

For any h with |h| < δ,

u2(x0 + h)− u1(x0) ≤ u2(xh + h)− u1(xh) = u2(x0)− u1(x0). (4.19)

So u2(x0) is a local maximum of u2. As ∆F ;∞u2 ≥ 0, the maximum principle for
infinity harmonic functions implies that u2 is constant near x0. So we have

∆N
F ;∞u2(x0) = max{〈D2u2(x0)e, e〉 : F ∗(e) = 1} = 0 < f2(x0), (4.20)

which is a contradiction. �

Theorem 4.3 (Comparison Principle). Suppose u, v ∈ C(Ω) satisfy

∆N
F ;∞u ≥ f(x), (4.21)

∆N
F ;∞v ≤ f(x) (4.22)

in the viscosity sense in the domain Ω, where f is a continuous positive function
defined on Ω. Then

sup
Ω

(u− v) ≤ max
∂Ω

(u− v). (4.23)

Proof. Without loss of generality, we may assume that u ≤ v on ∂Ω and intend to
prove u ≤ v in Ω. For a small δ > 0, we take

uδ(x) = (1 + δ)u(x)− δ‖u‖L∞(∂Ω). (4.24)

Then uδ ≤ u ≤ v on ∂Ω, and it is easily checked by the standard viscosity solution
theory that

∆N
F ;∞uδ(x) = (1 + δ)∆N

F ;∞u(x) ≥ (1 + δ)f(x) > f(x) ≥ ∆N
F ;∞v(x) (4.25)

in Ω in the viscosity sense.
Applying the preceding strict comparison theorem to v and uδ, we have uδ ≤ v

in Ω for any small δ > 0. Sending δ to 0, we have u ≤ v in Ω as desired. �
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5. Existence theorem

In this section, we prove existence of (1.3) by Perron’s method. Firstly we prove
some lemmas.

Lemma 5.1. Let U be bounded, u ∈ USC(U) and ∆F ;∞u ≥ 0 in U . If x0 ∈ Rn,
a ∈ R, b ≥ 0 and

u(x) ≤ C(x) = a+ bF ∗(x− x0) for x ∈ ∂(U \ {x0}), (5.1)

then
u(x) ≤ C(x) for x ∈ U. (5.2)

Proof. Firstly we assume b > 0. Assume that u(x̂) − C(x̂) > 0 at some point
x̂ ∈ U \ {x0}. Choose R so large that F ∗(x − x0) ≤ R on ∂U and put w =
a + bF ∗(x − x0) + ε(R2 − [F ∗(x − x0)]2). Then u ≤ w on ∂(U \ {x0}), whereas
u(x̂) − w(x̂) > 0 if ε is sufficiently small. We may assume that x̂ is the maximum
of u− w on U \ {x0}. Through direct calculation, we have

∂w

∂xi
= [b− 2εF ∗(x− x0)]

∂F ∗

∂xi
(x− x0), (5.3)

∂2w

∂xi∂xj
= [b− 2εF ∗(x− x0)]

∂2F ∗

∂xi∂xj
(x− x0)− 2ε

∂F ∗

∂xi
(x− x0) · ∂F

∗

∂xj
(x− x0).

(5.4)

Since b > 0, we have b− 2εF ∗(x̂− x0) > 0, if we choose ε sufficiently small. So the
1-positively homogeneous of F , (2.11), (2.12) and (5.3) imply

F (Dw)(x̂) = b− 2εF ∗(x̂− x0), DF (Dw)(x̂) =
x̂− x0

F ∗(x̂− x0)
. (5.5)

Using (3.6), (5.4) and (5.5), we obtain ∆F ;∞w(x̂) = −2ε(b − 2εF ∗(x̂ − x0))2, and
this is strictly negative. This contradicts the assumption ∆F ;∞u ≥ 0.

If b = 0, we substitute b by δ > 0 in (5.1) and let δ → 0. �

Lemma 5.2. Let U be bounded, u ∈ USC(U) and ∆F ;∞u ≥ 0 in U . Then the
function defined for y ∈ U and r < αd(y, ∂U) by

L+
r (y) := inf{k ≥ 0 : u(z) ≤ u(y) + kr,∀z ∈ S+

r (y)} (5.6)

is nondecreasing in r.

Proof. L+
r (y) is the smallest nonnegative constant for which

u(x) ≤ u(y) + L+
r (y)F ∗(x− y)

holds for F ∗(x−y) = r. Lemma 5.1 then implies the inequality holds for F ∗(x−y) ≤
r. Thus (u(x) − u(y))/F ∗(x − y) ≤ L+

r (y) for F ∗(x − y) ≤ r. This implies that
L+
r (y) is nondecreasing as a function of r for fixed y. �

Lemma 5.3. Let U be bounded, u ∈ USC(U) and ∆F ;∞u ≥ 0 in U . Then u is
locally Lipschitz continuous.

Proof. Firstly we show u is bounded below on compact subsets of U . Let x ∈ U ,
0 < r < α

2 d(x, ∂U), y be any point in the set B(x, rβ ) := {z ∈ Rn : |x − z| < r
β }.

Obviously, B(x, rβ ) ⊂ U , B+
r (y) ⊂ U and x ∈ B+

r (y).
If L+

r (y) = 0, then u(x) ≤ u(y) by (2.2) and Lemma 5.2.
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If L+
r (y) > 0, then L+

r (y) = maxz∈S+
r (y)

u(z)−u(y)
r . From (2.2) and Lemma 5.2,

we have

u(x) ≤ u(y) + max
z∈S+

r (y)

u(z)− u(y)
r

F ∗(x− y)

≤ u(y) + max
z∈S+

r (y)

u(z)− u(y)
r

β|x− y|.
(5.7)

Since |x− y| < r/β in (5.7), we find

r

r − β|x− y|
u(x)− max

z∈S+
r (y)

u(z)
β|x− y|

r − β|x− y|
≤ u(y). (5.8)

Using the upper semi-continuity of u, we know u(y) is locally bounded below.
Let L+

r be given by (5.6). Using the upper semi-continuity of u and the local
boundedness below just proved, L+

r (y) is locally bounded above for fixed r.
We now know that L+

r (y) ≥ 0 is bounded above for fixed r and y in a compact
subset of d(y, ∂U) > 2r/α. Interchanging x and y in (5.7) and putting the resulting
relations together yields

|u(x)− u(y)| ≤ βmax(L+
r (y), L+

r (x))|x− y|, (5.9)

for |x− y| ≤ r/β and 2r/α < max(dist(x, ∂U),dist(y, ∂U)). We conclude that u is
locally Lipschitz continuous. �

Now we are ready to prove the existence of a viscosity solution of the Dirichlet
boundary problem (1.3) by constructing a solution as the infimum of a family of
admissible supersolutions.

Theorem 5.4. Suppose Ω is a bounded open subset of Rn, f ∈ C(Ω), infΩ f(x) > 0
or supΩ f(x) < 0, and g ∈ C(∂Ω). Then there exists a unique u ∈ C(Ω) such that
u = g on ∂Ω and ∆N

F ;∞u(x) = f(x) in Ω in the viscosity sense.

Proof. Let Ω̃ = {x ∈ Rn : −x ∈ Ω}, then u ∈ C(Ω) satisfies ∆N
F ;∞u(x) = f(x), x ∈

Ω and u(x) = g(x), x ∈ ∂Ω in the viscosity sense if and only if w(x) = −u(−x) ∈
C(Ω̃) satisfies the Dirichlet boundary problem

∆N
F ;∞w(x) = −f(−x), xin Ω̃,

w(x) = −g(−x), x on ∂Ω̃,
(5.10)

in the viscosity sense. Thus, it is sufficient to consider the case infΩ f(x) > 0 only,
since − supx∈Ω f(x) = infx∈Ω̃{−f(−x)}.

In the following, we assume infΩ f(x) > 0. We define the admissible sets S and
T to be

S = {v ∈ C(Ω) : ∆N
F ;∞v ≤ f and v ≥ g on ∂Ω},

T = {w ∈ C(Ω) : ∆N
F ;∞w ≥ f and w ≤ g on ∂Ω},

where ∆N
F ;∞v ≤ f and ∆N

F ;∞w ≥ f are satisfied in the viscosity sense. Firstly, we
show S and T are nonempty. The constant function

Φ(x) = ‖g‖L∞(∂Ω) + 1, x ∈ Ω

is clearly an element of the set S. So the admissible set S is nonempty.
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For any fixed point z ∈ ∂Ω, take Ψ(x) = a
2 [F ∗(x−z)]2−C, where a > ‖f‖L∞(Ω)

and C > 0 sufficiently large such that Ψ ≤ g on ∂Ω. Because ∆N
F ;∞ψ = a >

‖f‖L∞(Ω) ≥ f in Ω, Ψ ∈ T . That is T is nonempty.
Take

u(x) = inf
v∈S

v(x), x ∈ Ω,

ū(x) = sup
w∈T

w(x), x ∈ Ω.

By Theorem 4.3, we have w ≤ v, ∀v ∈ S, for all w ∈ T . Since Φ = ‖g‖L∞(∂Ω)+1 ∈ S
and Ψ ∈ T , we obtain u(x) ≥ Ψ(x) > −∞ and ū(x) ≤ Φ(x) <∞. Thus, by Lemma
2.11, u is a viscosity supersolution of (1.3) in Ω, ū is a viscosity subsolution of (1.3)
in Ω, and the inequality ū ≤ g ≤ u holds on ∂Ω. As the infimum of a family of upper
semi-continuous functions, u is upper semi-continuous on Ω. We have ∆N

F ;∞u ≥ f

in Ω in the viscosity sense. Suppose not, there exists a C2 function φ and a point
x0 such that u ≺x0 φ, but ∆+

F ;∞φ(x0) < f(x0). For any small ε > 0, we define

φε(x) = φ(x0) + 〈Dφ(x0), x−x0〉+
1
2
〈D2φ(x0)(x−x0), x−x0〉+ ε|x−x0|2. (5.11)

Clearly, u ≺x0 φ ≺x0 φε, and ∆+
F ;∞φε(x) < f(x) for all x close to x0, if ε is

taken small enough, thanks to the continuity of f . Moreover, x0 is a strict local
maximum point of u− φε. In other words, φε > u for all x near but other than x0

and φε(x0) = u(x0).
We define φ̂(x) = φε(x)− δ for a small positive number δ. Then φ̂(x) < u(x) in

a small neighborhood of x0 which is contained in the set {x : ∆+
F ;∞φε(x) < f(x)},

but φ̂(x) ≥ u(x) outside this neighborhood, if we take δ small enough.
Take v̂ = min{u, φ̂}. Then v̂ is upper semi-continuous on Ω. Because u is a

viscosity supersolution in Ω and φ̂ also is in the small neighborhood of x0, v̂ is a
viscosity supersolution of (1.4) in Ω, and along ∂Ω, v̂ = u ≥ g. This implies v̂ ∈ S,
but v̂ < u near x0, which is a contradiction to the definition of u as the infimum of
all elements in S. Therefore

∆+
F ;∞u(x) ≥ f(x) (5.12)

in Ω. Hence u is a viscosity solution of (1.4).
We now show u = g on ∂Ω. For any point z ∈ ∂Ω, and any ε > 0, there is a

neighborhood B+
r (z) of z such that |g(x)− g(z)| < ε for all x ∈ B+

r (z) ∩ ∂Ω. Take
a large number C > 0 such that Cr > 2‖g‖L∞(∂Ω). We define

v(x) = g(z) + ε+ CF ∗(x− z) (5.13)

for x ∈ Ω. For x ∈ ∂Ω and F ∗(x− z) < r, v(x) ≥ g(z) + ε ≥ g(x); while for x ∈ ∂Ω
and F ∗(x − z) ≥ r, v(x) ≥ g(z) + ε + Cr > g(z) + ε + 2‖g‖L∞(∂Ω) ≥ g(x), that
is v ≥ g on ∂Ω. In addition, through direct calculation we have ∆N

F ;∞v = 0 in Ω
and since infΩ f(x) > 0, ∆N

F ;∞v = 0 ≤ f(x) in Ω. So v ∈ S and v(z) = g(z) + ε.
Thus g(z) ≤ u(z) ≤ v(z) = g(z) + ε, for arbitrary ε > 0. Letting ε → 0+, we have
u(z) = g(z) for any z ∈ ∂Ω. Indeed, as ∆+

F ;∞u(x) = f(x) ≥ 0, ∆F ;∞u ≥ 0, so by
Lemma 5.3 u is locally Lipschitz continuous in Ω. Therefore u is continuous in Ω.
The following is to prove u ∈ C(Ω).

By Lemma 2.11, ū verifies ∆N
F ;∞ū(x) ≥ f(x) in the viscosity sense. Clearly, ū is

lower semi-continuous in Ω as the supremum of a family of lower semi-continuous
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functions and ū ≤ g on ∂Ω. We now show ū ≥ g on ∂Ω. Fix a point z ∈ ∂Ω and
a positive number ε. Since g is continuous on ∂Ω, there exists a positive number
r such that |g(x) − g(z)| < ε, for all x ∈ Ω ∩ B−r (z). As Ω is a bounded domain,
the values of F ∗(z − x) are bounded above and bounded below from zero for all
x ∈ Ω \ B−r (z). We take a large number A such that A > supx∈Ω F

∗(z − x) and a
large number C ≥ ‖f‖L∞(Ω) such that

C[A2 − (A− r)2] ≥ 2‖g‖L∞(∂Ω).

We define
w(x) = g(z)− ε− C[A2 − (A− F ∗(z − x))2], x ∈ Ω

with A,C as chosen. For x ∈ Ω,

Dw(x) = 2C(A− F ∗(z − x))DF ∗(z − x) 6= 0,

and

∆N
F ;∞w(x) = 〈D2w(x)DF (Dw(x)), DF (Dw(x))〉

= 2C ≥ ‖f‖L∞(Ω) ≥ f(x).

That is, w is a viscosity subsolution of ∆N
F ;∞u(x) = f(x) for all x ∈ Ω.

On ∂Ω ∩B−r (z), w(x) ≤ g(z)− ε ≤ g(x); while on ∂Ω \B−r (z),

w(x) ≤ g(z)− ε− C[A2 − (A− F ∗(z − x))2]

≤ g(z)− ε− 2‖g‖L∞(∂Ω)

≤ −‖g‖L∞(∂Ω) ≤ g(x).

That is to say w ≤ g on ∂Ω. So the function w defined above is in the family T .
Thus, from the definition of ū, we obtain ū ≥ w. Since w(z) = g(z) − ε, we have
ū(z) ≥ g(z)− ε for any ε > 0, which implies that ū(z) ≥ g(z) for any z ∈ ∂Ω.

As the supremum of a family of lower semi-continuous functions on Ω, ū is lower
semi-continuous on Ω. Therefore

g(z) ≤ ū(z) ≤ lim inf
x∈Ω→z

ū(x), ∀z ∈ ∂Ω.

The comparison principle (Theorem 4.3) implies v ≤ w on Ω for any w ∈ S and
v ∈ T . In particular, ū ≤ u in Ω. So

g(z) ≤ lim inf
x∈Ω→z

ū(x) ≤ lim inf
x∈Ω→z

u(x), ∀z ∈ ∂Ω.

On the other hand, the upper semi-continuity of u on Ω implies that

lim sup
x∈Ω→z

u(x) ≤ u(z) = g(z),∀z ∈ ∂Ω.

So limx∈Ω→z u(x) = g(z),∀z ∈ ∂Ω.
This shows that u ∈ C(Ω). The uniqueness follows from [20, Theorem 1.4]. This

completes the proof. �

Remark 5.5. The condition that f does not change sign in Ω is indispensable, as
a counter-example for the normalized infinity Laplacian provided in [22] shows the
uniqueness of a viscosity solution subject to given boundary data fails without such
a condition.
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