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POLYCONVOLUTION AND THE TOEPLITZ PLUS HANKEL
INTEGRAL EQUATION

NGUYEN XUAN THAO, NGUYEN MINH KHOA, PHI THI VAN ANH

Abstract. In this article we introduce a polyconvolution which related to the

Hartley and Fourier cosine transforms. We prove some properties of this poly-

convolution, and then solve a class of Toeplitz plus Hankel integral equations
and systems of two Toeplitz plus Hankel integral equations.

1. Introduction

In studying the physical problems related to fluid dynamics, filtering theory, and
wave diffraction, the following equation has been considered [4, 7, 8, 18],

f(x) +
∫ ∞

0

f(y)[k1(x− y) + k2(x+ y)]dy = g(x), x > 0, (1.1)

here k1, k2, g are given, and f is unknown function. This equation is called the
Toeplitz plus Hankel integral equation, with k1(x−y) is Toeplitz kernel and k2(x+y)
is Hankel kernel. Up to now, solving (1.1) in the general case is still open. In recent
years, there have been several results solving this equation in special cases of k1, k2

and the solutions are obtained in closed form by convolution tool.
In [12], the authors obtained the explicit solutions of the equation (1.1) in case

the Toeplitz kernel is even function and k1, k2 have special forms

k1(t) =
1

2
√

2π
sign(t− 1)h1(|t− 1|)− 1

2
√

2π
h1(t+ 1)− 1√

2π
h2(t)

k2(t) =
1

2
√

2π
sign(t+ 1)h1(|t+ 1|)− 1

2
√

2π
h1(t+ 1) +

1√
2π
h2(|t|)

where h1(x) = (ϕ1 ∗
2
ϕ2)(x), ϕ1, ϕ2, h2 ∈ L1(R+) and (· ∗

2
·) is the generalized

convolution for Fourier sine and Fourier cosine transforms [11].
Some special cases of k1, k2, where k1 is still even function or special right-hand-

side for arbitrary kernels are considered in [13]. In case, when k1, k2 are periodic
functions with period 2π, the explicit solution to a class of equation (1.1) on a
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period [0, 2π],

f(x) +
∫ 2π

0

f(y)[k1(|x− y|) + k2(x+ y)]dy = g(x), x ∈ [0, 2π].

is introduced in [1].
In [15], the authors obtained the solution of (1.1) to the case k1 = k2 in real

number

f(|x|) +
1

2π

∫ ∞
0

f(y)[k(x− y) + k(x+ y)]dy = g(x), x ∈ R.

In this article, we consider a modified type of the equation (1.1), with the integral
real domain

f(x) + λ

∫ ∞
−∞

f(y)[k1(x− y) + k2(x+ y)]dy = p(x), x ∈ R (1.2)

where, for t ∈ R,

k1(t) :=
∫ ∞

0

g(v)[h(−t+ v) + h(t− v) + h(−t− v) + h(t+ v)]dv, (1.3)

k2(t) :=
∫ ∞

0

g(v)[−h(t+ v) + h(−t− v)− h(t− v) + h(−t+ v)]dv, (1.4)

and g, h, p are given functions, f is an unknown function. In this case, we see
that the Toeplitz kernel k1 is still an even function. The tool to solve this equa-
tion in closed form is a new polyconvolution related to Hartley and Fourier cosine
transforms.

Convolutions have many applications [2, 11, 13, 14, 17, 18]. The concept of
polyconvolution was first proposed by Kakichev in 1997 [9]. According to this
definition, the polyconvolution of n, (n ∈ N, n ≥ 3) functions f1, f2, . . . , fn for
n + 1 arbitrary integral transforms T, T1, T2, . . . , Tn with weight-function γ(x) is
denoted

γ
∗(f1, f2, . . . , fn)(x), for which the factorization property holds

T [
γ
∗(f1, f2, . . . , fn)](y) = γ(y) · (T1f1)(y) · (T2f2)(y) · · · (Tnfn)(y).

Our new polyconvolution ∗(f, g, h)(x), x ∈ R has the following factorization
equalities

H1[∗(f, g, h)](y) = (H1f)(y) · (Fcg)(y) · (H2h)(y), ∀y ∈ R, (1.5)

H2[∗(f, g, h)](y) = (H2f)(y) · (Fcg)(y) · (H1h)(y), ∀y ∈ R, (1.6)

where H1, H2 are Hartley transforms and Fc is Fourier cosine transform.
The paper is organized as follows. In Section 2, we recall some known re-

lated results about convolutions. In Section 3, we define the new polyconvolution
∗(f, g, h)(x) for Hartley and Fourier cosine integral transforms, whose factorization
equalities are in the forms (1.5)-(1.6) and prove its existence on the certain func-
tion spaces. Its boundedness property on Lp(R) is also considered. In Section 4,
with the help of new polyconvolution ∗(f, g, h)(x), we solve the equation (1.1) for
the case k1, k2 are determined by (1.3)-(1.4). The systems of two equations are
considered in this section.
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2. Preliminaries

The following well-known transforms are used in this paper. We denote F by
the Fourier transform, Fc by Fourier cosine transform, H1 and H2 by Hartley
transforms, which are known in [3, 10, 11].

(Ff)(y) =
1√
2π

∫ ∞
−∞

f(x)e−ixydx, y ∈ R; (2.1)

(Fcf)(y) =

√
2
π

∫ ∞
0

f(x) cos(xy)dx, y ∈ R+; (2.2)

(H1f)(y) =
1√
2π

∫ ∞
−∞

f(x) cas(xy)dx, y ∈ R; (2.3)

(H2f)(y) =
1√
2π

∫ ∞
0

f(x) cas(−xy)dx, y ∈ R; (2.4)

here casu = cosu+ sinu.
Next, we recall the following convolutions, which will be used in the proof of

some properties and solution of the equation (1.2).
First, the convolution for Hartley transform [5] , of two functions f and g, has

the form

(f ∗
H
g)(x) =

1
2
√

2π

∫ ∞
−∞

f(u)[g(x−u)+g(−x+u)−g(−x−u)+g(x+u)]du, x ∈ R,

with its factorization equalities

Hk(f ∗
H
g)(y) = (Hkf)(y)(Hkg)(y), ∀y ∈ R, k = 1, 2. (2.5)

Second, the generalized convolution for Hartley and Fourier transforms [16], of
two functions f and g, has the form

(f ∗
HF

g)(x) =
1

2
√

2π

∫ ∞
−∞

f(u)[g(x−u)+g(x+u)+ig(−x−u)−ig(x+u)]du, x ∈ R,

(2.6)
where its factorization properties are

Hk(f ∗
HF

g)(y) = (Ff)(y)(Hkg)(y), ∀y ∈ R, k = 1, 2. (2.7)

Third, the generalized convolution for Hartley and Fourier cosine transforms [15],
of two functions f and g has the form

(f ∗
HFc

g)(x) =
1√
2π

∫ ∞
0

f(u)[g(x− u) + g(x+ u)]du, x ∈ R,

where its factorization properties are

Hk(f ∗
HFc

g)(y) = (Fcf)(y)(Hkg)(y), ∀y ∈ R, k = 1, 2. (2.8)

In this article, the function spaces Lp(R) and Lp(R+), p ≥ 1, are equipped with
norms,

‖f‖Lp(R) =
(∫ ∞
−∞
|f(x)|pdx

)1/p

, ‖f‖Lp(R+) =
(∫ ∞

0

|f(x)|pdx
)1/p

.
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Also, we define the function space Lα,β,γp (R), α > −1, β > 0, γ > 0, p > 1 by

Lα,β,γp (R) :=
{
f(x) :

∫ ∞
−∞
|x|αe−β|x|

γ

|f(x)|pdx <∞
}

with the norm

‖f‖Lα,β,γp (R) =
(∫ ∞
−∞
|x|αe−β|x|

γ

|f(x)|pdx
)1/p

.

3. A polyconvolution related to Hartley and Fourier cosine
transforms

In this section, we define a new polyconvolution for Hartley and Fourier cosine
transforms and then prove some its properties.

Definition 3.1. The polyconvolution related to Hartley and Fourier cosine trans-
forms of three functions f, g, h is defined by

[∗(f, g, h)](x) :=
1

4π

∫ ∞
−∞

f(u)[k1(x− u) + k2(x+ u)]du, x ∈ R, (3.1)

where k1 and k2 are determined by (1.3) and (1.4) respectively.

The most important feature of a new polyconvolution is its factorization prop-
erty. Normally, each convolution has only one factorization equality. However, this
polyconvolution is one of several convolutions or polyconvolutions, which has two
factorization equalities.

Theorem 3.2. Assume that f, h ∈ L1(R) and g ∈ L1(R+). Then, the polyconvo-
lution (3.1) belongs to L1(R) and the norm inequality on L1(R) is of the form

‖ ∗ (f, g, h)‖L1(R) ≤
2
π
‖f‖L1(R)‖g‖L1(R+)‖h‖L1(R). (3.2)

Moreover, it satisfies the factorization identifies (1.5) and (1.6). In case h ∈
L1(R) ∩ L2(R), the following Parseval type identity holds,

∗(f, g, h)(x) =
1√
2π

∫ ∞
−∞

(H{1,2}f)(y) · (Fcg)(y) · (H{2,1}h)(y). cas(±xy)dy. (3.3)

Proof. First we prove that ∗(f, g, h)(x) ∈ L1(R). Indeed, using the Fubini theorem,
we write∫ ∞

−∞
| ∗ (f, g, h)(x)|dx ≤ 1

4π

∫ ∞
−∞

∫ ∞
−∞
|f(u)|{|k1(x− u)|+ |h(x+ u)|} dx du

≤ 1
4π

∫ ∞
−∞
|f(u)|du

[ ∫ ∞
−∞
|k1(t)|dt+

∫ ∞
−∞
|k2(t)|dt

]
(3.4)

From (1.3), we have∫ ∞
−∞
|k1(t)|dt

≤
∫ ∞
−∞

∫ ∞
0

|g(v)|[|h(−t+ v)|+ |h(t− v)|+ |h(−t− v)|+ |h(t+ v)|] dv dt

≤ 4
(∫ ∞

0

|g(v)|dv
)(∫ ∞

−∞
|h(t)|dt

)
.
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Similarly, with k2, and continue with (3.4), we obtain∫ ∞
−∞
| ∗ (f, g, h)(x)|dx ≤ 2

π

(∫ ∞
−∞
|f(u)|du

)(∫ ∞
0

|g(v)|dv
)(∫ ∞

−∞
|h(t)|dt

)
<∞

So ∗(f, g, h)(x) belongs to L1(R) and we also get inequality (3.2).
Now we prove the factorization property (1.5). From (2.2) and (2.4), we write

(H1f)(y) · (Fcg)(y) · (H2h)(y)

=
1

π
√

2π

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f(u)g(v)h(t) cas(uy) cos(vy) cas(−ty) dt dv du, ∀y ∈ R.

Using trigonometric transforms, one can easily see that

(H1f)(y) · (Fcg)(y) · (H2h)(y)

=
1

4π
√

2π

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f(u)g(v)h(t)
{

cas[(u+ v − t)y] + + cas[(u+ v + t)y]

− cas[(−u− v + t)y] + cas[(−u− v − t)y] + cas[(u− v − t)y]

+ cas[(u− v + t)y]− cas[(−u+ v + t)y] + cas[(−u+ v − t)y]
}
dt dv du.

Putting the corresponding substitution with each integral term in the above ex-
pression, we obtain

(H1f)(y) · (Fcg)(y) · (H2h)(y)

=
1

4π
√

2π

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f(u)g(v)
[
h(−x+ u+ v) + h(x− u− v)− h(x+ u+ v)

+ h(−x− u− v) + h(−x+ u− v) + h(x− u+ v)− h(x+ u− v)

+ h(−x− u+ v)
]

cas(xy) dx dv du.

Using Fubini’s theorem, change the order of integrating, and using (1.3), (1.4), we
have

(H1f)(y) · (Fcg)(y) · (H2h)(y)

=
1√
2π

∫ ∞
−∞

{ 1
4π

∫ ∞
−∞

f(u)[k1(x− u) + k2(x+ u)]du
}

cas(xy)dx

=
1√
2π

∫ ∞
−∞

[∗(f, g, h)(x)] cas(xy)dx

= H1(∗(f, g, h))(y), ∀y ∈ R.

This expression implies (1.5). Since (H1f)(y) = (H2f)(−y), replacing (y) by (−y),
we obtain the second factorization identify (1.6).

Now we prove the Parseval properties (3.3). Indeed, by the hypothesis h ∈
L1(R) ∩ L2(R) then we have H2[(H2h)(y)](x) = h(x). By the help of Fubini’s
theorem and using trigonometric transforms, we write

H1[(H1f)(y) · (Fcg)(y) · (H2h)(y)](x)

=
1√
2π

∫ ∞
−∞

(H1f)(y) · (Fcg)(y) · (H2h)(y) cas(xy) dy

=
1

π
√

2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

f(u)g(v)(H2h)(y) cas(uy) cos(vy) cas(xy) dv du dy
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=
1

4π
√

2π

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

f(u)g(v)(H2h)(y)
{

cas[(x− u− v)y]

+ cas[(−x+ u+ v)y]− cas[(−x− u− v)y] + cas[(x+ u+ v)y]

+ cas[(x− u+ v)y] + cas[(−x+ u− v)y]− cas[(−x− u+ v)y]

+ cas[(x+ u− v)y]
}
dy dv du

=
1

4π

∫ ∞
−∞

∫ ∞
0

f(u)g(v)
[
H2(H2h)(−x+ u+ v) +H2(H2h)(x− u− v)

−H2(H2h)(x+ u+ v) +H2(H2h)(−x− u− v) +H2(H2h)(−x+ u− v)

+H2(H2h)(x− u+ v)−H2(H2h)(x+ u− v) +H2(H2h)(−x− u+ v)
]
dv du

=
1

4π

∫ ∞
−∞

∫ ∞
0

f(u)g(v)
[
h(−x+ u+ v) + h(x− u− v)− h(x+ u+ v)

+ h(−x− u− v) + h(−x+ u− v) + h(x− u+ v)− h(x+ u− v)

+ h(−x− u+ v)
]
dv du

=
1

4π

∫ ∞
−∞

f(u)[k1(x− u) + k2(x+ u)]du

= [∗(f, g, h)](x), ∀x ∈ R.

It implies the first equality of (3.3), the other follows from a similar process. The
proof is complete. �

Using the factorization equalities (1.5), (1.6), we easily obtain the following
corollary.

Corollary 3.3. Let g, l ∈ L1(R+) and f, k, h ∈ L1(R). Then the polyconvolution
(3.1) satisfies the following conditions:

∗(∗(f, g, h), l, k) = ∗(∗(f, l, h), g, k) = ∗(∗(f, g, k), l, h) = ∗(∗(f, l, k), g, h),

∗(k, l, ∗(f, g, h)) = ∗(h, l, ∗(f, g, k)) = ∗(k, g, ∗(f, l, h)) = ∗(h, g, ∗(f, l, k))

Next, we study the polyconvolution in the function space Lα,β,γs (R) and its norm
estimation.

Theorem 3.4. Let f ∈ Lp(R), g ∈ Lq(R+), h ∈ Lr(R), such that p, q, r > 1 and
1
p + 1

q + 1
r = 2. Then the polyconvolution (3.1) is bounded in Lα,β,γs (R), where

s > 1, α > −1, β > 0, γ > 0 and the following estimation holds.

‖ ∗ (f, g, h)‖Lα,β,γs (R) ≤ C‖f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R), (3.5)

where

C =
21+ 1

s

πγ
1
s

β−
α+1
γ.s Γ

1
s

(α+ 1
γ

)
If, in addition, f ∈ L1(R) ∩ Lp(R), g ∈ L1(R+) ∩ Lq(R+) and h ∈ L1(R) ∩ Lr(R),
then the polyconvolution (3.1) satisfies the factorization equalities (1.5), (1.6) and
belongs to C0(R). Moreover, if giving more condition on h, namely h ∈ L2(R) ∩
L1(R) ∩ Lr(R), the Parseval identities (3.3) hold.
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Proof. Firstly, we prove | ∗ (f, g, h)(x)| ≤ 2
π‖f‖Lp(R).‖g‖Lq(R+)‖h‖Lr(R). Indeed,

from Definition 3.1 and (1.3)-(1.4), we have the estimate

| ∗ (f, g, h)(x)|

=
1

4π

∫ ∞
−∞
|f(u)|.[|k1(x− u)|+ |k2(x+ u)|]du

=
1

4π

∫ ∞
−∞

∫ ∞
0

|f(u)||g(v)|
{
|h(−x+ u+ v)|+ |h(x− u− v)|

+ |h(x+ u+ v)|+ |h(−x− u− v)|+ |h(−x+ u− v)|+ |h(x− u+ v)|

+ |h(x+ u− v)|+ |h(−x− u+ v)|
}
dv du. (3.6)

Separating the right-hand side of this expression into the sum of 8 integrals and
denoting them by Ik, k = 1, . . . , 8, respectively, without loss of generality, we have

I1(x) =
1

4π

∫ ∞
−∞

∫ ∞
0

|f(u)||g(v)||h(−x+ u+ v)| dv du, x ∈ R.

Let p1, q1, r1 be the conjugate exponentials of p, q, r and

U(u, v) = |g(v)|q/p1 |h(−x+ u+ v)|r/p1 ∈ Lp1(R× R+)

V (u, v) = |h(−x+ u+ v)|
r
q1 |f(u)|

p
q1 ∈ Lq1(R× R+)

W (u, v) = |f(u)|p/r1 |g(v)|q/r1 ∈ Lr1(R× R+).

We have

UVW = |f(u)||g(v)||h(−x+ u+ v)|.

Using the definition of the norm on space Lp1(R × R+) and the help of Fubini’s
Theorem, we write

‖U‖p1Lp1 (R×R+) =
∫ ∞
−∞

∫ ∞
0

{
|g(v)|q/p1 |h(−x+ u+ v)|r/p1

}p1
dv du

=
∫ ∞

0

|g(v)|q
(∫ ∞
−∞
|h(−x+ u+ v)|r du

)
dv

=
∫ ∞

0

|g(v)|q‖h‖rLr(R)dv

= ‖g‖qLq(R+)‖h‖
r
Lr(R).

Similarly, we obtain

‖V ‖q1Lq1 (R×R+) = ‖f‖pLp(R).‖h‖
r
Lr(R); ‖W‖r1Lr1 (R×R+) = ‖f‖pLp(R)‖g‖

q
Lq(R+). (3.7)
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From the hypothesis 1
p + 1

q + 1
r = 2, it follows 1

p1
+ 1

q1
+ 1

r1
= 1. Using the Hölder

inequality and (3.7), we have estimate

I1 =
1

4π

∫ ∞
−∞

∫ ∞
0

UVW dv du

≤ 1
4π

(∫ ∞
−∞

∫ ∞
0

Up1 du dv
)1/p1(∫ ∞

−∞

∫ ∞
0

V q1dudv
)1/p1

×
(∫ ∞
−∞

∫ ∞
0

W r1dudv
)1/r1

=
1

4π
‖U‖Lp1 (R×R+)‖V ‖Lq1 (R×R+)‖W‖Lr1 (R×R+)

=
1

4π

(
‖g‖

q
p1
Lq(R+)‖h‖

r
p1
Lr(R)

)(
‖f‖

p
q1
Lp(R)‖h‖

r
q1
Lr(R)

)(
‖f‖

p
r1
Lp(R)‖g‖

q
r1
Lq(R+)

)
=

1
4π
‖f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)

(3.8)

The same way, we obtain the estimates for Ik, k = 2, 3 . . . , 8:

Ik ≤
1

4π
‖f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R), for k = 2, 3, . . . , 8 (3.9)

From (3.6)–(3.9), it follows that

| ∗ (f, g, h)(x)| ≤ 2
π
‖f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R). (3.10)

Now, using the [6, formula 3.381.10], we have∫ ∞
−∞
|x|αe−β|x|

γ

dx =
2
γ
β−

α+1
γ Γ

(α+ 1
γ

)
. (3.11)

From (3.10) and (3.11), we have

‖ ∗ (f, g, h)‖s
Lα,β,γs (R)

=
∫ ∞
−∞
|x|αe−β|x|

γ

| ∗ (f, g, h)(x)|sdx

≤
∫ ∞
−∞
|x|αe−β|x|

γ( 2
π

)s‖f‖sLp(R)‖g‖
s
Lq(R+)‖h‖

s
Lr(R)dx

= Cs‖f‖sLp(R)‖g‖
s
Lq(R+)‖h‖

s
Lr(R).

where

C =
21+ 1

s

πγ
1
s

β−
α+1
γ.s Γ

1
s

(α+ 1
γ

)
,

which gives (3.5).
Since f ∈ L1(R) ∩ Lp(R), g ∈ L1(R+) ∩ Lq(R+) and h ∈ L1(R) ∩ Lr(R), three

functions f, g and h satisfy the hypothesis of Theorem 3.2, it implies that ∗(f, g, h) ∈
C0(R) ∩ L1(R), then the factorization identities (1.5), (1.6) hold. Moreover, if
h ∈ L2(R) ∩ L1(R) ∩ Lr(R), it also satisfies the hypothesis of Theorem 3.2 to get
Parseval equalities (3.3). The proof is complete. �

Next, we have a Titchmarch type theorem.

Theorem 3.5. Let f, h ∈ L1(R, e|x|) and g ∈ L1(R+, e
x). If ∗(f, g, h)(x) = 0, ∀x ∈

R, then either f(x) = 0,∀x ∈ R, or g(x) = 0,∀x ∈ R+ or h(x) = 0,∀x ∈ R.
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Proof. The hypothesis ∗(f, g, h)(x) = 0, for all x ∈ R implies H1(∗(f, g, h))(y) = 0,
for all y ∈ R. Due to factorization equality (1.5) we have

(H1f)(y)(Fcg)(y)(H2h)(y) = 0, ∀y ∈ R. (3.12)

Now we show that (H1f)(y), (Fcg)(y), (H2h)(y) are real analytic. Without loss of
generality, we prove that (H1f)(y) can be expanded into convergent Taylor series
in R. Indeed, by using the Lebesgue Dominated Convergence Theorem, we can
exchange the orders of integration and differentiation, we have∣∣ dn

dyn
(H1f)(y)

∣∣ ≤ 1√
2π

∫ ∞
−∞

∣∣ dn
dyn

[f(x) cas(xy))]
∣∣dx

=
1√
2π

∫ ∞
−∞

∣∣f(x)xn
[

cos
(
xy + n

π

2
)
)

+ sin
(
xy + n

π

2
)
)]∣∣dx

≤ 1√
2π

∫ ∞
−∞
|2f(x)xn|dx

≤
√

2
π

∫ ∞
−∞

e−|x|
|x|n

n!
n!|f(x)|e|x|dx

≤
√

2
π

∫ ∞
−∞

n!|f(x)|e|x|dx =

√
2
π
n!‖f‖L1(R,e|x|) = n!M,

here, M =
√

2
π‖f‖L1(R,e|x|).

Thus, the remainder of Taylor expansion for (H1f)(y) at neighbourhood of an
arbitrary y0 ∈ R is∣∣ 1

n!
dn(H1f)(c)

dyn
(y − y0)n

∣∣ ≤ 1
n!
n!M |y − y0|n = M |y − y0|n,

From analytic property and (3.12), it implies

(H1f)(y) = 0,∀y ∈ R, or (Fcg)(y) = 0,∀y ∈ R+, or (H2h)(y) = 0,∀y ∈ R.

Since the uniqueness of Hartley and Fourier cosine transforms in L1(R), then it
follows

f(x) = 0, ∀y ∈ R, or g(x) = 0, ∀x ∈ R+, or h(x) = 0, ∀x ∈ R.

The proof is complete. �

4. Applications

4.1. Integral equations. In this subsection we apply the obtained result in solving
the modified equation (1.2) of the Toeplitz plus Hankel integral equation (1.1).

Theorem 4.1. Let g ∈ L1(R+) and h, p ∈ L1(R) be given functions, λ is given
constant. The sufficient and necessary condition for the integral equation (1.2) to
have a unique solution in space L1(R) is

1 + λ(Fcg)(y)(H2h)(y) 6= 0, ∀y ∈ R, (4.1)

and the solution has the form

f(x) = p(x)− (l ∗
HF

p)(x), ∀x ∈ R,



10 N. X. THAO, N. M. KHOA, P. T. V. ANH EJDE-2014/110

where l ∈ L1(R) is defined by

(Fl)(y) =
λ(Fcg)(y)(H2h)(y)

1 + λ(Fcg)(y)(H2h)(y)
, ∀y ∈ R. (4.2)

Proof. Using Definition 3.1, the equation (1.2) can be rewritten in the form

f(x) + λ[∗(f, g, h)](x) = p(x).

Applying the Hartley transform H1 on both sides of the equation, using the factor-
ization property (1.5) and (2.8), we obtain

(H1f)(y) + λ(H1f(y) · (Fcg)(y) · (H2h)(y) = (H1p)(y)

(H1f)(y)[1 + λ(Fcg)(y) · (H2h)(y)] = (H1p)(y).
(4.3)

Due to (4.1), the equation (4.3) has a unique solution

(H1f)(y) = (H1p)(y)
1

[1 + λ(Fcg)(y) · (H2h)(y)]

= (H1p)(y)
[
1− λ(Fcg)(y) · n(H2h)(y)

1 + λ(Fcg)(y) · (H2h)(y)

]
.

(4.4)

By the Wiener-Levy theorem [10], if q is the Fourier transform of a some function
in L1(R), ϕ(z) is analytic, ϕ(0) = 0 and defined at area of q values, then ϕ(q)
also is a Fourier transform of a some function in L1(R). Note that we can write
(Fcg)(y) · (H2h)(y) = H2

(
g ∗
HFc

h
)
(y) and we have the relationship between Hartley

transform and Fourier transform

(H2q)(y) =
1 + i

2
(Fq)(−y) +

1− i
2

(Fq)(y), ∀y ∈ R,

then the expression
λ(Fcg)(y).(H2h)(y)

1 + λ(Fcg)(y).(H2h)(y)
defines the Fourier transform of a some function l in L1(R). It means that, there
exists a function l ∈ L1(R) such that

(Fl)(y) =
λ(Fcg)(y).(H2h)(y)

1 + λ(Fcg)(y).(H2h)(y)
. (4.5)

So, from (4.4), (4.5) and using the factorization equality (2.7), we obtain

(H1f)(y) = (H1p)(y)[1− (Fl)(y)] = (H1p)(y)− (Fl)(y)(H1p)(y)

= (H1p)(y)−H1(l ∗
HF

p)(y) = H1[p− (l ∗
HF

p)](y), ∀y ∈ R.

It follows that f(x) = p(x)− (l ∗
HF

p)(x) ∈ L1(R). The proof is complete. �

We see that the condition (4.1) is still true for g, h ∈ L1(R). However, determin-
ing l(x) from (4.2) depends on g, h. Below, we will show an example to find l(x)
with given functions g, h.

Example 4.2. Choose g(x) =
√

2
πK0(x) and h(x) =

√
2
πK0(|x|), where K0(x) is

Bessel function. By property of Bessel K0(x) (see the [6, formula 6.511.12]), we
see that

∫∞
0
|K0(x)|dx = π/2. This implies K0(x) is a function in L1(R+). Thus,
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g(x) ∈ L1(R+), h(x) ∈ L1(R) and from the [3, formula 1.2.17] (or [6, formula
3.754.2]) we have

(Fcg)(y) = (H2h)(y) =
1√

1 + y2
.

Next, we choose λ = 1, then

(Fl)(y) =
(Fcg)(y)(H2h)(y)

1 + (Fcg)(y)(H2h)(y)
=

1
y2 + 2

∈ L1(R).

Based on [6, formula 17.23.14], we have

l(x) = F−1
( 1
y2 + 2

)
(x) =

√
π
e−
√

2|x|

2
∈ L1(R).

Now, choosing p(x) = e−x
2 ∈ L1(R), and using (2.6), we have

(l ∗
HF

p)(x) =
1

2
√

2π

∫ ∞
−∞

l(u)[p(x− u) + p(x+ u) + ip(−x− u)− ip(x+ u)]du

=
1

4
√

2

∫ ∞
−∞

e−
√

2|u|[e−(x−u)2 + e−(x+u)2
]
du

=
1

4
√

2
.e

1
2−
√

2x
√
π
(

Erfc
[ 1√

2
− x
]

+ e2
√

2x Erfc
[ 1√

2
+ x
])
.

where Erfc(x) is the complementary error function. By using the Mathematica
software program, we have∫ ∞

−∞

∣∣∣ 1
4
√

2
e

1
2−
√

2x
√
π
(

Erfc[
1√
2
− x] + e2

√
2x Erfc[

1√
2

+ x]
)∣∣∣dx =

π

2
.

This implies (l ∗
HF

p)(x) ∈ L1(R). So, the solution of the equation (1.2) is

f(x) = p(x)− (l ∗
HF

p)(x)

= e−x
2
− 1

4
√

2
e

1
2−
√

2x
√
π
(

Erfc[
1√
2
− x] + e2

√
2x Erfc[

1√
2

+ x]
)
∈ L1(R).

4.2. System of two integral equations. Consider a system of two Toeplitz plus
Hankel integral equations of the form:

f(x) + λ1

∫ ∞
−∞

g(u)[k1(x− u) + k2(x+ u)]du = p(x)

λ2

∫ ∞
−∞

f(u)[k3(x− u) + k4(x+ u)]du+ g(x) = q(x), ∀x ∈ R,
(4.6)

where, for t ∈ R,

k1(t) :=
∫ ∞

0

ϕ1(v)[ψ1(−t+ v) + ψ1(t− v) + ψ1(−t− v) + ψ1(t+ v)]dv,

k2(t) :=
∫ ∞

0

ϕ1(v)(v)[−ψ1(t+ v) + ψ1(−t− v)− ψ1(t− v) + ψ1(−t+ v)]dv,

k3(t) :=
∫ ∞

0

ϕ2(v)[ψ2(−t+ v) + ψ2(t− v) + ψ2(−t− v) + ψ2(t+ v)]dv,

k4(t) :=
∫ ∞

0

ϕ2(v)(v)[−ψ2(t+ v) + ψ2(−t− v)− ψ2(t− v) + ψ2(−t+ v)]dv,
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and λ1, λ2 are complex constants; ϕ1, ϕ2 are functions in L1(R+); ψ1, ψ2, p(x), q(x)
are functions in L1(R); and f, g are unknown functions.

Theorem 4.3. If the condition

1− λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y) 6= 0, ∀y ∈ R.
holds, then there exists a unique solution in L1(R)×L1(R) of system (4.6) defined
by

f(x) = p(x)− λ1(∗(q, ϕ1, ψ1))(x) +
{
l ∗
HF

[p− λ1(∗(q, ϕ1, ψ1))]
}

(x),

g(x) = q(x)− λ2(∗(p, ϕ2, ψ2))(x) +
{
l ∗
HF

[q − λ2(∗(p, ϕ2, ψ2))]
}

(x),

here l ∈ L1(R) is given by

(Fl)(y) =
λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y)

1− λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y)
, ∀y ∈ R.

Proof. Using Definition 3.1, the system of equations (4.6) can be rewritten in the
form

f(x) + λ1[∗(g, ϕ1, ψ1)](x) = p(x),

λ2[∗(f, ϕ2, ψ2)](x) + g(x) = q(x), x ∈ R.
(4.7)

Due to the factorization property of the polyconvolution (1.5), we obtain the linear
system of algebraic equations with respect to (H1f)(y) and (H1g)(y)

(H1f)(y) + λ1(H1g)(y)(Fcϕ1)(y)(H2ψ1)(y) = (H1p)(y),

λ2(H1f)(y)(Fcϕ2)(y)(H2ψ2)(y) + (H1g)(y) = (H1q)(y), ∀y ∈ R.
(4.8)

Let ∆ be the determinant of the system,

∆ =
∣∣∣∣ 1 λ1(Fcϕ1)(y)(H2ψ1)(y)
λ2(Fcϕ2)(y)(H2ψ2)(y) 1

∣∣∣∣
= 1− λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y).

Due to the hypothesis, ∆ 6= 0, the system (4.7) has a unique solution. By using
(2.8) and (2.5), we present 1/∆ as below

1
∆

=
1

1− λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y)

= 1 +
λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y)

1− λ1λ2(Fcϕ1)(y)(Fcϕ2)(y)(H2ψ1)(y)(H2ψ2)(y)

= 1 +
λ1λ2H2[(ϕ1 ∗

HFc
ψ1) ∗

H
(ϕ2 ∗

HFc
ψ2)](y)

1− λ1λ2H2[(ϕ1 ∗
HFc

ψ1) ∗
H

(ϕ2 ∗
HFc

ψ2)](y)
.

Furthermore, according to Wiener-Levy theorem [10] and the relationship between
Hartley transform and Fourier transform, it exists a function l ∈ L1(R) such that

(Fl)(y) =
λ1λ2H2[(ϕ1 ∗

HFc
ψ1) ∗

H
(ϕ2 ∗

HFc
ψ2)](y)

1− λ1λ2H2[(ϕ1 ∗
HFc

ψ1) ∗
H

(ϕ2 ∗
HFc

ψ2)](y)
, ∀y ∈ R.

So, we can write 1
∆ = 1 + (Fl)(y). To find the solution of the system (4.7), we need

to determine the two following determinants

∆1 =
∣∣∣∣(H1p)(y) λ1(Fcϕ1)(y)(H2ψ1)(y)
(H1q)(y) 1

∣∣∣∣
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= (H1p)(y)− λ1H1[∗(q, ϕ1, ψ1)](y) = H1[p− λ1(∗(q, ϕ1, ψ1))](y), y ∈ R.

Based on (2.7), we have

(H1f)(y) =
∆1

∆
= H1[p− λ1(∗(q, ϕ1, ψ1))](y)[1 + (Fl)(y)]

= H1[p− λ1(∗(q, ϕ1, ψ1))](y) +H1{l ∗
HF

[p− λ1(∗(q, ϕ1, ψ1))]}(y)

= H1{p− λ1(∗(q, ϕ1, ψ1)) + l ∗
HF

[p− λ1(∗(q, ϕ1, ψ1))]}(y), ∀y ∈ R.

It follows that

f(x) = p(x)− λ1(∗(q, ϕ1, ψ1))(x) + {l ∗
HF

[p− λ1(∗(q, ϕ1, ψ1))]}(x) ∈ L1(R).

Similarly, we compute the second component determinant of system (4.7),

∆2 =
∣∣∣∣ 1 (H1p)(y)
λ2(Fcϕ2)(y)(H2ψ2)(y) (H1q)(y)

∣∣∣∣
= (H1q)(y)− λ2H1[∗(p, ϕ2, ψ2)](y)

= H1[q − λ2(∗(p, ϕ2, ψ2))](y), y ∈ R.

Based on (2.7) we obtain

(H1g)(y) =
∆2

∆
= H1[q − λ2(∗(p, ϕ2, ψ2))](y).[1 + (Fl)(y)]

= H1[q − λ2(∗(p, ϕ2, ψ2))](y) +H1{l ∗
HF

[q − λ2(∗(p, ϕ2, ψ2))]}(y)

= H1

{
q − λ2(∗(p, ϕ2, ψ2)) + l ∗

HF
[q − λ2(∗(p, ϕ2, ψ2))]

}
(y), ∀y ∈ R.

It follows that

g(x) = q(x)− λ2(∗(p, ϕ2, ψ2))(x) + {l ∗
HF

[q − λ2(∗(p, ϕ2, ψ2))]}(x) ∈ L1(R).

The proof is complete. �
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