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EXISTENCE AND MULTIPLICITY OF HOMOCLINIC
SOLUTIONS FOR p(t)-LAPLACIAN SYSTEMS WITH

SUBQUADRATIC POTENTIALS

BIN QIN, PENG CHEN

Abstract. By using the genus properties, we establish some criteria for the

second-order p(t)-Laplacian system

d

dt

`
|u̇(t)|p(t)−2u̇(t)

´
− a(t)|u(t)|p(t)−2u(t) +∇W (t, u(t)) = 0

to have at least one, and infinitely many homoclinic orbits. where t ∈ R,
u ∈ RN , p(t) ∈ C(R, R) and p(t) > 1, a ∈ C(R, R) and W ∈ C1(R × RN , R)

may not be periodic in t.

1. Introduction

Consider the second-order ordinary p(t)-Laplacian system
d

dt

(
|u̇(t)|p(t)−2u̇(t)

)
− a(t)|u(t)|p(t)−2u(t) +∇W (t, u(t)) = 0, (1.1)

where p ∈ C(R,R) and p(t) > 1, t ∈ R, u ∈ RN , a : R→ R and W : R× RN → R.
As usual, we say that a solution u(t) of (1.1) is homoclinic (to 0) if u(t) → 0 as
t→ ±∞. In addition, if u(t) 6≡ 0 then u(t) is called a nontrivial homoclinic solution.

System (1.1) has been studied by Fan, et al. in a series of papers [10, 11, 12, 13].
The p(t)-Laplacian systems can be applied to describe the physical phenomena with
“pointwise different properties” which first arose from the nonlinear elasticity theory
(see [29]). The p(t)-Laplacian operator possesses more complicated nonlinearity
than that of the p-Laplacian, for example, it is not homogeneous, this causes many
troubles, and some classic theories and methods, such as the theory of Sobolev
spaces, are not applicable.

It is well-known that homoclinic orbits play an important role in analyzing the
chaos of dynamical systems. If a system has the transversely intersected homo-
clinic orbits, then it must be chaotic. Therefore, it is of practical importance and
mathematical significance to consider the existence of homoclinic orbits of (1.1)
emanating from 0.

If p(t) ≡ p is a constant, system (1.1) reduces to the ordinary p-Laplacian system
d

dt

(
|u̇(t)|p−2u̇(t)

)
− a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0. (1.2)
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In recent years, the existence and multiplicity of homoclinic orbits for Hamil-
tonian systems have been investigated in many papers via variational methods and
many results were obtained based on various hypotheses on the potential functions
when p = 2, see, e.g., [2, 3, 4, 14, 15, 20, 21, 24, 25, 27, 28].

In the last decade there has been an increasing interest in the study of ordinary
differential systems driven by the p-Laplacian (or the generalization of Laplacian
[17]). For the existence of solutions for p(t)-Laplacian Dirichlet problems on a
bounded domain we refer to [5, 6, 7, 8, 9, 26]. The study on the existence of solu-
tions for p(t)-Laplacian equations in R is a new topic, which seems not to have been
considered in the literature. We know that in the study of p-Laplacian equations in
R, a main difficulty arises from the lack of compactness. On the other hand, com-
pared with the literature available for W (t, x) being superquadratic as |x| → +∞,
there is less literature available for the case where W (t, x) is subquadratic at infin-
ity. Motivated by papers [2, 27], we will use the genus properties to establish some
existence criteria to guarantee that system (1.1) has infinitely many homoclinic
solutions under more relaxed assumptions on W (t, x).

For our results, we use the following assumptions:

(A1) a ∈ C(R, (0,∞)) and a(t) → +∞ as |t| → ∞, b(t) = 1/a(t), b(t)
αi(t)
p(t)

belongs to Lri(t)(R,R), where ri(t) satisfies

1
ri(t)

+
αi(t)
p(t)

= 1, i = 1, 2.

(P1) 1 < p− := inft∈R p(t) ≤ supt∈R p(t) := p+ <∞;
(W1) W ∈ C1(R × RN ,R), W (t, 0) = 0 and there exist two bounded functions

ai(t) (i = 1, 2.) such that

|∇W (t, x)| ≤ a1(t)α1(t)|x|α1(t)−1, ∀(t, x) ∈ R× RN , |x| ≤ 1,

and for every (t, x) ∈ R× RN with |x| ≥ 1,

|∇W (t, x)| ≤ a2(t)α2(t)|x|α2(t)−1, |W (t, x)| ≤ ca2(t)(t)|x|α2(t)

where αi(t) satisfy α+
i < p−, ai(t) ∈ C(R,R+) (i = 1, 2), and c is a

constant;
(W2) There exist an open set J ⊂ R and a function γ1(t) such that

W (t, x) ≥ η|x|γ1(t), ∀(t, x) ∈ J × RN , |x| ≤ 1,

where γ1(t) satisfy 1 < γ+
1 < p−, η > 0 is a constant;

(W3) W (t,−x) = W (t, x) for all (t, x) ∈ R× RN .
Our main results are the following two theorems.

Theorem 1.1. Assume (A1), (P1), (W1), (W2) are satisfied. Then (1.1) possesses
at least one nontrivial homoclinic solution.

Theorem 1.2. Assume (A1), (P1), (W1), (W2), (S3) are satisfied. Then (1.1)
possesses infinitely many nontrivial homoclinic solutions.

The rest of the this article is organized as follows. In Section 2, we introduce
some notations, preliminary results in space W 1,p(t)

a and establish the corresponding
variational structure. In Section 3, we complete the proofs of Theorems 1.1–1.2. In
Section 4, we give some examples to to illustrate our results.
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2. Preliminaries

In this section, we recall some known results in critical point theory and the
properties of space W 1,p(t)

a are listed for the convenience of readers. Let Ω be an
open subset of R. Let S = {u|u is a measurable function in Ω}, elements in S that
are equal to each other almost everywhere are considered as one element. Define

Lp(t)a (Ω,RN ) =
{
u ∈ S(Ω,RN ) :

∫
Ω

a(t)|u(t)|p(t)dt <∞
}

with the norm
|u|p(t),a = inf

{
λ > 0 :

∫
Ω

a(t)|u
λ
|p(t)dt ≤ 1

}
.

Define
W 1,p(t)
a (Ω,RN ) = {u ∈ Lp(t)a (Ω,RN ) : u̇ ∈ Lp(t)(Ω,RN )}

with the norm

‖u‖ = inf
{
λ > 0 :

∫
Ω

(
| u̇
λ
|p(t) + a(t)|u

λ
|p(t)

)
dt ≤ 1

}
.

We call the space Lp(t)a a generalized Lebesgue space, it is a special kind of gen-
eralized Orlicz spaces. The space W 1,p(t)

a is called a generalized Sobolev space, it
is a special kind of generalized Orlicz-Sobolev spaces. For the general theory of
generalized Orlicz spaces and generalized Orlicz-Sobolev spaces, see [1, 19]. One
can find the basic theory of spaces Lp(t)a and W

1,p(t)
a in [10, 11, 12, 13].

Lemma 2.1 ([11, 12]). Let

ρ(u) =
∫

Ω

a(t)|u|p(t)dt, ∀u ∈ Lp(t)a ,

then
(i) |u|p(t),a < 1 (= 1;> 1) if and only if ρ(u) < 1 (= 1;> 1);

(ii) |u|p(t),a > 1 implies |u|p
−

p(t),a ≤ ρ(u) ≤ |u|p
+

p(t),a,

|u|p(t),a < 1 implies |u|p
+

p(t),a ≤ ρ(u) ≤ |u|p
−

p(t),a;
(iii) |u|p(t),a → 0 if and only if ρ(u)→ 0;

|u|p(t),a →∞ if and only if ρ(u)→∞.
(iv) Let u ∈ Lp(t)a \ {0}, then ‖u‖p(t),a = λ if and only if ρ(uλ ) = 1.

Lemma 2.2 ([11, 12]). Let

ϕ(u) =
∫

Ω

(|u̇|p(t) + a(t)|u|p(t))dt, ∀u ∈W 1,p(t)
a ,

(i) ‖u‖ < 1 (= 1;> 1) if and only if ϕ(u) < 1 (= 1;> 1);
(ii) ‖u‖ > 1 implies ‖u‖p− ≤ ϕ(u) ≤ ‖u‖p+ ,
‖u‖ < 1 implies ‖u‖p+ ≤ ϕ(u) ≤ ‖u‖p− ;

(iii) ‖u‖ → 0 if and only if ϕ(u)→ 0;
‖u‖ → ∞ if and only if ϕ(u)→∞.

Lemma 2.3 ([11]). Let ρ(u) =
∫

Ω
a(t)|u|p(t)dt for u, un ∈ L

p(t)
a (n = 1, 2, · · · ),

then the following statements are equivalent to each other
(i) limn→∞ |un − u|p(t),a = 0;
(ii) limn→∞ ρ(un − u) = 0;
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(iii) un → u a.e. t ∈ Ω and limn→∞ ρ(un) = ρ(u).

Lemma 2.4 ([11]). If 1
p(t) + 1

q(t) = 1, then

(i) (Lp(t))∗ = Lq(t), where (Lp(t))∗ is the conjugate space of Lp(t);
(ii) for all u ∈ Lp(t) and all v ∈ Lq(t), we have∣∣ ∫

Ω

u(t)v(t)dt
∣∣ ≤ 2|u|p(t)|v|q(t).

Lemma 2.5 ([10]). If 1
p(t) + 1

q(t) + 1
r(t) = 1 and for any u ∈ Lp(t)(R,R), v ∈

Lq(t)(R,R) and w ∈ Lr(t)(R,R), we have∫
R
|uvw|dt ≤ 3|u|p(t)|v|q(t)|w|r(t).

Lemma 2.6 ([10]). If |u|q(x) ∈ Ls(x)/q(x), where q, s ∈ L∞+ (Ω), q(x) ≤ s(x), then
u ∈ Ls(x)(Ω) and there is a number q ∈ [q−, q+] such that |u|q(x)|s(x)/q(x) =
(|u|s(x))q.

Lemma 2.7 ([16]). If aα(t)/p(t)|u|α(t) ∈ Lp(t)/α(t), then u ∈ Lp(t)a (R,R) and
|aα(t)/p(t)|u|α(t)|p(t)/α(t) = |u|eαp(t),a, where α, p satisfy the condition (P1) and α(t) <
p(t) for all t ∈ R, α̃ ∈ [α−, α+] is a constant.

Now, we establish the variational structure of system (1.1). Define

E = W 1,p(t)
a (R,RN ) = {u ∈ Lp(t)a (R,RN )|u̇ ∈ Lp(t)(R,RN )}.

Let I : E → R be defined by

I(u) =
∫

R

1
p(t)

(|u̇|p(t) + a(t)|u|p(t))dt−
∫

R
W (t, u(t))dt. (2.1)

For convenience, we denote

J(u) =
∫

R

1
p(t)

(|u̇|p(t) + a(t)|u|p(t))dt, F (u) =
∫

R
W (t, u(t))dt. (2.2)

Lemma 2.8 ([11]). (i) J ∈ C1(E,R), and

〈J ′(u), v〉 =
∫

R

(
|u̇(t)|p(t)−2(u̇(t), v̇(t)) + a(t)|u(t)|p(t)−2(u(t), v(t))

)
dt,

for all u, v ∈ E;
(ii) J ′ : E → E∗ is a mapping of type (S+), i.e., if un ⇀ u and

lim sup
n→∞

(J ′(un), un − u) ≤ 0,

then un has a convergent subsequence in E.
If (A1), (W1) or (W2) hold, then I ∈ C1(E,R) and one can easily check that

〈I ′(u), v〉 =
∫

R

[
|u̇(t)|p(t)−2(u̇(t), v̇(t)) + a(t)|u(t)|p(t)−2(u(t), v(t))

− (∇W (t, u(t)), v(t))
]
dt.

(2.3)

Furthermore, the critical points of I in E are classical solutions of (1.1) with
u(±∞) = 0.

Lemma 2.9 ([16]). For u ∈ E, then u ∈ C(R,RN ), and u(t) → 0, |t| → ∞.
Furthermore, the embedding E ↪→ L∞(R,RN ) is continuous and compact.
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Remark 2.10. By Lemma 2.9, there exists a constant C > 0 such that

‖u‖L∞ ≤ C‖u‖E . (2.4)

Lemma 2.11 ([18]). Let E be a real Banach space and I ∈ C1(E,R) satisfy the
(PS)-condition. If I is bounded from below, then c = infE I is a critical value of I.

To find nontrivial critical points of I, we will use the “genus” properties, so we
recall the following definitions and results (see [18]). Let E be a Banach space,
f ∈ C1(E,R) and c ∈ R. We set

Σ = {A ⊂ E − {0} : A is closed in E and symmetric with respect to 0},
Kc = {u ∈ E : f(u) = c, f ′(u) = 0}, f c = {u ∈ E : f(u) ≤ c}.

Definition 2.12 ([18]). For A ∈ Σ, we say genus of A is n (denoted by γ(A) = n)
if there is an odd map φ ∈ C(A,Rn \ {0}) and n is the smallest integer with this
property.

Lemma 2.13 ([18]). Let f be an even C1 functional on E and satisfy the (PS)-
condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, cn = inf
A∈Σn

sup
u∈A

f(u).

(i) If Σn 6= ∅ and cn ∈ R, then cn is a critical value of f ;
(ii) If there exists r ∈ N such that

cn = cn+1 = · · · = cn+r = c ∈ R,
and c 6= f(0), then γ(Kc) ≥ r + 1.

3. Proof of main results

Proof of Theorem 1.1. In view of Lemma 2.8 and (W1), I ∈ C1(E,R). In what
follows, we first show that I is coercive. By (W1), we have

|W (t, x)| ≤ a1(t)|x|α1(t), |x| ≤ 1, (3.1)

|W (t, x)| ≤ ca2(t)|x|α2(t), |x| > 1. (3.2)

Assume that ‖u‖ ≥ 1, by (W1), Lemma 2.2 and Lemma 2.7, we have

I(u) =
∫

R

1
p(t)

(|u̇|p(t) + a(t)|u|p(t))dt−
∫

R
W (t, u(t))dt

≥ 1
p+
‖u‖p

−
−
∫
{t:|u(t)|≤1}

W (t, u(t))dt−
∫
{t:|u(t)|>1}

W (t, u(t))dt

≥ 1
p+
‖u‖p

−
−
∫
{t:|u(t)|≤1}

a1(t)|u(t)|α1(t)dt−
∫
{t:|u(t)|>1}

a2(t)|u(t)|α2(t)dt

≥ 1
p+
‖u‖p

−
− C1

∫
{t:|u(t)|≤1}

bα1(t)/p(t)aα1(t)/p(t)|u(t)|α1(t)dt

− cC2

∫
{t:|u(t)|>1}

b
α2(t)
p(t) a

α2(t)
p(t) |u(t)|α2(t)dt

≥ 1
p+
‖u‖p

−
− 2C1|b

α1(t)
p(t) |Lr1(t) |u|fα1

p(t),a − 2cC2|b
α2(t)
p(t) |Lr2(t) |u|fα2

p(t),a

≥ 1
p+
‖u‖p

−
− 2C1|b

α1(t)
p(t) |Lr1(t)‖u‖fα1 − 2cC2|b

α2(t)
p(t) |Lr2(t)‖u‖fα2 .

(3.3)
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Where Ci = supt∈R ai(t), αi(t), ri(t) satisfy 1
ri(t)

+ αi(t)
p(t) = 1, α̃i ∈ [α−i , α

+
i ] is a

constant, (i = 1, 2). By (W1), α−i < α+
i < p−, this implies that α̃i < p−. By (A),

we have I(u)→ +∞ as ‖u‖ → +∞. Consequently, I is bounded from below.
Next, we prove that I satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E is

a sequence such that {I(uk)}k∈N is bounded and I ′(uk)→ 0 as k → +∞. Then by
(2.1) and (3.3), there exists a constant A > 0 such that

‖uk‖ ≤ A, k ∈ N. (3.4)

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u in E.
By (A), bαi(t)/p(t) ∈ Lri(t) (i = 1, 2), for any ε > 0, there exists R > 0 such that

|b(t)αi(t)/p(t)|Lri(t)(Ω2) < ε, (3.5)

where Ω1 = {t ∈ R : |t| ≤ R}, Ω2 = R\Ω1, by Lemma 2.9, if uk ⇀ u0, then uk → u
in L∞, hence, we have∫

Ω1

|W (t, uk)−W (t, u)|dt < ε, k →∞, (3.6)∫
Ω1

|∇W (t, uk)−∇W (t, u)|dt < ε, k →∞. (3.7)

Without loss of generality, suppose that max{‖uk‖, ‖u‖} ≤ 1, it follows from (A1),
(3.5)-(3.7), Lemma 2.4 and Lemma 2.7 that

|F (uk)− F (u)|

=
∣∣ ∫

R
(W (t, uk(t))−W (t, u(t)))dt

∣∣
≤
∫

Ω1

|W (t, uk(t))−W (t, u(t))|dt+
∫

Ω2

|W (t, uk(t))−W (t, u(t))|dt

≤ ε+
∫

R
[|W (t, uk(t))|+ |W (t, u(t))|]dt

≤ ε+ ε

∫
R
a1(t)(|uk|α1(t) + |u|α1(t))dt+ cε

∫
R
a2(t)(|uk|α2(t) + |u|α2(t))dt

≤ ε+ 2C1|b(t)α1(t)/p(t)|Lr1(t) |aα1(t)/p(t)|uk(t)|α1(t)|Lp(t)/alpha1(t)

+ 2C1|b(t)α1(t)/p(t)|Lr1(t) |aα1(t)/p(t)|u(t)|α1(t)|Lp(t)/alpha1(t)

+ 2cC2|b(t)
α2(t)
p(t) |Lr2(t) |a

α2(t)
p(t) |uk(t)|α2(t)|Lp(t)/α2(t)

+ 2cC2|b(t)
α2(t)
p(t) |Lr2(t) |a

α2(t)
p(t) |u(t)|α2(t)|Lp(t)/α2(t)

≤ ε+ 2C1ε(|uk|
gα1,1

L
p(t)
a

+ |u|gα1,2

L
p(t)
a

) + 2cC2ε|uk|
gα2,1

L
p(t)
a

+ |u|gα2,2

L
p(t)
a

)

≤ ε+ 4C1ε+ 4cC2ε,

(3.8)

where Ci = supt∈R ai(t)(i = 1, 2), α̃1,1, α̃1,2 ∈ [α−1 , α
+
1 ], α̃2,1, α̃2,2 ∈ [α−2 , α

+
2 ].

Hence, there exists a constant C ′ such that |F (uk) − F (u)| < C ′ε, this implies
that F (uk)→ F (u), k →∞.

On the other hand, for any v ∈ E with ‖v‖ = 1, by (W1), Lemmas 2.5 and 2.7,
we have

|(F ′(uk)− F ′(u), v)|
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≤
∫

Ω1

|∇W (t, uk(t))−∇W (t, u(t)))||v|dt

+
∫

Ω2

|∇W (t, uk(t))−∇W (t, u(t)))||v|dt

≤ ε‖v‖L∞ +
∫

R
(|∇W (t, uk(t))|+ |∇W (t, u(t))|)|v|dt

≤ Cε+
∫

R
α1(t)a1(t)(|uk|α1(t)−1 + |u|α1(t)−1)|v|dt

+
∫

R
α2(t)a2(t)(|uk|α2(t)−1 + |u|α2(t)−1)|v|dt

≤ Cε+ C3

∫
R

(|uk|α1(t)−1 + |u|α1(t)−1)|v|dt+ C4

∫
R
(|uk|α2(t)−1 + |u|α2(t)−1)|v|dt

= Cε+ C3

∫
R
bα1(t)/p(t)a

α1(t)−1
p(t) |uk|α1(t)−1a

1
p(t) |v|dt

+ C3

∫
R
bα1(t)/p(t)a

α1(t)−1
p(t) |u|α1(t)−1a

1
p(t) |v|dt

+ C4

∫
R
b
α2(t)
p(t) a

α2(t)−1
p(t) |uk|α2(t)−1a

1
p(t) |v|dt

+ C4

∫
R
b
α2(t)
p(t) a

α2(t)−1
p(t) |u|α2(t)−1a

1
p(t) |v|dt

≤ Cε+ 3C3|b(t)|α1(t)/p(t)

Lr1(t) |a
α1(t)−1
p(t) |uk|α1(t)−1|

L
p(t)

α1(t)−1
|a

1
p(t) v|Lp(t)

+ 3C3|b(t)|α1(t)/p(t)

Lr1(t) |a
α1(t)−1
p(t) |u|α1(t)−1|

L
p(t)

α1(t)−1
|a

1
p(t) v|Lp(t)

+ 3C4|b(t)|
α2(t)
p(t)

Lr2(t) |a
α2(t)−1
p(t) |uk|α2(t)−1|

L
p(t)

α2(t)−1
|a

1
p(t) v|Lp(t)

+ 3C4|b(t)|
α2(t)
p(t)

Lr2(t) |a
α2(t)−1
p(t) |u|α2(t)−1|

L
p(t)

α2(t)−1
|a

1
p(t) v|Lp(t)

≤ Cε+ 3C3ε(|uk|
gα1,3−1

L
p(t)
a

+ |u|gα1,4−1

L
p(t)
a

)|v|
L
p(t)
a

+ 3C4ε(|uk|
gα2,3−1

L
p(t)
a

+ |u|gα2,4−1

L
p(t)
a

)|v|
L
p(t)
a

≤ Cε+ 6C3ε+ 6C4ε.

Where C is defined in (2.4), C3 = supt∈R α1(t)a1(t), C4 = supt∈R α2(t)a2(t),
α̃1,3, α̃1,4 ∈ [α−1 , α

+
1 ], α̃2,3, α̃2,4 ∈ [α−2 , α

+
2 ]. Hence, there exists a constant C ′′ such

that |F ′(uk) − F ′(u)| < C ′′ε, this implies that F ′(uk) → F ′(u), k → ∞. This im-
plies that (J ′(uk), uk − u)→ 0. By Lemma 2.8, J ′ is a mapping type (S+), hence,
uk → u. So, I satisfies (PS) condition.

By Lemma 2.13, c = infE I(u) is a critical value of I, that is there exists a critical
point u∗ ∈ E such that I(u∗) = c.

Finally, we show that u∗ 6= 0. Let u0 ∈ (W 1,p(t)
0 (J)

⋂
E) \ {0} and ‖u0‖ = 1,

then by (W2) and Lemma 2.2, we have

I(su0) =
∫

R

1
p(t)

((|su̇|p(t) + a(t)|su|p(t)))dt−
∫

R
W (t, u(t))dtnonumber (3.9)

≤ sp
−

p−
−
∫
J

W (t, su0(t))dtnonumber (3.10)
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≤ sp
−

p−
− ηsγ

+
1

∫
J

|u0(t)|γ1(t)dt, 0 < s < 1. (3.11)

Since 1 < γ+
1 < p−, it follows from (3.11) that I(su0) < 0 for s > 0 small enough.

Hence I(u∗) = c < 0, therefore u∗ is nontrivial critical point of I, and so u∗ = u∗(t)
is a nontrivial homoclinic solution of (1.1). The proof is complete. �

Proof of Theorem 1.2. By (W3), I is an even functional. Denote by γ(A) the genus
of A. Set

Σ = {A ⊂ E − {0} : A is closed in E and symmetric with respect to 0},
Σk = {A ∈ Σ : γ(A) ≥ k}, k = 1, 2, . . . ,

ck = inf
A∈Σk

sup
u∈A

I(u), k = 1, 2, . . . ,

we have

−∞ < c1 ≤ c2 ≤ · · · ≤ ck ≤ ck+1 ≤ . . . .

Now let us prove that ck < 0 for every k.
By (W2), there exists a bounded open set J ⊂ R such that W (t, x) ≥ η|x|γ1(t),

for all t ∈ J . Since W 1,p(t)
0 (J) ⊂ E, For any k, we can choose a k-dimensional linear

subspace Ek ⊂ W
1,p(t)
0 (J). Since all norms of a finite dimensional normed space

are equivalent, there exists ρk ∈ (0, 1) such that u ∈ Ek with ‖u‖ ≤ ρk implies
|u|L∞ ≤ 1. Set

S(k)
ρk

= {u ∈ Ek : ‖u‖ = ρk},

for any u ∈ S(k)
ρk , s ∈ (0, 1), we have

I(su) =
∫
J

1
p(t)

[|su̇|p(t) + a(t)|su|p(t)]dt−
∫
J

W (t, su(t))dt

≤ sp
−

p−
ρp
−

k − s
γ+
1

∫
J

|u|γ1(t)dt

≤ sp
−

p−
ρp
−

k − dks
γ+
1 .

Where dk =
∫
J
|u|γ1(t)dt, since γ+

1 < p−, there exist sk ∈ (0, 1), εk > 0 such that

I(sku) ≤ −εk < 0, ∀u ∈ S(k)
ρk
.

We know that γ(S(k)
skρk) = k, so ck ≤ −εk < 0.

By genus theory [22] and Lemma 2.13, each ck is a critical value of I, hence
there is a sequence of solutions {±uk : k = 1, 2, . . . , } of system (1.1) such that
I(±uk) = ck < 0. By the arbitraries of k, we can conclude that system (1.1) have
infinitely many homoclinic solutions. The proof is complete. �

4. An example

In this section, we give an example to illustrate our results. Consider the second-
order ordinary p(t)-Laplacian system

d

dt

(
|u̇(t)|8+10| sin t|u̇(t)

)
− a(t)|u(t)|8+10| sin t|u(t) +∇W (t, u(t)) = 0, (4.1)
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where p(t) = 10 + 10| sin t|, a(t) =
(
1 + t2

)4, let

W (t, x) =
|x|4| sin t|+4

1 + t2
+
|x|2| sin t|+2

1 + t2
,

then

∇W (t, x) =
(4| sin t|+ 4)|x|4| sin t|+2x

1 + t2
+

(2| sin t|+ 2)|x|2| sin t|x
1 + t2

,

|∇W (t, x)| ≤ 3
1 + t2

(2 + 2| sin t|)|x|2| sin t|+1, ∀(t, x) ∈ R× RN , |x| ≤ 1,

|∇W (t, x)| ≤ 3
2(1 + t2)

(4 + 4| sin t|)|x|4| sin t|+3, ∀(t, x) ∈ R× RN , |x| ≥ 1,

Let J = (−2, 2), γ1(t) = 2| sin t|+ 2 and

W (t, x) ≥ 1
5
|x|2| sin t|+2, ∀(t, x) ∈ J × RN , |x| ≤ 1.

These inequalitires show that all conditions of Theorem 1.2 are satisfied, where

α1(t) = 2 + 2| sin t|, α2(t) = 4 + 4| sin t|,

a1(t) =
3

1 + t2
, a2(t) =

3
2(1 + t2)

, c =
4
3
,

r1(t) =
5
4
, r2(t) =

5
3
.

By Theorem 1.2, system (1.1) has infinitely many nontrivial homoclinic solutions.
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