Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 113, pp. 1-5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

KHADIJEH BAGHAEI, MAHMOUD HESAARAKI

Abstract

In this article, we find a lower bound for the blow-up time of solutions to some nonlinear parabolic equations under Robin boundary conditions in bounded domains of \mathbb{R}^{n}.

1. Introduction

In this article, we consider the nonlinear initial-boundary value problem

$$
\begin{gather*}
(b(u))_{t}=\nabla \cdot(g(u) \nabla u)+f(u), \quad x \in \Omega, t>0 \\
\frac{\partial u}{\partial \nu}+\gamma u=0, \quad x \in \partial \Omega, t>0 \tag{1.1}\\
u(x, 0)=u_{0}(x) \geq 0, \quad x \in \Omega
\end{gather*}
$$

where $\Omega \subseteq \mathbb{R}^{n}, n \geq 3$, is a bounded domain with smooth boundary, ν is the outward normal vector to $\partial \Omega, \gamma$ is a positive constant and $u_{0}(x) \in C^{1}(\bar{\Omega})$ is the initial value. We assume that f is a nonnegative $C\left(\mathbb{R}^{+}\right)$function and the nonnegative functions g and b satisfy

$$
\begin{gather*}
g \in C^{1}\left(\mathbb{R}^{+}\right), \quad g(s) \geq g_{m}>0, \quad g^{\prime}(s) \leq 0, \quad \forall s>0 \\
b \in C^{2}\left(\mathbb{R}^{+}\right), \quad 0<b^{\prime}(s) \leq b_{M}^{\prime}, \quad b^{\prime \prime}(s) \leq 0, \quad \forall s>0 \tag{1.2}
\end{gather*}
$$

where g_{m} and b_{M}^{\prime} are positive constants.
The reader is referred to [1, 3, 4, [5, 6, 8, for results on bounds for blow-up time in nonlinear parabolic problems. Ding [2] studied problem (1.1) under assumptions (1.2) and derived conditions on the data which imply blow-up or the global existence of solutions. In addition, Ding obtained a lower bound for the blow-up time when $\Omega \subseteq \mathbb{R}^{3}$ is a bounded convex domain. Here we obtain a lower bound for the blow-up time for 1.1 in general bounded domains $\Omega \subseteq \mathbb{R}^{n}, n \geq 3$.

2. A LOWER BOUND FOR THE BLOW-UP TIME

In this section we find a lower bound for the blow-up time T in an appropriate measure. The idea of the proof of the following theorem comes from [1].

[^0]Theorem 2.1. Let Ω be a bounded domain in $\mathbb{R}^{n}, n \geq 3$, and let the functions f, g, b satisfy

$$
\begin{equation*}
0<f(s) \leq c g(s)\left(\int_{0}^{s} \frac{b^{\prime}(y)}{g(y)} d y\right)^{p+1}, \quad s>0 \tag{2.1}
\end{equation*}
$$

for some constants $c>0$ and $p \geq 1$. If $u(x, t)$ is a nonnegative classical solution to problem (1.1), which becomes unbounded in the measure

$$
\Phi(t)=\int_{\Omega}\left(\int_{0}^{u(x, t)} \frac{b^{\prime}(y)}{g(y)} d y\right)^{2 k} d x
$$

where k is a parameter restricted by the condition

$$
\begin{equation*}
k>\max \{p(n-2), 1\}, \tag{2.2}
\end{equation*}
$$

then T is bounded from below by

$$
\begin{equation*}
\int_{\Phi(0)}^{+\infty} \frac{d \xi}{k_{1}+k_{2} \xi^{\frac{3(n-2)}{3 n-8}}+k_{3} \xi^{\frac{2 n-3}{2(n-2)}}} \tag{2.3}
\end{equation*}
$$

where k_{1}, k_{2} and k_{3} are positive constants which will be determined later in the proof.

Proof. To simplify our computations we define

$$
\begin{equation*}
v(s)=\int_{0}^{s} \frac{b^{\prime}(y)}{g(y)} d y, \quad s>0 \tag{2.4}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\frac{d \Phi}{d t}= & \frac{d}{d t} \int_{\Omega} v^{2 k} d x=2 k \int_{\Omega} v^{2 k-1} \frac{b^{\prime}(u)}{g(u)} u_{t} d x \\
= & 2 k \int_{\Omega} v^{2 k-1} \frac{(b(u))_{t}}{g(u)} d x \\
= & 2 k \int_{\Omega} v^{2 k-1} \frac{1}{g(u)}[\nabla \cdot(g(u) \nabla u)+f(u)] d x \\
= & -2 k(2 k-1) \int_{\Omega} v^{2 k-2} v^{\prime}(u)|\nabla u|^{2} d x+2 k \int_{\Omega} v^{2 k-1} \frac{g^{\prime}(u)}{g(u)}|\nabla u|^{2} d x \\
& -2 k \gamma \int_{\partial \Omega} v^{2 k-1} u d s+2 k \int_{\Omega} v^{2 k-1} \frac{f(u)}{g(u)} d x \\
\leq & -2 k(2 k-1) \int_{\Omega} v^{2 k-2} \frac{b^{\prime}(u)}{g(u)}|\nabla u|^{2} d x+2 k \int_{\Omega} v^{2 k-1} \frac{f(u)}{g(u)} d x
\end{aligned}
$$

where in the above inequality we used $u \geq 0$ and $g^{\prime}(u) \leq 0$ from 1.2 . From (2.4), we have

$$
\begin{equation*}
|\nabla u|^{2}=\left(\frac{g(u)}{b^{\prime}(u)}\right)^{2}|\nabla v|^{2} . \tag{2.5}
\end{equation*}
$$

By (1.2), 2.5, and (2.1) we have

$$
\begin{align*}
\frac{d \Phi}{d t} & \leq-2 k(2 k-1) \int_{\Omega} v^{2 k-2} \frac{g(u)}{b^{\prime}(u)}|\nabla v|^{2} d x+2 k \int_{\Omega} v^{2 k-1} \frac{f(u)}{g(u)} d x \\
& \leq-\frac{2(2 k-1) g_{m}}{k b_{M}^{\prime}} \int_{\Omega}\left|\nabla v^{k}\right|^{2} d x+2 k c \int_{\Omega} v^{2 k+p} d x \tag{2.6}
\end{align*}
$$

From (2.2), Hölder, and Young inequalities, we infer

$$
\begin{align*}
\int_{\Omega} v^{2 k+p} d x & \leq|\Omega|^{m_{1}}\left(\int_{\Omega} v^{\frac{k(2 n-3)}{n-2}} d x\right)^{m_{2}} \tag{2.7}\\
& \leq m_{1}|\Omega|+m_{2} \int_{\Omega} v^{\frac{k(2 n-3)}{n-2}} d x
\end{align*}
$$

where

$$
m_{1}=\frac{k(2 n-3)-(n-2)(2 k+p)}{k(2 n-3)}, \quad m_{2}=\frac{(n-2)(2 k+p)}{k(2 n-3)} .
$$

From 2.7 and the Cauchy-Schwartz inequality we have:

$$
\begin{align*}
\int_{\Omega} v^{\frac{k(2 n-3)}{n-2}} d x & \leq\left(\int_{\Omega} v^{2 k} d x\right)^{1 / 2}\left(\int_{\Omega} v^{\frac{2 k(n-1)}{n-2}} d x\right)^{1 / 2} \tag{2.8}\\
& \leq\left(\int_{\Omega} v^{2 k} d x\right)^{\frac{3}{4}}\left(\int_{\Omega}\left(v^{k}\right)^{\frac{2 n}{n-2}} d x\right)^{1 / 4}
\end{align*}
$$

Applying the Sobolev inequality (see [7]) to the last term in 2.8 , for $n>3$, we obtain

$$
\begin{align*}
\left\|v^{k}\right\|_{L^{\frac{2 n}{2-2}}(\Omega)}^{\frac{n}{2(n-2)}} & \leq\left(c_{s}\right)^{\frac{n}{2(n-2)}}\left\|v^{k}\right\|_{W^{1,2}(\Omega)}^{\frac{n}{2(n-2)}} \tag{2.9}\\
& \leq\left(c_{s}\right)^{\frac{n}{2(n-2)}}\left(\left\|\nabla v^{k}\right\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}}+\left\|v^{k}\right\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}}\right)
\end{align*}
$$

In the case, $n=3$, we have

$$
\begin{align*}
\left\|v^{k}\right\|_{L^{\frac{2 n}{n-2}}(\Omega)}^{\frac{n}{2(-2)}} & \leq\left(c_{s}\right)^{\frac{n}{2(n-2)}}\left\|v^{k}\right\|_{W^{1,2}(\Omega)}^{\frac{n}{2(n-2)}} \tag{2.10}\\
& \leq 2^{\frac{4-n}{2(n-2)}}\left(c_{s}\right)^{\frac{n}{2(n-2)}}\left(\left\|\nabla v^{k}\right\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}}+\left\|v^{k}\right\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}}\right) .
\end{align*}
$$

Here, c_{s} is the best constant in the Sobolev inequality.
By inserting 2.9) in 2.8 for $n>3$ and 2.10 in 2.8 for $n=3$, we have

$$
\begin{align*}
& \int_{\Omega} v^{\frac{k(2 n-3)}{n-2}} d x \\
& \leq c_{0}\left(\int_{\Omega} v^{2 k} d x\right)^{\frac{3}{4}}\left(\left\|\nabla v^{k}\right\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}}+\left\|v^{k}\right\|_{L^{2}(\Omega)}^{\frac{n}{2(n-2)}}\right) \tag{2.11}\\
& =c_{0}\left(\int_{\Omega} v^{2 k} d x\right)^{\frac{3}{4}}\left(\int_{\Omega}\left|\nabla v^{k}\right|^{2} d x\right)^{\frac{n}{4(n-2)}}+c_{0}\left(\int_{\Omega} v^{2 k} d x\right)^{\frac{2 n-3}{2(n-2)}},
\end{align*}
$$

where

$$
c_{0}= \begin{cases}2^{\frac{4-n}{2(n-2)}}\left(c_{s}\right)^{\frac{n}{2(n-2)}}, & \text { for } n=3 \\ \left(c_{s}\right)^{\frac{n}{2(n-2)}}, & \text { for } n>3\end{cases}
$$

Now, using Young's inequality we obtain

$$
\begin{align*}
& \int_{\Omega} v^{\frac{k(2 n-3)}{n-2}} d x \\
& \leq \frac{c_{0}^{\frac{4(n-2)}{3 n-8}}(3 n-8)}{4(n-2) \epsilon^{\frac{n}{3 n-8}}} \Phi^{\frac{3(n-2)}{3 n-8}}+\frac{n \epsilon}{4(n-2)} \int_{\Omega}\left|\nabla v^{k}\right|^{2} d x+c_{0} \Phi^{\frac{2 n-3}{2(n-2)}}, \tag{2.12}
\end{align*}
$$

where ϵ is a positive constant to be determined later. Substituting 2.12 into 2.7 yields

$$
\begin{aligned}
2 k c \int_{\Omega} v^{2 k+p} d x \leq & 2 k c m_{2}\left\{\frac{(3 n-8)}{4(n-2) \epsilon^{\frac{n}{3 n-8}}} c_{0}^{\frac{4 n-2)}{3 n-8}} \Phi^{\frac{3(n-2)}{3 n-8}}+\frac{n \epsilon}{4(n-2)} \int_{\Omega}\left|\nabla v^{k}\right|^{2} d x\right. \\
& \left.+c_{0} \Phi^{\frac{2 n-3}{2(n-2)}}\right\}+2 k c m_{1}|\Omega|
\end{aligned}
$$

By inserting the last inequality in (2.6), we have

$$
\frac{d \Phi}{d t} \leq\left(-\frac{2(2 k-1) g_{m}}{k b_{M}^{\prime}}+\frac{n k c m_{2} \epsilon}{2(n-2)}\right) \int_{\Omega}\left|\nabla v^{k}\right|^{2} d x+k_{1}+k_{2} \Phi^{\frac{3(n-2)}{3 n-8}}+k_{3} \Phi^{\frac{2 n-3}{2(n-2)}}
$$

where

$$
k_{1}=2 k c m_{1}|\Omega|, \quad k_{2}=\frac{2 k c m_{2}\left(c_{0}\right)^{\frac{4(n-2)}{3 n-8}}(3 n-8)}{4(n-2) \epsilon^{\frac{n}{3 n-8}}}, \quad k_{3}=2 k c c_{0} m_{2}
$$

For

$$
\epsilon=\frac{4(n-2)(2 k-1) g_{m}}{n k^{2} c m_{2} b_{M}^{\prime}}
$$

the above inequality becomes

$$
\frac{d \Phi}{d t} \leq k_{1}+k_{2} \Phi^{\frac{3(n-2)}{3 n-8}}+k_{3} \Phi^{\frac{2 n-3}{2(n-2)}} .
$$

Thus,

$$
\begin{equation*}
\frac{d \Phi}{k_{1}+k_{2} \Phi^{\frac{3(n-2)}{3 n-8}}+k_{3} \Phi^{\frac{2 n-3}{2(n-2)}}} \leq d t \tag{2.13}
\end{equation*}
$$

We integrate from 0 to t to obtain

$$
\int_{\Phi(0)}^{\Phi(t)} \frac{d \xi}{k_{1}+k_{2} \xi^{\frac{3(n-2)}{3 n-8}}+k_{3} \xi^{\frac{2 n-3}{2(n-2)}}} \leq t
$$

where

$$
\Phi(0)=\int_{\Omega}\left(\int_{0}^{u_{0}(x)} \frac{b^{\prime}(y)}{g(y)} d y\right)^{2 k} d x
$$

Passing to the limit as $t \rightarrow T^{-}$, we conclude that

$$
\int_{\Phi(0)}^{+\infty} \frac{d \xi}{k_{1}+k_{2} \xi^{\frac{3(n-2)}{3 n-8}}+k_{3} \xi^{\frac{2 n-3}{2(n-2)}}} \leq T
$$

The proof is complete.

References

[1] A. Bao, X. Song; Bounds for the blow-up time of the solutions to quasi-linear parabolic problems, Z. Angew. Math. Phys. (2013), DOI: 10.1007/s00033-013-0325-1.
[2] J. Ding; Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions, Comput. Math. Appl. 65 (2013), 1808-1822.
[3] C. Enache; Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions, Glasg. Math. J. 53 (2011), 569-575.
[4] L. E. Payne, G. A. Philippin, P. W. Schaefer; Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. 69 (2008), 3495-3502.
[5] L. E. Payne, G. A. Philippin, P. W. Schaefer; Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl., 338 (2008), 438-447.
[6] L. E. Payne, J. C. Song, P. W. Schaefer; Lower bounds for blow-up time in a nonlinear parabolic problems, J. Math. Anal. Appl., 354 (2009), 394-396.
[7] G. Talenti; Best constants in Sobolev inequality, Ann. Math. Pura. Appl., 110 (1976), 353-372.
[8] H. L. Zhang; Blow-up solutions and global solutions for nonlinear parabolic problems, Nonlinear Anal., 69 (2008), 4567-4575.

Khadijeh Baghaei
Department of mathematics, Iran University of Science and Technology, Tehran, Iran
E-mail address: khbaghaei@iust.ac.ir
Mahmoud Hesaaraki
Department of mathematics, Sharif University of Technology, Tehran, Iran
E-mail address: hesaraki@sina.sharif.edu

[^0]: 2000 Mathematics Subject Classification. 35K55, 35B44.
 Key words and phrases. Parabolic equation; Robin boundary condition; blow-up; lower bound. © 2014 Texas State University - San Marcos.
 Submitted June 6, 2013. Published April 16, 2014.

