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SOLUTION TO NONLOCAL PROBLEMS OF
PSEUDOHYPERBOLIC EQUATIONS

LUDMILA S. PULKINA

ABSTRACT. In this article considers a nonlocal problem with integral condition
for a fourth-order pseudohyperbolic equation. Existence and uniqueness of a
generalized solution are proved.

1. INTRODUCTION

Currently, there is considerable interest in nonlocal problems for evolution equa-
tions. One reason for this lies in the fact that various phenomena of modern natural
science can be described most conveniently in terms of nonlocal problems. Prob-
lems with nonlocal integral conditions form an important class of nonlocal prob-
lems. Recently, nonlocal boundary value problems with integral conditions have
been actively studied. However, the majority of the works deals with second-order
equations. The initial works devoted to nonlocal problems for second-order partial
differential equations with integral conditions go back to Cannon [4] and Kamynin
[9]. Note here some recent works: [1l 2, Bl &8 12, 13| 06, 07 I8 2T]. See also
references therein.

Pseudohyperbolic equations form important and interesting subclass of Sobolev
type equations. Such equations may describe nonstationary waves in stratified and
rotating liquid [14]. The starting point in studying of Sobolev type equations is [23].
Now there are a lot of works devoted to initial and boundary value problems for
Sobolev type equations (see [24] and references therein). One of recent works dealing
with some problems for pseudohyperbolic equations is [14]. In these work the author
studies qualitative characteristics of solutions to initial-boundary value problems.
On the other hand, various physical problems demand nonlocal conditions |5} 6] [7]
10}, [T}, 22].

Motivated by this, we consider a nonlocal problem with integral condition for a
pseudohyperbolic equation.
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2. RESULTS
Let Q be a bounded domain in R™ with smooth boundary 9Q, Q7 = Q x (0,T),
St = 0Q x (0,T). Consider an equation
52
Lu= ﬁ(u — Au) — (aij (2, t)ug, )z, +c(z, t)u = f(z,t) (2.1)

and set a problem: Find a function u(z, ) that is a solution of (2.1)) in Q, satisfies
initial data

u(z,0) =0, wu(z,0)=0 (2.2)
and nonlocal condition
9% ou  Ou
(55 * 3 + /Q K,y yuly, dy) |, =0. (2.3)

We suppose throughout that repeated indices imply summation from 1 to n,

v(z) = (v1,...,v,) is outward unit normal vector to 9 at the current point,

g—]\‘, = iUy, cOS(V,;), a;; = aji, K(x,y,t) is a given function. We also use the

following notation:

n

n
2 2
Uy = (Ugyy.r Uy, ), U= E Uy,  UglUp = g Uz, Ve, -
i=1

i=1

As the condition (2.3]) does not look evident we give some explanations in an ap-
pendix at the end of the paper.
Let W1 (Qr) be the usual Sobolev space. We shall define

W(Qr) ={u:ueW;(Qr), us € La(Qr)},
W(Qr) ={v:veW(Qr), v(z,T) = 0}.

First we give a definition of a generalized solution to the problem using the standard
method [I5, p. 92]. To this end we multiply (2.1) by v € W(Qr) and integrate
over Qr. It follows from ({2.2)), (2.3)) and an integration by parts that

T
/ / (—UtVE — UgtVot + QijUg, Ve, + cuv) dx di
o Ja

T
+/0 LSZU(O,t)/SlK(a:,y,t)u(x,t) dy ds dt (2.4)

:AT/S)fvdxdt.

Definition 2.1. A function v € W(Qr) is said to be a generalized solution to the
problem ([2.1)—(2.3)) if u(x,0) = 0 and for every v € W(Qr) the identity (2.4) holds.

Theorem 2.2. If the function K(x,y,t) is continuous in Q x Qr,

feL@Qr), ceCQr) ay b ¢ o@r),

V(l‘,t) S QT7 762 < alj(x?t)glfj < :U/fga v > 07
then there exists a unique generalized solution to the problem (2.1)—(2.3)).
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Proof. First we prove the uniqueness. To this end we obtain a number of in-
equalities and then use Gronwall’s lemma. We prove the existence part in several
steps. First, we construct approximations of the generalized solution by the Faedo-
Galerkin method. Then we obtain a priori estimates to guarantee convergence of
approximations. Finally, we show that the limit of approximations is the required
solution.

Uniqueness. Suppose that u; and uy are two different solutions to 7.
Then u = u; — ugy satisfies u(x,0) = 0 and the identity

T
/ / (—UtVs — Ugt Vgt + CijUe, Ve, + cuv) dx di
Q

T (2.5)

+/ / v(as,t)/ K(z,y,t)u(y,t)dydsdt =0

0o Jaq Q
holds for every v € W(QT). For an arbitrary 7 € [0,T], take v as
t
dn, 0<t<
o t) = [ u(z,m)dn, 0<t<r, (2.6)
0, T<t<T.

It is easy to see that v € W(QT), as well vy = u, vy = u, in Qr =0 x (0,7).
Substitute v(x,t) from (2.6)) in (2.5) and express u in terms of v and its deriva-
tives. As a result we obtain the equality

.
/ / (U0t + iV, 1V, — VitaVat + V1) da dt
o Ja

—l—/ / v(:zc,t)/K(x,y,t)vt(yJ)dydsdt:O.
o Joo Q

After integrating by parts first three terms, we obtain

L / [vi(z,7) + ai;j(2,0)va, (z,0)vg, (2, 0) + 02, (2, 7)]dx

/ / c(x, t)yv(x, t)ve(z, t) de dt — f/ / dai Vg, Vg, d dt (2.7)
Q Q
s [0 v [ Ky u.dgds
0o Joa Q

Our next aim is to derive an estimate of a right-hand side of (2.7)). Taking into
account hypotheses of the theorem we can see that there exists positive number ¢
such that

6aij
%?HathHfm
Let
k= maX/K x,y,t)dy, w—/ ds.
o0

Applying the Cauchy inequality we obtain

‘/ /cvtvdxdt| Sc—o/ /(Uf—&—vQ)dxdt;
Oa;
|/ / ajvmlvx]dxdt|<co/ /v dx dt;
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T 1 T T
‘/ / U/Kvtdydsdt‘ Sf/ / v2dsdt+w—k/ /vtzdydt.
o Joa Ja 2 Jo Joo 2 Jo Ja

As by hypotheses 9 is smooth then (see [I5, p. 77])
/ v?ds < ¢; / (V2 +v?)dx
o9 Q

and we obtain the inequality

/Q[Uf(am 7) + g (2,0)ve, (2, 0)ve, (2,0) + v, (x, 7)]dx

-
§02/ /(vf—i—vg—i—vQ)dxdt,
0o Jo

where co depends only on ¢q, c1, k, and w.
Introduce now the functions w;(z,t) = fot Uy, (x,m)dn. By (2.6),

Vg, (@, t) = wi(z, t) —wi(z,7), vz (x,0) =—w;(z, 7).

(2.8)

Furthermore, for a.e. x € €,

T T t 2 T
/ vgdt:/ (/ u(m,n)dn) dt < 72/ u?dt.
0 0 T 0

Thus, from (2.8)), it follows that

/Q[uQ(:E, T) + a;j(x, 0)w;(z, T)w;(z,7) + u?(x,7)]dx

< 202/ /[(1+72/2)u2+2w?] d:cdt+2027/ S wi(z, 7)da.
0 JOQ i=1 Q=

Note that a;;(z, 0)w;(z, 7)w;(x, 7) > yw?. As 7 is arbitrary we choose it in such
a way that an inequality 7 — 2co7 > 0 holds. Let v — 2co > /2. Then for every
e [0, %],

/ [u?(z,7) + Zw?(a:m) +ulldr < C3/ /(u2(x,t) + Zw?(x,t)) dz dt,
Q ] o Jo =

with ¢ = co max{1 + 72,2}/ min{1,~/2}, and in particular,

/Q[u2(x,7')+;wi2(x,7')]dm gc3/0 /Q(u2(x,t)+;wf(m,t))dmdt.

Now by Gronwall’s lemma we conclude that, for 7 € [0, ﬁL

/Q(u2(:1:,7') + Zw?(mn))dm <0.

It follows immediately that u(z,7) = 0 for 7 € [0, -].
Following [15] we repeat these arguments for 7 € [;1-, 51-] and then continue

-
C2
this procedure. It follows that u(x,7) = 0 for all 7 € [0,7]. It implies that there

exists at most one solution to (2.1)—(2.3).
Existence. Let wy,(z) € C%(Q) be a basis in W, (2). We define the approximations
u™(z,t) =Y ex(t)wi(z), (2.9)
k=1
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where ¢ (t) are solutions to the Cauchy problem

m m m m
/ (Ui wp + aijuy Wpe, + Uy Wpe, + cu™ wp)dx
Q

+ /89 wp(x) /Q K (z,y,t)u™ dy ds (2.10)

= / fw, dz,
Q

ck(0) =0, ¢, (0)=0. (2.11)
We write the Cauchy problem ([2.10)) 7 2.11]) such that:
ZC Akp+zck () Bip(t) = fp(1),

k=1
App = (wkva)wg(ny

(2.12)

where

Biy(t) = /Q[aij(ac,t)wkmwpzj + c(z, t)ywrwy|dx

N /8 o) /Q K (x,y, tywi(y) dy ds,

1) = /Q F(a tywp () da

Note that the matrix || (wk, w;)w; o)l is Gramian matrix as the functions wy are
linearly independent, hence the system is normal. Under the hypothesis of
the theorem coefficients Ay, By, are bounded and f; € L1(0,T). Thus the Cauchy
problem has a unique solution ¢, € W2(0,T) for every m and all approximations

(2.9) are defined.

Next, we need a priori estimates to pass to the limit as m — oc.
Multiplying (2.10) by c,,(t), summing from p = 1 to p = m and integrating with
respect to ¢ from 0 to 7, we obtain

-
m, m m 77l m,, m
/ / Ugg Up + Qi Uy ¢ + ug, ttum 1+ cu ) ddt
0

+/ /aaaz]u ut dxdt+/ / ut /K$ y’ mdydsdt (213)
o Jao 0% 29
:/ /f(x,t)u;”(x,t) dz dt.

0 Q

Integrating by parts on the first term of the left-hand side of (2.13)), we obtain

/Q ()2 + asemul + (u)?|_ d

—2/ ful”dxdt—?/ /cu u:“dxdt—k/ 2ij uyug drvdt (2.14)
Q Q o Ot

—2/ / uy® xt/ny, ™(z,t) dy ds dt.
o0

Consider the right-hand side of (2.14)) and focus our attention on the term generated
by nonlocal conditions. By applying Cauchy and Cauchy-Bunyakovskii inequalities,
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{2/ / uy(x,t) /Kmy, (y, )dydsdt|
o
// uy*(x,t)) dsdt+kw// 2 dx dt,
oQ

where k = max(o 1) [, K*(z,y,t)dy, w = [, ds.
As the boundary 9f is smooth [I5], we have

u™)%ds < ¢p u”ﬁzz u:”29:.
/mu)ds /Q[<x>+< 2)d

2|/ / (u*(z,t) /Kx y, Hu™ (y, )dydsdt|
gcl/ /[(u}”)2 uly) dxdt+kw/ / 2 dx dt.
0 Ja

Continue our estimates of right-hand side of ( - As mentioned above there
exists ¢g > 0 such that |a;j, |c| < cp and a;;&;&; > v€* with v > 0. Now we apply
Cauchy inequality to estimate the second and the third terms in the right-hand side

of (2.14)) and obtain
2|/ /cumu;"dzdﬂ Sco/ /((um)z—k(u;n)Q)d:vdt,
0o Jo 0o Jo
2’/ /ful"dxdt‘ §/ dexdt—F/ /(u;")dedt.
0o Jo 0o Jo 0o Jo

With this result, from ([2.14)) and (2.15)), we can now obtain
L@ o+ ) da

we obtain

Hence

(2.15)

2.1
<o / /Q[(um)2 ()2 + (W2 + (w2 d dt + / /Q (@, 1) dadt 210
It easy t(()) see that the relation 0
u™(x,T) = /OT u (z, t)dt + u™(z, 0)
implies (as u™(x,0) = 0) the inequality
/Ol(um(x,r))2 dx dt < T/OT /Q(u{”(x,t))2 dx dt.
Adding this inequality to , we obtain
mo [ [+ @)+ ) + ()] _ do
< [ [ TR+ ) R+ ) de
0 e (2.17)

+ N/O [(w™ (2,0))* + (uf" (,0))* + (uz (,0))* + (ug; (x,0))?]dw

+/OT/Qf2(a:,t)dxdt,
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where M > 0, N > 0 depend only on ¢y, ¢1, w, v, T. By Gronwall’s lemma, we
conclude that for all m > 1,

where P > 0 and does not depend on m.

Note that W (Qr) is Hilbert space. Therefore, because of (2.18)), we can extract
from {u™} a subsequence that convergence weakly in W (Qr) and uniformly with
respect to t € [0,7] in the norm of L2(R2) to u € W(Qr). We need only to show
that this limit function is a required generalized solution.

Initial condition u(z,0) = 0 is fulfilled as u™(z,t) — u(z,t) in Ly(Q) uniformly
for every t € [0,T] and u™(x,0) — 0 in Lo(Q2). To show that is valid we
multiply (2.10) by d, € C[0,T], d,(T) = 0, take sum from p = 1 to p = m and
integrate with respect to ¢ from 0 to 7". This leads us to the equality

T T
/ / (ufpn + aiul N, +ul 0., + cu™n) dadt + / / n/ Ku™dydsdt
o Ja o Joa Ja

:/()T/andxdt.

Denote n(x,t) = Zzlzl dp(t)wp(x). After integrating by parts the terms containing
uyy and uly,, we obtain

T
/ / (fuznnt — UMt + aijuznmj + cumn) dz dt
0o Ja

T
+/0 /aQ n(x’t)/QK@’y’t)“m(y’t) dy ds dt (2.19)

/()T/andxdt.

Taking into account the convergence proved above one can pass to the limit in
(2.19) as m — oo for any fixed 1. Denote the set of functions n = Z;nzl dp(t)wp(x)

by Ny As UX_ N, is dense in W [I5], it follows that the limit relation is fulfilled
for every function v € W(Qr), hence, u is the solution of (2.1)—(2.3). O

Remark 2.3. We use homogeneous initial data and a nonlocal condition
for technical reasons. This involves no loss of generality but simplifies com-
putational work. Nonhomogeneous conditions with usual properties can also be
considered . In fact, suppose

’LL(J,‘70) = @(x)v ut(x70) = ¢($),
92 ou 0
@a% + aTI\Lz = /Q K(z,y,thu(y, t)dy = g(z,t), (x,t) € Sr.

The identity (2.4) becomes

T T
/ / (—UtVs = Ugt Vot + QijUe, Ve, + cuv) dz dt + / / v(0, t)/ Kudydsdt
0o Ja o Joa Q

—/OT/vadxdt—i-/Q(wv+1/)xvm)dx+/0T/anvdsdt.

If o, € W2(Qr),9 € L2(dQ7), we are able to obtain necessary a priori estimates
as above.
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3. APPENDIX

Here we give some reasons of arising nonlocal condition (2.3). Consider very
simple particular case of (2.1),

Utt — Uttgx — Uz + C(J?, t)u =0 (31)

and set a following problem: Find a solution to (3.1) in the domain Q7 = (0,1) x
(0,T) such that

w(z,0) = p(x), u(z,0)=1v(x), u,(0,t)=0, (3.2)
/ﬁu¢mx=o (3.3)
0

Note that (3.3]) is a nonlocal condition of the first kind. On physical grounds this one

or more general integral conditions of the form fol K (x,t)u(x,t) dr are very natural
(see [22]-[10]) but give rise some difficulties when we try to prove a solvability
of a nonlocal problem (see [20, 2I] and references therein). One method has been
advanced for overcoming these difficulties in [20], [21] for hyperbolic equations. The
main idea of the procedure is as follows. We reduce the nonlocal condition of the
first kind to a certain nonlocal condition of the second kind. This method may be
applied in a similar way to the problem (3.1)(3.3). We show it in brief.

Let u(x,t) be a solution to (3.1)—(3.3)). Integrating (3.1)) with respect to x from
0 to | we obtain

l
um@w—wuﬂ—éc@@m%mm:o (3.4)

It is easy to see that (3.4) is a nonlocal condition of the second kind as this relation
involves terms outside the integral.

If we assume now that u(zx,t) satisfies (3.1), (3.2), (3.4) and the compatibility

conditions

1 l
/ o(x)dx =0, / P(x)dx =0,
0 0
then after integrating (3.1]) with respect to x from 0 to | we obtain

d2 l

i |,

The compatibility conditions give us zero initial data for an unknown function
fol u(z,t)dx, hence fé u(x, t)dx = 0.

Now it may be concluded that problems (3.1)—(3.3)) and (3.1)), (3.2)), (3.4) are

equivalent.
In addition, we can now consider the nonlocal condition (2.3)) as a generalization

of .

u(z, t)dx = 0.
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