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SOLUTION TO NONLOCAL PROBLEMS OF
PSEUDOHYPERBOLIC EQUATIONS

LUDMILA S. PULKINA

Abstract. In this article considers a nonlocal problem with integral condition

for a fourth-order pseudohyperbolic equation. Existence and uniqueness of a
generalized solution are proved.

1. Introduction

Currently, there is considerable interest in nonlocal problems for evolution equa-
tions. One reason for this lies in the fact that various phenomena of modern natural
science can be described most conveniently in terms of nonlocal problems. Prob-
lems with nonlocal integral conditions form an important class of nonlocal prob-
lems. Recently, nonlocal boundary value problems with integral conditions have
been actively studied. However, the majority of the works deals with second-order
equations. The initial works devoted to nonlocal problems for second-order partial
differential equations with integral conditions go back to Cannon [4] and Kamynin
[9]. Note here some recent works: [1, 2, 3, 8, 12, 13, 16, 17, 18, 21]. See also
references therein.

Pseudohyperbolic equations form important and interesting subclass of Sobolev
type equations. Such equations may describe nonstationary waves in stratified and
rotating liquid [14]. The starting point in studying of Sobolev type equations is [23].
Now there are a lot of works devoted to initial and boundary value problems for
Sobolev type equations (see [24] and references therein). One of recent works dealing
with some problems for pseudohyperbolic equations is [14]. In these work the author
studies qualitative characteristics of solutions to initial-boundary value problems.
On the other hand, various physical problems demand nonlocal conditions [5, 6, 7,
10, 11, 22].

Motivated by this, we consider a nonlocal problem with integral condition for a
pseudohyperbolic equation.
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2. Results

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω, QT = Ω× (0, T ),
ST = ∂Ω× (0, T ). Consider an equation

Lu ≡ ∂2

∂t2
(u−∆u)− (aij(x, t)uxi

)xj
+ c(x, t)u = f(x, t) (2.1)

and set a problem: Find a function u(x, t) that is a solution of (2.1) in QT , satisfies
initial data

u(x, 0) = 0, ut(x, 0) = 0 (2.2)

and nonlocal condition( ∂2

∂t2
∂u

∂ν
+
∂u

∂N
+
∫

Ω

K(x, y, t)u(y, t)dy
)∣∣
ST

= 0. (2.3)

We suppose throughout that repeated indices imply summation from 1 to n,
ν(x) = (ν1, . . . , νn) is outward unit normal vector to ∂Ω at the current point,
∂u
∂N = aijuxi

cos(ν, xj), aij = aji, K(x, y, t) is a given function. We also use the
following notation:

ux = (ux1 , . . . uxn
), u2

x =
n∑
i=1

u2
xi
, uxvx =

n∑
i=1

uxi
vxi

.

As the condition (2.3) does not look evident we give some explanations in an ap-
pendix at the end of the paper.

Let W 1
2 (QT ) be the usual Sobolev space. We shall define

W (QT ) = {u : u ∈W 1
2 (QT ), uxt ∈ L2(QT )},

Ŵ (QT ) = {v : v ∈W (QT ), v(x, T ) = 0}.

First we give a definition of a generalized solution to the problem using the standard
method [15, p. 92]. To this end we multiply (2.1) by v ∈ Ŵ (QT ) and integrate
over QT . It follows from (2.2), (2.3) and an integration by parts that∫ T

0

∫
Ω

(−utvt − uxtvxt + aijuxi
vxj

+ cuv) dx dt

+
∫ T

0

∫
∂Ω

v(0, t)
∫

Ω

K(x, y, t)u(x, t) dy ds dt

=
∫ T

0

∫
Ω

fv dx dt.

(2.4)

Definition 2.1. A function u ∈W (QT ) is said to be a generalized solution to the
problem (2.1)–(2.3) if u(x, 0) = 0 and for every v ∈ Ŵ (QT ) the identity (2.4) holds.

Theorem 2.2. If the function K(x, y, t) is continuous in Ω̄× Q̄T ,

f ∈ L2(QT ), c ∈ C(Q̄T ), aij ,
∂aij
∂t
∈ C(Q̄T ),

∀(x, t) ∈ Q̄T , γξ2 ≤ aij(x, t)ξiξj ≤ µξ2, γ > 0,

then there exists a unique generalized solution to the problem (2.1)–(2.3).



EJDE-2012/116 SOLUTION TO NONLOCAL PROBLEMS 3

Proof. First we prove the uniqueness. To this end we obtain a number of in-
equalities and then use Gronwall’s lemma. We prove the existence part in several
steps. First, we construct approximations of the generalized solution by the Faedo-
Galerkin method. Then we obtain a priori estimates to guarantee convergence of
approximations. Finally, we show that the limit of approximations is the required
solution.
Uniqueness. Suppose that u1 and u2 are two different solutions to (2.1)–(2.3).
Then u = u1 − u2 satisfies u(x, 0) = 0 and the identity∫ T

0

∫
Ω

(−utvt − uxtvxt + aijuxivxj + cuv) dx dt

+
∫ T

0

∫
∂Ω

v(x, t)
∫

Ω

K(x, y, t)u(y, t) dy ds dt = 0

(2.5)

holds for every v ∈ Ŵ (QT ). For an arbitrary τ ∈ [0, T ], take v as

v(x, t) =

{∫ t
τ
u(x, η)dη, 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T.
(2.6)

It is easy to see that v ∈ Ŵ (QT ), as well vt = u, vxt = ux in Qτ = Ω× (0, τ).
Substitute v(x, t) from (2.6) in (2.5) and express u in terms of v and its deriva-

tives. As a result we obtain the equality∫ τ

0

∫
Ω

(−vttvt + aijvxitvxj − vttxvxt + cvtv) dx dt

+
∫ τ

0

∫
∂Ω

v(x, t)
∫

Ω

K(x, y, t)vt(y, t) dy ds dt = 0.

After integrating by parts first three terms, we obtain

1
2

∫
Ω

[v2
t (x, τ) + aij(x, 0)vxi(x, 0)vxj (x, 0) + v2

xt(x, τ)]dx

=
∫ τ

0

∫
Ω

c(x, t)v(x, t)vt(x, t) dx dt−
1
2

∫ τ

0

∫
Ω

∂aij
∂t

vxivxj dx dt

+
∫ τ

0

∫
∂Ω

v(x, t)
∫

Ω

K(x, y, t)vt(y, t) dy ds dt.

(2.7)

Our next aim is to derive an estimate of a right-hand side of (2.7). Taking into
account hypotheses of the theorem we can see that there exists positive number c0
such that

max
Q̄T

{
∣∣∂aij
∂t

∣∣, |c|} ≤ c0.
Let

k = max
Q̄T

∫
Ω

K2(x, y, t)dy, ω =
∫
∂Ω

ds.

Applying the Cauchy inequality we obtain∣∣ ∫ τ

0

∫
Ω

cvtv dx dt
∣∣ ≤ c0

2

∫ τ

0

∫
Ω

(v2
t + v2) dx dt;

1
2

∣∣ ∫ τ

0

∫
Ω

∂aij
∂t

vxi
vxj

dx dt
∣∣ ≤ c0 ∫ τ

0

∫
Ω

v2
x dx dt;
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∣∣ ∫ τ

0

∫
∂Ω

v

∫
Ω

Kvt dy ds dt
∣∣ ≤ 1

2

∫ τ

0

∫
∂Ω

v2 ds dt+
ωk

2

∫ τ

0

∫
Ω

v2
t dy dt.

As by hypotheses ∂Ω is smooth then (see [15, p. 77])∫
∂Ω

v2ds ≤ c1
∫

Ω

(v2
x + v2)dx

and we obtain the inequality∫
Ω

[v2
t (x, τ) + aij(x, 0)vxi

(x, 0)vxj
(x, 0) + v2

xt(x, τ)]dx

≤ c2
∫ τ

0

∫
Ω

(v2
t + v2

x + v2) dx dt,
(2.8)

where c2 depends only on c0, c1, k, and ω.
Introduce now the functions wi(x, t) =

∫ t
0
uxi

(x, η)dη. By (2.6),

vxi(x, t) = wi(x, t)− wi(x, τ), vxi(x, 0) = −wi(x, τ).

Furthermore, for a.e. x ∈ Ω,∫ τ

0

v2dt =
∫ τ

0

(∫ t

τ

u(x, η)dη
)2

dt ≤ τ2

∫ τ

0

u2dt.

Thus, from (2.8), it follows that∫
Ω

[u2(x, τ) + aij(x, 0)wi(x, τ)wj(x, τ) + u2
x(x, τ)]dx

≤ 2c2
∫ τ

0

∫
Ω

[(1 + τ2/2)u2 +
n∑
i=1

w2
i ] dx dt+ 2c2τ

∫
Ω

n∑
i=1

w2
i (x, τ)dx.

Note that aij(x, 0)wi(x, τ)wj(x, τ) ≥ γw2. As τ is arbitrary we choose it in such
a way that an inequality γ − 2c2τ > 0 holds. Let γ − 2c2τ ≥ γ/2. Then for every
τ ∈ [0, γ

4c2
],∫

Ω

[u2(x, τ) +
n∑
i=1

w2
i (x, τ) + u2

x]dx ≤ c3
∫ τ

0

∫
Ω

(u2(x, t) +
n∑
i=1

w2
i (x, t)) dx dt,

with c3 = c2 max{1 + τ2, 2}/min{1, γ/2}, and in particular,∫
Ω

[u2(x, τ) +
n∑
i=1

w2
i (x, τ)]dx ≤ c3

∫ τ

0

∫
Ω

(u2(x, t) +
n∑
i=1

w2
i (x, t)) dx dt.

Now by Gronwall’s lemma we conclude that, for τ ∈ [0, γ
4c2

],∫
Ω

(u2(x, τ) +
n∑
i=1

w2
i (x, τ))dx ≤ 0.

It follows immediately that u(x, τ) = 0 for τ ∈ [0, γ
4c2

].
Following [15] we repeat these arguments for τ ∈ [ γ

4c2
, γ

2c2
] and then continue

this procedure. It follows that u(x, τ) = 0 for all τ ∈ [0, T ]. It implies that there
exists at most one solution to (2.1)–(2.3).
Existence. Let wk(x) ∈ C2(Ω̄) be a basis in W 1

2 (Ω). We define the approximations

um(x, t) =
m∑
k=1

ck(t)wk(x), (2.9)
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where ck(t) are solutions to the Cauchy problem∫
Ω

(umttwp + aiju
m
xi
wpxj + umxittwpxj + cumwp)dx

+
∫
∂Ω

wp(x)
∫

Ω

K(x, y, t)um dy ds

=
∫

Ω

fwp dx,

(2.10)

ck(0) = 0, c′k(0) = 0. (2.11)

We write the Cauchy problem (2.10)–(2.11) such that:
m∑
k=1

c′′k(t)Akp +
m∑
k=1

ck(t)Bkp(t) = fp(t),

Akp = (wk, wp)W 1
2 (Ω),

(2.12)

where

Bkp(t) =
∫

Ω

[aij(x, t)wkxi
wpxj

+ c(x, t)wkwp]dx

+
∫
∂Ω

wp(x)
∫

Ω

K(x, y, t)wk(y) dy ds,

fp(t) =
∫

Ω

f(x, t)wp(x)dx.

Note that the matrix ‖(wk, wj)W 1
2 (Ω)‖ is Gramian matrix as the functions wk are

linearly independent, hence the system (2.12) is normal. Under the hypothesis of
the theorem coefficients Akp, Bkp are bounded and fj ∈ L1(0, T ). Thus the Cauchy
problem has a unique solution ck ∈ W 2

2 (0, T ) for every m and all approximations
(2.9) are defined.

Next, we need a priori estimates to pass to the limit as m→∞.
Multiplying (2.10) by c′p(t), summing from p = 1 to p = m and integrating with

respect to t from 0 to τ , we obtain∫ τ

0

∫
Ω

(umttu
m
t + aiju

m
xi
umxjt + umxittu

m
xjt + cumumt ) dx dt

+
∫ τ

0

∫
Ω

∂aij
∂xi

umxi
umt dx dt+

∫ τ

0

∫
∂Ω

umt

∫
Ω

K(x, y, t)um dy ds dt

=
∫ τ

0

∫
Ω

f(x, t)umt (x, t) dx dt.

(2.13)

Integrating by parts on the first term of the left-hand side of (2.13), we obtain∫
Ω

[(umt )2 + aiju
m
xi
umxj

+ (umxt)
2]
∣∣
t=τ

dx

= 2
∫ τ

0

∫
Ω

fumt dx dt− 2
∫ τ

0

∫
Ω

cumumt dx dt+
∫ τ

0

∫
Ω

∂aij
∂t

umxi
umxj

dx dt

− 2
∫ τ

0

∫
∂Ω

umt (x, t)
∫

Ω

K(x, y, t)um(x, t) dy ds dt.

(2.14)

Consider the right-hand side of (2.14) and focus our attention on the term generated
by nonlocal conditions. By applying Cauchy and Cauchy-Bunyakovskii inequalities,
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we obtain ∣∣2 ∫ τ

0

∫
∂Ω

umt (x, t)
∫

Ω

K(x, y, t)um(y, t) dy ds dt
∣∣

≤
∫ τ

0

∫
∂Ω

(umt (x, t))2 ds dt+ kω

∫ τ

0

∫
Ω

(um(x, t))2 dx dt,

where k = max[0,T ]

∫
Ω
K2(x, y, t)dy, ω =

∫
∂Ω
ds.

As the boundary ∂Ω is smooth [15], we have∫
∂Ω

(umt )2ds ≤ c1
∫

Ω

[(umxt)
2 + (umt )2]dx.

Hence

2
∣∣ ∫ τ

0

∫
Ω

(umt (x, t))
∫

Ω

K(x, y, t)um(y, t) dy ds dt
∣∣

≤ c1
∫ τ

0

∫
Ω

[(umt )2 + (umxt)
2] dx dt+ kω

∫ τ

0

∫
Ω

(um)2 dx dt.

(2.15)

Continue our estimates of right-hand side of (2.14). As mentioned above there
exists c0 > 0 such that |aijt|, |c| ≤ c0 and aijξiξj ≥ γξ2 with γ > 0. Now we apply
Cauchy inequality to estimate the second and the third terms in the right-hand side
of (2.14) and obtain

2
∣∣ ∫ τ

0

∫
Ω

cumumt dx dt
∣∣ ≤ c0 ∫ τ

0

∫
Ω

((um)2 + (umt )2) dx dt,

2
∣∣ ∫ τ

0

∫
Ω

fumt dx dt
∣∣ ≤ ∫ τ

0

∫
Ω

f2 dx dt+
∫ τ

0

∫
Ω

(umt )2 dx dt.

With this result, from (2.14) and (2.15), we can now obtain∫
Ω

[(umt )2 + γ(umx )2 + (umxt)
2]
∣∣
t=τ

dx

≤ c2
∫ τ

0

∫
Ω

[(um)2 + (umt )2 + (umx )2 + (umxt)
2] dx dt+

∫ τ

0

∫
Ω

f2(x, t) dx dt
(2.16)

It easy to see that the relation

um(x, τ) =
∫ τ

0

umt (x, t)dt+ um(x, 0)

implies (as um(x, 0) = 0) the inequality∫ l

0

(um(x, τ))2 dx dt ≤ τ
∫ τ

0

∫
Ω

(umt (x, t))2 dx dt.

Adding this inequality to (2.16), we obtain

m0

∫
Ω

[(um)2 + (umt )2 + (umx )2 + (umxt)
2]
∣∣
t=τ

dx

≤M
∫ τ

0

∫
Ω

[(um)2 + (umt )2 + (umx )2 + (umxt)
2] dx dt

+N

∫ l

0

[(um(x, 0))2 + (umt (x, 0))2 + (umx (x, 0))2 + (umxt(x, 0))2]dx

+
∫ τ

0

∫
Ω

f2(x, t) dx dt,

(2.17)
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where M > 0, N > 0 depend only on c0, c1, ω, γ, T . By Gronwall’s lemma, we
conclude that for all m ≥ 1,

‖um‖W (QT ) ≤ P, (2.18)
where P > 0 and does not depend on m.

Note that W (QT ) is Hilbert space. Therefore, because of (2.18), we can extract
from {um} a subsequence that convergence weakly in W (QT ) and uniformly with
respect to t ∈ [0, T ] in the norm of L2(Ω) to u ∈ W (QT ). We need only to show
that this limit function is a required generalized solution.

Initial condition u(x, 0) = 0 is fulfilled as um(x, t)→ u(x, t) in L2(Ω) uniformly
for every t ∈ [0, T ] and um(x, 0) → 0 in L2(Ω). To show that (2.4) is valid we
multiply (2.10) by dp ∈ C1[0, T ], dp(T ) = 0, take sum from p = 1 to p = m and
integrate with respect to t from 0 to T . This leads us to the equality∫ T

0

∫
Ω

(
umtt η + aiju

m
xi
ηxj

+ umxittηxj
+ cumη

)
dx dt+

∫ T

0

∫
∂Ω

η

∫
Ω

Kum dy ds dt

=
∫ T

0

∫
Ω

fη dx dt.

Denote η(x, t) =
∑m
p=1 dp(t)wp(x). After integrating by parts the terms containing

umtt and umxtt, we obtain∫ T

0

∫
Ω

(
−umt ηt − umxtηxt + aiju

m
xi
ηxj

+ cumη
)
dx dt

+
∫ T

0

∫
∂Ω

η(x, t)
∫

Ω

K(x, y, t)um(y, t) dy ds dt

=
∫ T

0

∫
Ω

fη dx dt.

(2.19)

Taking into account the convergence proved above one can pass to the limit in
(2.19) as m→∞ for any fixed η. Denote the set of functions η =

∑m
p=1 dp(t)wp(x)

by Nm. As ∪∞m=1Nm is dense in Ŵ [15], it follows that the limit relation is fulfilled
for every function v ∈ Ŵ (QT ), hence, u is the solution of (2.1)–(2.3). �

Remark 2.3. We use homogeneous initial data (2.2) and a nonlocal condition
(2.3) for technical reasons. This involves no loss of generality but simplifies com-
putational work. Nonhomogeneous conditions with usual properties can also be
considered . In fact, suppose

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

∂2

∂t2
∂u

∂ν
+
∂u

∂N
+
∫

Ω

K(x, y, t)u(y, t)dy = g(x, t), (x, t) ∈ ST .

The identity (2.4) becomes∫ T

0

∫
Ω

(−utvt − uxtvxt + aijuxi
vxj

+ cuv) dx dt+
∫ T

0

∫
∂Ω

v(0, t)
∫

Ω

Kudy ds dt

=
∫ T

0

∫
Ω

fv dx dt+
∫

Ω

(ψv + ψxvx)dx+
∫ T

0

∫
∂Ω

gv ds dt.

If ϕ,ψ ∈W 2
2 (QT ), g ∈ L2(∂QT ), we are able to obtain necessary a priori estimates

as above.
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3. Appendix

Here we give some reasons of arising nonlocal condition (2.3). Consider very
simple particular case of (2.1),

utt − uttxx − uxx + c(x, t)u = 0 (3.1)

and set a following problem: Find a solution to (3.1) in the domain QT = (0, l) ×
(0, T ) such that

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), ux(0, t) = 0, (3.2)∫ l

0

u(x, t)dx = 0. (3.3)

Note that (3.3) is a nonlocal condition of the first kind. On physical grounds this one
or more general integral conditions of the form

∫ l
0
K(x, t)u(x, t) dx are very natural

(see [22]–[10]) but give rise some difficulties when we try to prove a solvability
of a nonlocal problem (see [20, 21] and references therein). One method has been
advanced for overcoming these difficulties in [20], [21] for hyperbolic equations. The
main idea of the procedure is as follows. We reduce the nonlocal condition of the
first kind to a certain nonlocal condition of the second kind. This method may be
applied in a similar way to the problem (3.1)–(3.3). We show it in brief.

Let u(x, t) be a solution to (3.1)–(3.3). Integrating (3.1) with respect to x from
0 to l we obtain

uttx(l, t)− ux(l, t)−
∫ l

0

c(x, t)u(x, t)dx = 0. (3.4)

It is easy to see that (3.4) is a nonlocal condition of the second kind as this relation
involves terms outside the integral.

If we assume now that u(x, t) satisfies (3.1), (3.2), (3.4) and the compatibility
conditions ∫ l

0

ϕ(x)dx = 0,
∫ l

0

ψ(x)dx = 0,

then after integrating (3.1) with respect to x from 0 to l we obtain

d2

dt2

∫ l

0

u(x, t)dx = 0.

The compatibility conditions give us zero initial data for an unknown function∫ l
0
u(x, t)dx, hence

∫ l
0
u(x, t)dx = 0.

Now it may be concluded that problems (3.1)–(3.3) and (3.1), (3.2), (3.4) are
equivalent.

In addition, we can now consider the nonlocal condition (2.3) as a generalization
of (3.4).
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