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INTEGRAL INEQUALITIES WITH TIME DELAY IN TWO
INDEPENDENT VARIABLES

HASSENE KHELLAF, MOUHAMED SMAKDJI, MOUHAMED DENCHE

Abstract. In this article, we generalize some retarded integral inequalities
in two independent variables to more general situations. These integral in-

equalities can be applied as tools to the study of certain class of integral and

differential equations with time delay.

1. Introduction

Integral inequalities play an important role in the qualitative analysis of the
solutions to differential and integral equations. Over the years many retarded in-
equalities have been discovered (see [1, 8, 10]). The literature on such inequalities
and their applications is vast; see [3, 5, 8] and the references given therein.

In his study of boundedness of solutions to linear second order differential equa-
tions, Pachpatte [9] established and applied the following useful nonlinear integral
inequality.

u(t) ≤ a+
∫ t

t0

f(s)w(u(s))ds (1.1)

where a > 0 is a constant. Replacing t by a function b(t) in (1.1), Lipovan [6]
investigates the retarded Gronwall-like inequalities

u(t) ≤ a+
∫ t

t0

f(s)w(u(s))ds+
∫ b(t)

b(t)

g(s)w(u(s))ds (1.2)

In recent years, Pachpatte [10] discovered some new integral inequalities involv-
ing functions in two independent variables. These inequalities are applied to study
the boundedness and uniqueness of the solutions of the following terminal value
problem for the hyperbolic partial differential equation (1.3) with conditions (1.4),

D1D2u(x, y) = h(x, y, u(x, y)) + r(x, y), (1.3)

u(x,∞) = σ∞(x), u(∞, y) = τ∞(y), φ(∞,∞) = k, (1.4)

These inequalities have been generalized to more than one variable. Many au-
thors have established Gronwall-like type integral inequalities in two independent
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variables; see for example [3, 11, 12]. Recently, Khan in [2] obtained the inequality

φ(x, y) = c+
∫ x

0

A(s, y)φ(s, y)ds+
∫ y

0

B(x, t)φp(x, t)dt

+
∫ x

0

∫ y

0

H(s, t)φp(x, y)dtds,
(1.5)

and its variants, where 1 > p > 0 and c > 0 are constants and φ(x, y) ∈ C(R2
+,R+).

However, sometimes we need to study such inequalities with a function c(x, y)
in place of the constant term c. Our main aim here, motivated by the works
of [2, 6, 10], is to establish some new and more general retarded Gronwall-like
integral inequalities with two independent variables which are useful in the analysis
of certain classes of partial differential equations.

In this article we discuss more general forms of integral inequality

φq(x, y) ≤ c(x, y) +
n1∑
i=1

∫ x

x0

ai(s, y)φp(s, y)ds+
n2∑
j=1

∫ y

y0

bj(x, t)φp(x, t)dt

+
n3∑
k=1

vk(x, y)
∫ x

x0

∫ y

y0

dk(x, y, s, t)g(φ(s, t)) ds dt,

(1.6)

where c(x, y) ≥ 0 is a function and q ≥ p > 0 are constants for all (x, y) ∈ ∆.
Our results remain valid if we replace φp(x, t) by w(u(s, y)) in (1.6) where w ∈
C(R+,R+) be nondecreasing function with w(φ) > 0 for φ > 0. Furthermore, we
show that the results of [2, 6] can be deduced from our results in some special cases.

Motivated by the hyperbolic partial differential equation (1.3)-(1.4) in [10, Pach-
patte], we give the boundedness of the solutions of the initial boundary value prob-
lem for hyperbolic partial delay differential equations.

2. Main results

In what follows, we define I = [x0, X) and J = [x0, Y ) are the given subsets
of R+, and ∆ = I × J , E = {(x, y, s, t) ∈ ∆2 : x0 ≤ s ≤ x ≤ X; y0 ≤ t ≤ y ≤
Y }. We also assume that all improper integrals appeared in the sequel are always
convergent, and suppose that

(H1) All ai(x, y) (i = 1, 2, . . . , n1); bj(x, y) (j = 1, . . . , n2); c(x, y) and φ(x, y) are
nonnegative, continuous functions and nondecreasing in each variables on
∆.

(H2) All α : I → I, β : J → J are continuously differentiable and nondecreasing
such that α(x) ≤ x on I, β(y) ≤ y on J .

(H3) All vk(x, y) (k = 1, 2, . . . , n3) are nonnegative, continuous functions and
nondecreasing in each variables on ∆.

(H4) All dk(x, y, s, t) : E → R+ (k = 1, 2, . . . , n3) are nonnegative, continuous
functions and nondecreasing in x and y for each variables (s, t) on ∆.

(H5) g : R+ → R+ be nonnegative, continuous, nondecreasing and submulti-
plicative function with w(φ) > 0 for φ > 0.

The following lemma is useful in our main results.

Lemma 2.1. Let c, φ and ai ∈ C(I,R+) be nonnegative continuous functions for
any x ∈ Iand i = 1, 2, . . . , n with c(x) is nondecreasing function for x ∈ I and
assume that α ∈ C1(I, J), β ∈ C1(I, J) be nondecreasing with α(x) ≤ x on I,
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β(y) ≤ y on J . Suppose that q ≥ p > 0 are constants. If φ(x) satisfies the
inequality

φq(x) ≤ c(x) +
n∑
i=1

∫ α(x)

α(x0)

ai(s)φp(s)ds, (2.1)

for x0 ≤ s ≤ x, then the following inequalities hold

φ(x) ≤

c
1/p(x) exp

(
1
p

∑n
i=1

∫ α(x)

α(x0)
ai(s)ds

)
, if p = q,

c1/q(x) +
(

1 + q−p
q

∑n
i=1

∫ α(x)

α(x0)
c(p−q)/q(s)ai(s).ds

) 1
q−p

if p < q,
(2.2)

for x ∈ I.

Now, let us list our main results.

Theorem 2.2. Suppose (H1)–(H2) hold and the constant p satisfies 1 > p > 0.
(1) If φ(x, y) satisfies

φ(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φ(s, y)ds+
n2∑
i=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt, (2.3)

for all (x, y) ∈ ∆, then

φ(x, y) ≤ c(x, y)E1(x, y)Q1(x, y), (2.4)

for all (x, y) ∈ ∆. Where

E1(x, y) = exp
( n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)ds
)

(2.5)

Q1(x, y) =
(

1 + (1− p)
n2∑
i=1

∫ β(y)

β(y0)

bj(x, t)c(p−1)(x, t)Ep1 (x, t)dt
) 1

1−p

. (2.6)

(2) If φ(x, y) satisfies

φ(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

a(s, y)φp(s, y)ds+
n2∑
i=1

∫ β(y)

β(y0)

b(x, t)φ(x, t)dt, (2.7)

for all (x, y) ∈ ∆, then

φ(x, y) ≤ c(x, y)E2(x, y)Q2(x, y), (2.8)

for all (x, y) ∈ ∆. Where

E1(x, y) = exp
( n2∑
j=1

∫ β(y)

β(y0)

b(x, t)dt
)

(2.9)

Q1(x, y) =
(

1 + (1− p)
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)c(p−1)(s, y)Ep2 (s, y)dt
) 1

1−p

. (2.10)

The proof of the theorem will be given in the next section.

Theorem 2.3. Suppose (H1)–(H2) hold and q ≥ p > 0 are constants. If φ(x, y)
satisfies the inequality

φq(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φp(s, y)ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt,

(2.11)
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for all (x, y) ∈ ∆, then we have:
(1) If p = q, then

φ(x, y) ≤ c1/p(x, y)E1/p
1 (x, y)Q1/p

3 (x, y), (2.12)

for all (x, y) ∈ ∆, where

Q3(x, y) = exp
( n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)E1(x, t)dt
)
, (2.13)

and E1 is defined in 2.5.
(2) If p < q, then

φ(x, y) ≤ c1/q(x, y)E4(x, y)Q4(x, y), (2.14)

for all (x, y) ∈ ∆, where

Q4(x, y) =
[
1 +

q − p
q

n2∑
j=1

∫ β(y)

β(y0)

z
p−q

q (x, t)bj(x, t)dt
] 1

q−p

, (2.15)

E4(x, y) =
[
1 +

q − p
q

n1∑
i=1

∫ α(x)

α(x0)

c
p−q

q (s, y)ai(s, y)Qp4(s, y)dt
] 1

q−p

. (2.16)

Where z(x, y) ≤ c(x, y)Eq4(x, y), for all all (x, y) ∈ ∆.

Remark 2.4. If we take b(x, y) = 0 and keep y fixed, then Theorem 2.3 reduce
exactly to Lemma 2.1.

Remark 2.5. Using similar methods to those in the proof our main result above, if
we replace φp(x, t) by w(u(s, y)) where w ∈ C(R+,R+ ) is a nondecreasing function
with w(φ) > 0 for φ > 0, an estimate of the inequality (2.11) can be easily obtained;
in this case our result above reduces to the main results in [2].

Using Theorems 2.2 and 2.3, we can get some more generalized results as follow.

Theorem 2.6. Suppose (H1)–(H5) hold and 1 ≥ p > 0 is constant.
(1) If φ(x, y) satisfies

φ(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φ(s, y)ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt

+
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)g(φ(s, t)) ds dt

(2.17)

for all (x, y) ∈ ∆, then

φ(x, y) ≤M1(x, y)E1(x, y)Q̃1(x, y), (2.18)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1. Where

M1(x, y) ≤ G−1
[
G(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g(E1(s, t))g(Q̃1(s, t)) ds dt
]
,

(2.19)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1 and

G(φ) =
∫ φ

φ0

δt

g(t)
, φ ≥ φ0 > 0. (2.20)
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Where E1(x, y) is defined in 2.9 and

Q̃1(x, y) =
[
1 + (1− p)

n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)M
p−1
1 (x, t)Ep1 (x, t)dt

] 1
1−p

. (2.21)

Where G−1 is the inverse function of G and the real numbers x1, y1 ∈ R+ are chosen
so that G(c(x, y))+

∑n3
k=1 vk(x, y)

∫ α(x)

α(x0)

∫ β(y)

β(y0)
dk(x, y, s, t)g(E1(s, t))g(Q̃1(s, t)) ds dt

is in Dom(G−1).
(2) If φ(x, y) satisfies

φ(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φp(s, y)ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φ(x, t)dt

+
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)g(φ(s, t)) ds dt,

(2.22)

for all (x, y) ∈ ∆, then

φ(x, y) ≤M2(x, y)E2(x, y)Q̃2(x, y), (2.23)

for all x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 . Where

M2(x, y) ≤ G−1
[
G(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g(E2(s, t))g(Q̃2(s, t)) ds dt
]
,

(2.24)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, G and E1 are defined in 2.20 and 2.9, with

Q̃2(x, y) =
[
1 + (1− p)

n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)Mp−1
2 (s, y)Ep2 (s, y)ds

] 1
1−p

. (2.25)

Where G−1 is the inverse function of G and the real numbers x2, y2 ∈ R+ are chosen
so that G(c(x, y))+

∑n3
k=1 vk(x, y)

∫ α(x)

α(x0)

∫ β(y)

β(y0)
dk(x, y, s, t)g(E2(s, t))g(Q̃2(s, t)) ds dt

is in Dom(G−1).

Remark 2.7. If we take dk(x, y, s, t) = 0 for any k = 1, 2, . . . , n3 in the previous
Theorem, then Theorem 2.6 reduce to Theorem 2.2.

By choosing suitable functions for g, some interesting new Gronwall-like type
inequalities of two variables can be obtained from Theorem 2.6. For example if we
take g(s) = sr, the following interesting inequalities are easily obtained.

Corollary 2.8. Suppose (H1), (H2), (H4) hold. Suppose 1 ≥ p > 0 and 0 < r < 1
are constants and if φ(x, y) satisfies the inequality

φ(x, y) ≤ c(x, y) +
∫ α(x)

α(x0)

a1(s, y)φ(s, y)ds+
∫ β(y)

β(y0)

b1(x, t)φp(x, t)dt

+
∫ α(x)

α(x0)

∫ β(y)

β(y0)

d1(x, y, s, t)φr(s, t) ds dt

(2.26)

for all (x, y) ∈ ∆, then

φ(x, y) ≤ m1(x, y)e1(x, y)q̃1(x, y), (2.27)



6 H. KHELLAF, M. SMAKDJI, M. DENCHE EJDE-2014/117

for all (x, y) ∈ ∆. Where

m1(x, y) ≤
[
c1−r(x, y) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

d1(x, y, s, t)er1(s, t)q̃r1(s, t) ds dt
] 1

1−r

,

(2.28)
for all (x, y) ∈ ∆, and

q̃1(x, y) =
[
1 + (1− p)

∫ β(y)

β(y0)

bj(x, t)m
p−1
1 (x, t)ep1(x, t)dt

] 1
1−p

, (2.29)

e1(x, y) = exp
(∫ α(x)

α(x0)

a1(s, y)ds
)
. (2.30)

Remark 2.9. (i) If r = 0, by using Theorem 2.6, an estimation of (2.26) can be
easily obtained.

(ii) also when r = 1, an estimation of the inequality (2.26) can be easily obtained;
for space-saving, the details are omitted here.

Remark 2.10. Corollary 2.8 reduces to the main results in [2, Theorem 2.3], when
c(x, y) = c (constant), α(x) = x, β(y) = y, d1(x, y, s, t) = d(s, t), x0 = y0 = 0 and
r = p.

We can also get an interesting result as follows.

Corollary 2.11. Suppose (H1), (H2), (H4) hold. Suppose 1 ≥ p > 0, 0 < r < 1
are a constants and if φ(x, y) satisfies the inequality

φ(x, y) ≤ c(x, y) +
∫ α(x)

α(x0)

a1(s, y)φp(s, y)ds+
∫ β(y)

β(y0)

b1(x, t)φ(x, t)dt

+
∫ α(x)

α(x0)

∫ β(y)

β(y0)

d1(x, y, s, t)φr(s, t) ds dt

for all (x, y) ∈ ∆, then

φ(x, y) ≤ m2(x, y)e2(x, y)q̃2(x, y),

for all (x, y) ∈ ∆. Where

m2(x, y) ≤
[
c1−r(x, y) + (1− r)

∫ α(x)

α(x0)

∫ β(y)

β(y0)

d1(x, y, s, t)er2(s, t)q̃r2(s, t) ds dt
] 1

1−r

,

for all (x, y) ∈ ∆, and

q̃2(x, y) =
[
1 + (1− p)

∫ α(x)

α(x0)

a1(s, y)mp−1
2 (s, y)ep2(s, y)ds

] 1
1−p

,

e2(x, y) = exp
(∫ β(y)

β(y0)

b1(x, t)dt
)
.

Remark 2.12. Under some suitable conditions, Corollary 2.11 is also a general-
ization of the main result in [2, Theorem 2.4].

Using Theorem 2.3, we can get some more generalized results as follows.
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Theorem 2.13. Suppose (H1)–(H5) hold. Suppose that q ≥ p > 0 are constants.
If φ(x, y) satisfies

φq(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φp(s, y)ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt

+
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)g(φ(s, t)) ds dt

(2.31)
for all (x, y) ∈ ∆, then the following conclusions are true:

(1) If p = q, then

φ(x, y) ≤ N1/p
1 (x, y)E1/p

1 (x, y)Q1/p
3 (x, y), (2.32)

for all x0 ≤ x ≤ x3, y0 ≤ y ≤ y3. Where

N1(x, y) ≤ H−1
[
H(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g(E1/p
1 (s, t))g(Q1/p

3 (s, t)) ds dt
]
,

(2.33)

for all x0 ≤ x ≤ x3, y0 ≤ y ≤ y3and

H(φ) =
∫ φ

φ0

dt

g(t1/q)
, φ ≥ φ0 > 0. (2.34)

Where E1(x, y) and Q3(x, y) are defined in in 2.5 and 2.13. Where H−1 is the
inverse function of H and the real numbers x3, y3 are chosen so that H(c(x, y)) +∑n3
k=1 vk(x, y)

∫ α(x)

α(x0)

∫ β(y)

β(y0)
dk(x, y, s, t)g(E1/p

1 (s, t))g(Q1/p
3 (s, t)) ds dt ∈ Dom(H−1).

(2) If p < q, then

φ(x, y) ≤ N1/q
2 (x, y)Ẽ4(x, y)Q̃4(x, y), (2.35)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4 . Where

N2(x, y) ≤ H−1
[
H(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g(Ẽ4(s, t)Q̃4(s, t)) ds dt
]
,

(2.36)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4, H is defined in 2.34, with

Q̃4(x, y) =
[
1 +

(q − p)
q

n2∑
j=1

∫ β(y)

β(y0)

bj(s, y)z̃(p−qà/q(x, t)dt
] 1

q−p

, (2.37)

Ẽ4(x, y) =
[
1 +

(q − p)
q

n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)N (p−qà/q
2 (s, y)Q̃p4(s, y)ds

] 1
q−p

(2.38)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4, where z̃(x, y) ≤ N2(x, y)Ẽq4(x, y). Here H−1 is the
inverse function of H and the real numbers x4, y4 are chosen so that H(c(x, y)) +∑n3
k=1 vk(x, y)

∫ α(x)

α(x0)

∫ β(y)

β(y0)
dk(x, y, s, t)g(Ẽ4(s, t)Q̃4(s, t)) ds dt ∈ Dom(H−1).
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Remark 2.14. Various choices of c, g, dk, vk and p, q, α, β can give many different
inequalities. Obviously, our results generalize many results obtained before, for
example, let p = 1, α(x) = x, β(y) = y, g(s) = s, c(x, y) = c > 0 (constant),
n1 = n2 = n3 = 1, x0 = y0 = 0 and d1(x, y, s, t) = d1(s, t), then our Theorem
2.13(1) reduces to [2, Theorem 2.1]. Considering q = 1, α(x) = x, β(y) = y,
w(s) = sp, n1 = n2 = n3 = 1, x0 = y0 = 0, d1(x, y, s, t) = d1(s, t) and c(x, y) =
c ≥ 0 (constant) in Theorem 2.13(2), we obtain [2, Theorem 2.5]. If we take
q = p = 1, g(s) = sr, 1 > r > 0, α(x) = x, β(y) = y, c(s, y) = c ≥ 0 (constant),
n1 = n2 = n3 = 1, x0 = y0 = 0, v1(x, y) = 1 and d1(x, y, s, t) = d1(s, t), then the
inequality established in Theorem 2.13(1) reduces to the [2, Theorem 2.2].

Remark 2.15. By replacing φp(x, t) by w(u(s, y)) where w ∈ C(R+,R+ ) be
nondecreasing function with w(φ) > 0 for φ > 0 in the line above (2.31) and using
the same arguments in the proof of our theorem 2.13, an estimation of the inequality
(2.31) can be easily obtained. In particular, when a (a nonnegative constant) and
dk(x, y, s, t) =0 for all k = 0, . . . , n3, the inequality (2.31) becomes

φq(x, y) ≤ a+
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)w(φ(s, y))ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)w(φ(x, t))dt (2.39)

the general form of (2.31) in the case of two independent variables. Thus our result
implies to the main result in [2].

Remark 2.16. By choosing suitable functions for g for example g(s) = sr with
q ≥ r ≥ 0 or when we take q = r > 0 (with p = q or q > p), using similar arguments
in the proof of Theorem 2.13, we can obtain many interesting new retarded integral
inequalities, but, for space-saving, the details are omitted here.

Remark 2.17. Using similar method of those in the proof of our main results
above, with a suitable conditions, we can obtain some new reversed inequalities of
our results.

3. Proof of theorems

Since the proofs resemble each other, we give the details only for Theorem 2.2(1),
Theorem 2.3(2), Throem2.6(1) and Theorem 2.13(2). The proofs of the remaining
inequalities can be completed by following the proofs of the above-mentioned in-
equalities. To the best our knowledge, Lemma 2.1 is not found in the literature (in
this form). Therefore, we give a proof here.

Proof of Lemma 2.1. If c(x) > 0 (i) If p = q holds, letting z(x) = [ φ(x)
c1/p(x)

]p, from
(2.1) derive that

z(x) ≤ 1 +
n∑
i=1

∫ α(x)

α(x0)

ai(s)z(s)ds, (3.1)

for x ∈ I. define a positive, continuous and nondecreasing function v(x) by the
right hand of (3.1), then z(x) ≤ v(x) and v(x0) = 1 hold. Since v(x) is positive
and by differentiation we obtain

v(x) =
n∑
i=1

α′(x)ai(α(x))z(α(x)),
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v′(x)
v(x)

≤
n∑
i=1

α′(x)ai(α(x)), x ∈ I. (3.2)

By integration of (3.2) from x0 to x, we have

v(x) ≤ exp
( n∑
i=1

∫ α(x)

α(x0)

ai(s)ds
)
,

hence we obtain

[
φ(x)
c1/p(x)

]p = z(x) ≤ exp[
n∑
i=1

∫ α(x)

α(x0)

ai(s)ds].

This inequality implies the desired inequality (2.2) immediately.
(ii) If p < q holds, letting y(x) = φ(x)

c1/q(x)
, from (2.1) we obtain

yq(x) ≤ 1 +
n∑
i=1

∫ α(x)

α(x0)

ai(s)c(p−q)/q(s)yp(s)ds, (3.3)

Define a positive, continuous and nondecreasing function h(x) by the right hand of
(3.3), then y(x) ≤ h1/q(x) and h(x0) = 1 hold. we carry out the above procedure,
we obtain

φ(x)
c1/q(x)

= y(x) ≤
[
1 +

q − p
q

n∑
i=1

∫ α(x)

α(x0)

c(p−q)/q(s)ai(s)ds
] 1

q−p

,

This inequality implies the desired inequality (2.2) immediately.
If c(x) ≥ 0 is nonnegative, we carry out the above procedure in (i) and (ii) with

c(x)+ε instead of c(x), where ε > 0 is an arbitrary small constant, and subsequently
pass to the limit as ε→ 0 to obtain (2.2). This completes the proof. �

Proof of Theorem 2.2. (1) We define a function

z(x, y) = c(x, y) +
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt, (3.4)

by substituting (3.4) in (2.3), we obtain

φ(x, y) ≤ z(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φ(s, y)ds, (x, y) ∈ ∆. (3.5)

Clearly, z(x, y) is a nonnegative, continuous and nondecreasing function in x. Treat-
ing y, y ∈ I2 fixed in (3.5), a suitable application of Lemma 2.1 to (3.5) we obtain

φ(x, y) ≤ z(x, y)E1(x, y), (3.6)

for (x, y) ∈ ∆, where E1(x, y) is defined as in (2.5).
By (3.4) and (3.6), we obtain

z(x, y) ≤ c(x, y) +
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)E
p
1 (x, t)zp(x, t)dt. (3.7)

Keeping x fixed in (3.7), an estimation of z(x, y) can be obtained by a suitable
application of Lemma 2.1 to (3.7), after that, we obtain

z(x, y) ≤ c(x, y)Q1(x, y), (3.8)

for (x, y) ∈ ∆, where Q1(x, y) is defined as in (2.6).
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Finally, substituting the last inequality into (3.6), the desired inequality (2.4)
follows immediately. �

Proof of Theorem 2.3(2). We define a function

z(x, y) = c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φp(s, y)ds, (3.9)

by substituting (3.9) in (2.11), we obtain

φq(x, y) ≤ z(x, y) +
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt. (3.10)

Clearly, z(x, y) is a nonnegative, continuous and nondecreasing function in y. Treat-
ing x fixed in (3.10), a suitable application of Lemma 2.1 to (3.10) we obtain

φ(x, y) ≤ z(x, y)1/qQ4(x, y), (3.11)

for (x, y) ∈ ∆, where Q4(x, y) is defined as in (2.15).
By (3.11) and (3.9), we obtain

z(x, y) ≤ c(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)Qp4(s, y)zp/q(s, y)ds. (3.12)

Keeping y fixed in (3.12), an estimation of z(x, y) can be obtained by a suitable
application of Lemma 2.1 to (3.12), after that, we obtain

z(x, y) ≤ c(x, y)Eq4(x, y),

for (x, y) ∈ ∆,where E4(x, y) is defined as in (2.16).
Finally, substituting the last inequality into (3.11), the desired inequality (2.14)

follows immediately.
�

Proof of Theorem 2.6. If c(x, y) > 0 . Setting

M1(x, y) = c(x, y) +
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)g(φ(s, t)) ds dt, (3.13)

inequality (2.17) can be restated as

φ(x, y) ≤M1(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φ(s, y)ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt,

(3.14)
Clearly, M1(x, y) is nonnegative and nondecreasing function in each in x and y .
Now a suitable application of the inequality (2.3) in Theorem 2.2 to (3.14), yields

φ(x, y) ≤M1(x, y)E1(x, y)Q̃1(x, y), (3.15)

where E1(x, y), Q̃1(x, y) are defined in (2.5) and (2.21). From (3.13) and (3.15)
and by using the fact that w is submultiplicative, we have

M1(x, y) ≤ c(x, y) +
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g
(
E1(s, t)Q̃1(s, t)

)
g(M1(s, t)) ds dt,

(3.16)
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for (x, y) ∈ ∆. Fixing any numbers x̃1 and ỹ1 with 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1,
from (3.16) we have

M1(x, y) ≤ c(x̃1, ỹ1) +
n3∑
k=1

vk(x̃1, ỹ1)

×
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x̃1, ỹ1, s, t)g
(
E1(s, t)Q̃1(s, t)

)
g(M1(s, t)) ds dt

for x0 ≤ x ≤ x̃1, y0 ≤ y ≤ ỹ1.
Defining r1(x, y) as the right-hand side of the last inequality, then r1(x0, y) =

r1(x, y0) = c(x̃1, ỹ1), and
M1(x, y) ≤ r1(x, y), (3.17)

with r1(x, y) is positive and nondecreasing in y ∈ [y0, ỹ0], and

D1r1(x, y) =
n3∑
k=1

vk(x̃1, ỹ1)α′(x)
∫ β(y)

β(y0)

dk(x̃1, ỹ1, α(x), t)

× g
(
E1(α(x), t)Q̃1(α(x), t)

)
g(M1(α(x), t))dt,

≤
n3∑
k=1

vk(x̃1, ỹ1)α′(x)
∫ β(y)

β(y0)

dk(x̃1, ỹ1, α(x), t)

× g
(
E1(α(x), t)Q̃1(α(x), t)

)
g(r1(α(x), t))dt.

≤ w(r1(x, y))
n3∑
k=1

vk(x̃1, ỹ1)α′(x)

×
∫ β(y)

β(y0)

dk(x̃1, ỹ1, α(x), t)g
(
E1(α(x), t)Q̃1(α(x), t)

)
dt.

(3.18)

Dividing both sides of (3.18) by w(r1(x, y)), we obtain

D1r1(x, y)
g(r1(x, y))

≤ sumn3
k=1vk(x̃1, ỹ1)α′(x)

∫ β(y)

β(y0)

dk(x̃1, ỹ1, α(x), t)

× g
(
E1(α(x), t)Q̃1(α(x), t)

)
dt,

(3.19)

from (2.20) and (3.19), we have

D1G(r1(x, y)) ≤
n3∑
k=1

vk(x̃1, ỹ1)α′(x)

×
∫ β(y)

β(y0)

dk(x̃1, ỹ1, α(x), t)g
(
E1(α(x), t)Q̃1(α(x), t)

)
dt, .

(3.20)

Now setting x = s in (3.20) and then integrating with respect to s from x0 to x,
we obtain

G(r1(x, y)) ≤ G(r1(x0, y)) +
n3∑
k=1

vk(x̃1, ỹ1)

×
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x̃1, ỹ1, s, t)g
(
E1(s, t)Q̃1(s, t)

)
ds dt.
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Noting G(r1(x0, y)) = G(c(x̃1, ỹ1)), we have

G(r1(x, y)) ≤ G(c(x̃1, ỹ1)) +
n3∑
k=1

vk(x̃1, ỹ1)

×
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x̃1, ỹ1, s, t)g
(
E1(s, t)Q̃1(s, t)

)
ds dt.

Taking x = x̃1, y = ỹ1 in (3.17) and the last inequality, we obtain

M1(x̃1, ỹ1) ≤ r1(x̃1, ỹ1), (3.21)

and

G(r1(x̃1, ỹ1)) ≤ G(c(x̃1, ỹ1)) +
n3∑
k=1

vk(x̃1, ỹ1)

×
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x̃1, ỹ1, s, t)w
(
E1(s, t)Q̃1(s, t)

)
ds dt.

(3.22)

Since 0 < x̃1 ≤ x1 and 0 < ỹ1 ≤ y1 are arbitrary, from (3.21) and (3.22), we have

M1(x, y) ≤ r1(x, y), (3.23)

and

r1(x, y) ≤ G−1
[
G(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

g
(
E1(s, t)Q̃1(s, t)

)
ds dt

]
.

(3.24)

for all x0 < x ≤ x1, y0 < y ≤ y1. Hence by (3.23) and (3.24), we obtain

M1(x, y) ≤ G−1
[
G(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g
(
E1(s, t)Q̃1(s, t)

)
ds dt

]
,

(3.25)

for all x0 < x ≤ x1, y0 < y ≤ y1. By (2.17), (3.25) holds also when x = x0,y = y0.
Finally, substituting the last inequality into (3.15), the desired inequality (2.18)

follows immediately.
If c(x, y) ≥ 0 is nonnegative, we carry out the above procedure in the proof

of Theorem 2.6(1) with c(x, y) + ε instead of c(x, y), where ε > 0 is an arbitrary
small constant, and subsequently pass to the limit as ε → 0 to obtain (2.18) This
completes the proof.

The proof of Theorem 2.6(2) is similar to the argument in the proof of Theorem
2.6(1) with suitable modifications. We omit the details here. �

Proof of Theorem 2.13. Setting

N2(x, y) = c(x, y) +
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)g(φ(s, t)) ds dt, (3.26)
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inequality (2.31) can be restated as

φq(x, y) ≤ N2(x, y) +
n1∑
i=1

∫ α(x)

α(x0)

ai(s, y)φp(s, y)ds+
n2∑
j=1

∫ β(y)

β(y0)

bj(x, t)φp(x, t)dt,

(3.27)
Clearly, N2(x, y) is nonnegative and nondecreasing function in each in x and y.
Now a suitable application of inequality (2.14) in Theorem 2.3, to (3.27), yields

φ(x, y) ≤ N1/q
2 (x, y)Ẽ4(x, y)Q̃4(x, y), (3.28)

where Ẽ4(x, y), Q̃4(x, y) are defined in (2.38) and (2.37). From (3.26) and (3.28)
and by using the fact that w is submultiplicative, we have

N2(x, y) ≤ c(x, y) +
n3∑
k=1

vk(x, y)
∫ α(x)

α(x0)

∫ β(y)

β(y0)

dk(x, y, s, t)

× g
(
Ẽ4(s, t)Q̃4(s, t)

)
g(N1/q

1 (s, t)) ds dt,

(3.29)

for (x, y) ∈ ∆.
By following the same steps from (3.16)-(3.25) in (3.29), we obtain

N2(x, y) ≤ H−1
[
H(c(x, y)) +

n3∑
k=1

vk(x, y)
∫ x

x0

∫ y

y0

dk(x, y, s, t)w
(
Ẽ4(s, t)

)
× w(Q̃4(s, t)) ds dt

]
,

for all x0 ≤ x ≤ x41, y0 ≤ y ≤ y4. Finally, substituting the last inequality in (3.28),
the desired inequality (2.35) follows immediately. �

4. An application

In this section we present an application of the inequality (2.31) given in Theorem
2.13 to study the boundedness of the solutions of the initial boundary value problem
for hyperbolic partial delay differential equations of the form

D1D2φ
p(x, y) = h

(
x, y, φ(x− α(x), y − β(y))

)
+D1g1

(
x, y, φ(x− α(x), y)

)
+D2g2

(
x, y, φ(x, y − β(y))

)
,

φ(x, y0) = σ1(x), φ(x0, y) = σ2(y), φ(x0, y0) = k,

(4.1)

for all (x, y) ∈ ∆.
Where h, g1, g2 ∈ C(∆ × R,R) and σ1, σ2 ∈ C(R+,R+), k, p > 0 are constants,

α ∈ C1(I,R), β ∈ C1(J,R) nondecreasing functions such that α(x) ≤ x on I,
β(y) ≤ y on J , and α′(x) < 1, β′(y) < 1 with α(x0) = 0 and β(y0) = 0.

Theorem 4.1. Suppose that

|h(x, y, φ)| ≤ d1(x, y)φr, (4.2)

|g1(x, y, φ)| ≤ b1(x, y)φp, (4.3)

|g2(x, y, φ)| ≤ a1(x, y)φp, (4.4)

|c1(x) + c2(y)− k| ≤ c, c ≥ 0 (constant). (4.5)
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Where 1 > p > r > 0, b1(x, y), a1(x, y) are as in Theorem 2.13 and d1(x, y) ∈
C(∆,R+) be nondecreasing function, with

c1(x) = σ1(x)−
∫ x

x0

g2(s, x0, σ1(s))ds,

c2(y) = σ2(y)−
∫ y

y0

g1(y0, t, σ2(t))dt.

If φ(x, y) is any solution of (4.1), then

φ(x, y) ≤
(
ẽ(x, y)q̃(x, y)

)1/p[
c(p−r)/p

+
p− r
p

∫ ψ(x)

ψ(x0)

∫ Ω(y)

Ω(y0)

d̄1(s, t)
(
ẽ(x, y)q̃(x, y)

)r/p
ds dt

] 1
p−r

,
(4.6)

for (x, y) ∈ ∆, in which ψ(x) = x− α(x) on I and Ω(y) = y − β(y) on J , and

ẽ(x, y) = exp
(∫ ψ(x)

ψ(x0)

ā1(s, y)ds
)
, (4.7)

q̃(x, y) = exp
(∫ Ω(y)

Ω(y0)

b̄1(x, t)ẽ(x, t)dt
)
. (4.8)

For all (x, y) ∈ ∆, where

ā1(δ, t) = ξ1 · a1(δ + α(s), t), (4.9)

b̄1(s, τ) = ξ2 · b1(s, τ + β(t)), (4.10)

d̄1(δ, τ) = ξ1ξ2 · d1(δ + α(s), τ + β(t)), (4.11)

for all s, δ ∈ I and t, τ ∈ J ; and

ξ1 = Max
x∈I

1
1− α′(x)

, ξ2 = Max
y∈I

1
1− β′(y)

Proof. It is easy to see that, the solution φ(x, y) of problem (4.1) satisfies the
equivalent integral equation

φp(x, y) = σ1(x) + σ2(y)− k +
∫ x

0

∫ y

0

h(s, t, φ(s, t)) ds dt+
∫ y

0

g1(x, t, φ(x, t))dt

+
∫ x

0

g2(s, y, φ(s, y)ds−
∫ x

0

g2(s, 0, σ1(s))ds−
∫ y

0

g1(0, t, σ2(t))dt.

(4.12)
From (4.12) and with (4.2)-(4.12), we have

φp(x, y) ≤ c+
∫ x

0

a1(s, y)φp(s− α(s), y)ds+
∫ y

0

b1(x, t)φp(x, t− β(t))dt

+
∫ x

0

∫ y

0

d1(s, t)φr(s− α(s), t− β(t)) ds dt,
(4.13)

Using (4.13) and making a change of variables, we have

φp(x, y) ≤ c+
∫ ψ(x)

ψ(x0)

ā1(s, y)φp(s, y)ds+
∫ Ω(y)

Ω(y0)

b̄1(x, t)φp(x, t)dt

+
∫ ψ(x)

ψ(x0)

∫ Ω(y)

Ω(y0)

d̄1(s, t)φr(s, t) ds dt,

(4.14)
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for (x, y) ∈ ∆, with p > r > 0. Where ψ(x) = x− α(x) on I and Ω(y) = y − β(y)
on J , and ā1, b̄1 and d̄1 are defined in (4.9), (4.9) and (4.10)

Now, a suitable application of Theorem 2.13(1) to (4.14), with g(s) = sr,
c(x, y) = c, v1(x, y) = 1, d1(x, y, s, t) = d̄1(s, t), n1 = n2 = n3 = 1, yields

φ(x, y) ≤
(
ẽ(x, y)q̃(x, y)

)1/p[
c(p−r)/p

+
p− r
p

∫ ψ(x)

ψ(x0)

∫ Ω(y)

Ω(y0)

d̄1(s, t)
(
ẽ(x, y)q̃(x, y)

)r/p
ds dt

] 1
p−r

for all (x, y) ∈ ∆, where ẽ(x, y) and q̃(x, y) are defined in (4.7) and (4.8). �

We also note that the inequalities established in Theorems 2.13 and 2.13 and
the applications given in Theorems 2.13 can be extended very easily to functions
involving many independent variables.

Finally, we note that under some suitable conditions, the uniqueness and contin-
uous dependence of the solutions of (4.1), can also be discussed using our results.
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