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AN EXTENSION PROBLEM RELATED TO THE SQUARE ROOT
OF THE LAPLACIAN WITH NEUMANN BOUNDARY

CONDITION

MICHELE DE OLIVEIRA ALVES, SERGIO MUNIZ OLIVA

Abstract. In this work we define the square root of the Laplacian operator
with Neumann boundary condition via harmonic extension method. By using

Fourier series and periodic even extension we define the non-local operator

square root in three type of bounded domains such as an interval, square or a
ball. Also, as application we study the existence of weak solutions for a class

of nonlinear elliptic problems.

1. Introduction

The fractional powers of the Laplacian operator can be seen as infinitesimal
generators of Levy stable diffusion processes. They arise in population dynamics,
chemical reactions in liquids and other applications in mathematical physics, see
for example [4].

From mathematical theory the fractional powers of the Laplacian can be de-
fined using Fourier transform, formula of Riesz fractional derivative or else using
harmonic extension techniques, see for example [8, 13, 21, 26]. The harmonic ex-
tension techniques have been frequently used and consist in considering an operator
T given by

u 7→ T (u)(x) = −vz(x, 0),

where u : Rn → R is a smooth bounded function and v : Rn+1
+ → R is the unique

solution of the problem
∆v(x, z) = 0 in Rn+1

+ ,

v(x, 0) = u(x) on Rn.
(1.1)

It is well known that the operator T that maps the Dirichlet condition u to the
Neumann condition−vz(·, 0) is exactly the operator (−∆)1/2, namely, the fractional
power s = 1/2 of the Laplacian.

In [7] the authors generalized the above method using a similar extension problem
with s ∈ (0, 1). Essentially, given a smooth bounded function u : Rn → R, they

2000 Mathematics Subject Classification. 35J50, 35S05.
Key words and phrases. Harmonic extension; Neumann boundary condition;

square root of the Laplacian; nonlinear problem.
c©2014 Texas State University - San Marcos.

Submitted June 17, 2013. Published January 8, 2014.

1



2 M. O. ALVES, S. M. OLIVA EJDE-2014/12

considered the extension problem

∆xv(x, z) +
a

z
vz(x, z) + vzz(x, z) = 0 in Rn+1

+ ,

v(x, 0) = u(x) on Rn.

where a = 1 − 2s with s ∈ (0, 1), and showed that the following equality holds up
to a multiplicative constant

(−∆)su(x) = −Cs lim
z→0+

zavz(x, z),

where Cs = 4s−
1
2 Γ(s)

Γ(1−s) .
Concerning a smooth bounded domain of Rn we can also define the fractional

powers of the Laplacian. For example in [6] the authors studied the square root of
the Laplacian operator with Dirichlet boundary condition. In this case the operator
(−∆)1/2 was defined using the harmonic extension problem

∆v = 0 in Ω× (0,∞),

v = 0 on ∂Ω× [0,+∞),

v = u on Ω× {0},

where Ω ⊂ Rn is a smooth bounded domain.
In this sense there are some works defining the square root of the Laplacian

with Neumann boundary condition in bounded domains, see e.g. [14] and [20]. The
results in [14] were obtained by considering only the interval (0, 1). In [20] the study
was done on a C2,α-bounded domain of Rn defining the operator from a Hilbert
space onto its dual.

The main purpose in this paper is to define the square root of the Laplacian
operator with Neumann boundary condition through of the harmonic extension
method. Using Fourier series and periodic even extension we define the square root
of the Laplacian in three types of bounded domains. Furthermore as an application
we study the existence of nontrivial weak solution for a class of nonlinear elliptic
problems.

In the following we consider Ω as being either the interval, square or ball, and
X denotes the Hilbert space of the L2(Ω)-functions with null average.

Let {ϕj}j∈I be an orthonormal basis in X formed by eigenfunctions associated to
eigenvalues {λj}j∈I of the Laplacian operator −∆ in Ω with homogenous Neumann
boundary condition; that is,

−∆ϕj = λjϕj in Ω,
∂ϕj
∂n

= 0 on ∂Ω,

where I denotes the set N∗ when the domain is an interval, (N×N)−{(0, 0)} when
the domain is a square or (N∗ × N)− {(1, 0)} when the domain is a ball. Then

−∆u =
∑
j∈I

λj〈u, ϕj〉ϕj , ∀u ∈ D(−∆).

We define the operator
A1/2 : D(A1/2) ⊂ X → X

u 7→ −(ṽz(·, 0))|Ω,
(1.2)
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with domain

D(A1/2) =
{
u ∈ Hs(Ω) :

∂u

∂n

∣∣
∂Ω

= 0 and
∫

Ω

u(x)dx = 0
}
, (1.3)

where ṽ is the unique classical solution of the extension problem

∆ṽ(x, z) = 0 in Rn+1
+ ,

ṽ(x, 0) = ũ(x) in Rn,
lim
z→∞

‖ṽ(·, z)‖L2(Ω) = 0

lim
z→∞

‖ṽz(·, z)‖L2(Ω) = 0∫
Ω

ṽ(x, z)dx = 0 ∀z ≥ 0,

(1.4)

with s > 3/2 if Ω is an interval (n = 1) and s > 2 if Ω is a square or ball (n = 2).
The definition of the function ũ is given in Section 3.

Now we define the operator

B1/2 : Y ⊂ X → X

u 7→
∑
j∈I

λ
1/2
j < u,ϕj > ϕj , (1.5)

and we shall see that B1/2 is an extension of the operator A1/2 and coincides with
the operator (−∆)1/2 in Ω, where

Y =
{
u ∈ X :

∑
j∈I

λj |〈u, ϕj〉|2 <∞
}

(1.6)

and λj and ϕj are the eigenvalues and eigenfunctions of −∆ with Neumann bound-
ary condition on Ω, respectively.

Using the above definition for the square root of the Laplacian we will show the
existence of nontrivial weak solution to the problem

(−∆)1/2u = up in Ω, (1.7)

where p = 2 + 1
r and r > 1 odd if Ω is a square or p = p+ 1

r with p even and r ≥ 1
odd if Ω is a interval.

This article is organized as follows. In Section 2 we fix the notation and we
enunciate the main theorem. In Section 3 we define A1/2 and B1/2, and we show
that B1/2 coincides with the square root of the Laplacian with Neumann boundary
condition. This section was divided into two parts. The first one we consider Ω
as an interval or a square. Then we also consider the case where the domain can
be a ball. In Section 4, we show the existence of nontrivial weak solutions to the
nonlinear problem (1.7).

2. Notation and statement of main results

We denote the upper half-space in Rn+1 by

Rn+1
+ = {(x, z) ∈ Rn+1 : z > 0} ;

also denote

Qn = {(x1, . . . , xn) ∈ Rn : |xj | ≤ πfor j = 1, . . . , n}. (2.1)
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Here Ω represents the domains

Ωi = (0, π), Ωq = (0, π)× (0, π), Ωb = B(0, π) .

The Hilbert space is

X =
{
u ∈ L2(Ω) :

∫
Ω

u(x)dx = 0
}
,

with the L2(Ω)-inner product.
Given a domain U in Rn, we denote by Hs(U) the Banach space

Hs(U) = {f ∈ D′(U) : ‖f‖Hs(U) <∞},

with the norm

‖f‖Hs(U) =
(
‖f‖2L2(U) +

∑
|α|=s

‖Dαf‖2L2(U)

)1/2

for s ∈ Z

or

‖f‖Hs(U) =
(
‖f‖2L2(U) +

∑
|α|=[s]

∫
U×U

|Dαf(x)−Dαf(y)|2

|x− y|n+2{s} dx dy
)1/2

for s > 0, non-integer. Note that s = [s] + {s} with [s] is the integer part and
{s} ∈ (0, 1); see e.g. [25, pp. 316, 322-324].

The set of periodic smooth functions is denoted by

C∞per(Rn) =
{
u ∈ C∞(Rn) : u(x+ 2kπ) = u(x), ∀k ∈ Zn, x ∈ Rn

}
,

and

C∞per(R
n+1
+ ) =

{
u ∈ C∞(Rn+1

+ ) : u(x+ 2kπ, z) = u(x, z), ∀k ∈ Zn, (x, z) ∈ Rn+1
+

}
,

see e.g. [17, chapter 2].
Let s ∈ R. We consider the periodic Sobolev spaces Hs

per(Rn) = C∞per(Rn)
equipped with the norm

‖u‖Hsper(Rn) =
( ∑
k∈Zn

(1 + |k|2)s|û(k)|2
)1/2

,

where û(k) are the Fourier coefficients of u and the spacesHs
per(R

n+1
+ ) = C∞per(R

n+1
+ )

equipped with the norm

‖ũ‖Hsper(R
n+1
+ ) =

(∫ ∞
0

s∑
j=0

‖Dj
zũ(·, z)‖2

Hs−jper (Rn)
dz
)1/2

,

see e.g. [17, chapter 2]. Our main result is the following.

Theorem 2.1. Under above conditions, the operator B1/2 defined in (1.5) and
(1.6) is well defined. Moreover, B1/2 is an extension of the operator A1/2 and
coincides with the operator (−∆)1/2 in Ω; that is,

〈u,B1/2u〉 ≥ 0, ∀u ∈ D(B1/2),

B1/2 ◦B1/2u = −∆u, ∀u ∈ D(−∆).
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The proof of Theorem 2.1 will be given in the next section. As an application we
study the existence of a nontrivial weak solution of the nonlinear elliptic problem
(1.7) on Ωi and Ωq. In fact, since (−∆)1/2 is a non-local operator, then from
harmonic extension method, problem (1.7) is equivalent to the problem

∆ṽ(x, z) = 0 in Rn+1
+ ,

ṽz(x, 0) = −ũp(x) in Rn,
lim
z→∞

‖ṽ(·, z)‖L2(Ω) = 0

lim
z→∞

‖ṽz(·, z)‖L2(Ω) = 0∫
Ω

ṽ(x, z) = 0 ∀z ≥ 0,

(2.2)

where ṽ is even and periodic with respect to x, ũ is an even and periodic extension
of u.

3. Proof of the main result

In this section we prove Theorem 2.1. First we need to verify the existence and
uniqueness of a classical solution to the problem (1.4). The proof of this result will
be given in the Theorems 3.1 and 3.7. These theorems are particular cases of [23,
Theorem 1.1], considering that in our case the function ũ is more regular. Here we
use convergence properties of series, see e.g. [10, 15, 24].

3.1. Operator in Ωi and Ωq. Let {λj}j∈I and {ϕj}j∈I be the eigenvalues and
corresponding eigenfunctions of −∆ with Neumann boundary condition on Ωi or
Ωq, then

λj = j2 and ϕj(x) =

√
2
π

cos(jx), ∀j ∈ I

when the domain is Ωi, and

λlk = l2 + k2 and ϕlk(x) = βlk cos(lx) cos(ky), ∀j = (l, k) ∈ I
with

βlk =

{√
2/π if k = 0 or l = 0,

2/π if l, k ≥ 1,
when the domain is Ωq.

Theorem 3.1. Let u ∈ D(A1/2) and ũ its 2π−periodic even extension as in [2].
Then the function ṽ : Rn+1

+ → R given by

ṽ(x, z) =
∑
j∈I

e−
√
λjz〈ũ, ϕj〉ϕj(x)

is the unique classical solution of (1.4) where the convergence is uniform with re-
spect to x, λj and ϕj are the eigenvalues and eigenfunctions of −∆ with Neumann
boundary condition on Ω, respectively.

Proof. It is well known that the ϕj are even and 2π-periodic, then ṽ is even and
2π-periodic with respect to x.

Consider the inequality

e−2
√
λjz ≤ K

λ2
j

, ∀j ∈ I, ∀z > 0,
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where K is a constant that depends on z. Thus,∣∣e−√λjz〈ũ, ϕj〉ϕj(x)
∣∣ ≤ C|〈u, ϕj〉|2 +

K

λ2
j

,

for every (x, z) ∈ Rn+1
+ and j ∈ I, where C is a constant. Therefore by [16] and

Weierstrass criterion it follows that ṽ ∈ Cper(Rn+1
+ ).

We have that ṽ ∈ C2
per(R

n+1
+ ) by [16] and

λmj e
−2
√
λjz ≤ K

λ2
j

, ∀j ∈ I, ∀m ∈ Z∗+, ∀z > 0,

where K is a constant that depends on z.
Using the convergence properties we obtain

∆ṽ(x, z) = 0, ∀(x, z) ∈ Rn+1
+ .

Let u ∈ D(A1/2) ⊂ X, then u =
∑
j∈I〈u, ϕj〉ϕj and ũ =

∑
j∈I〈u, ϕj〉ϕj in L2(Ω)

and L2
per(Rn), respectively. We easily verify that

lim
m→∞

‖ṽ − ψm‖H1
per(R

n+1
+ ) = 0,

where

ψm(x, z) =
m∑
j∈I

e−
√
λjz〈ũ, ϕj〉ϕj(x),

then ṽ ∈ H1
per(R

n+1
+ ) and by Trace theorem from [17] follows that

ṽ(·, 0) =
∑
j∈I
〈u, ϕj〉ϕj

in L2
per(Rn). Therefore, ṽ(·, 0) = ũ(·) almost everywhere in Rn. Moreover,

‖ṽ(·, z)‖2L2(Ω) ≤
(∑
j∈I
|〈u, ϕj〉|2

)
e−2z → 0 as z →∞.

We have that
e−
√
λjz〈 4

λjz2
, ∀z〉0, j ∈ I,

then

‖ṽz(·, z)‖2L2(Ω) =
∑
j∈I

λj |〈u, ϕj〉|2e−2
√
λjz

≤ 4
(∑
j∈I
|〈u, ϕj〉|2

)e−z
z2
→ 0 as z →∞.

From the uniform convergence properties we have∫
Ω

ṽ(x, z)dx =
∑
j∈I
〈u, ϕj〉e−

√
λjz
(∫

Ω

ϕj(x)dx
)

= 0, ∀z > 0.

The same holds for z = 0, since ũ has null average and

ũ(·) = ṽ(·, 0)

almost everywhere in Rn. Therefore, ṽ is a classical solution of (1.4).
Consider ṽ1 and ṽ2 classical solutions to (1.4). Let H be the Hilbert space of

functions w ∈ H1
per(R

n+1
+ ) satisfying
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(1) w is almost everywhere even with respect to x,
(2) w(·, 0) = 0 almost everywhere in Rn,
(3) limz→∞ ‖w(·, z)‖L2(Ω) = limz→∞ ‖wz(·, z)‖L2(Ω) = 0,
(4)

∫
Ω
w(x, z)dx = 0, for any z ≥ 0,

with the inner product

(ψ̃, ϕ̃)H =
∫ ∞

0

∫
Ω

∇ψ̃(x, z)∇ϕ̃(x, z) dx dz, ∀ψ̃, ϕ̃ ∈ H.

Applying the Riesz representation theorem it follows that ṽ1 = ṽ2. Note that we
proved the uniqueness of the weak solution for extension problem (1.4). �

Through the existence and uniqueness of classical solution of the harmonic ex-
tension problem (1.4), we have the following lemma.

Lemma 3.2. The operator A1/2 defined in (1.3) and (1.2) is well defined and

A1/2u =
∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj in L2(Ω),

where ϕj and λj are the eigenfunctions and the eigenvalues of the −∆ with Neu-
mann boundary condition on Ω, respectively.

Proof. We know that A1/2u ∈ X, because

ṽz(·, 0) = −
∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj in L2(Ω).

Then by the uniqueness of solution of problem (1.4) it follows that A1/2 is well
defined and

A1/2u =
∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj in L2(Ω).

�

Finally, we will conclude this section by proving Theorem 2.1.

Theorem 3.3. The operator B1/2 defined in (1.5) and (1.6) is well defined. More-
over, B1/2 is an extension of the operator A1/2 and coincides with the operator
(−∆)1/2 in Ω; that is,

〈u,B1/2u〉 ≥ 0, ∀u ∈ D(B1/2),

B1/2 ◦B1/2u = −∆u, ∀u ∈ D(−∆).

Proof. Let u ∈ Y . Then
∑
j∈I λ

1/2
j 〈u, ϕj〉ϕj converges in L2(Ω). Considering the

sequence of partial sums

sm(x) =
m∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj(x),

it follows that the convergence∣∣ ∫
Ω

B1/2u(x)dx
∣∣ ≤ C‖B1/2u− sm‖ → 0 as m→∞

implies
∫

Ω
B1/2u(x)dx = 0; then B1/2u ∈ X and the operator is well defined.
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Let u ∈ D(A1/2), then by Lemma 3.2,∑
j∈I
|〈A1/2u, ϕj〉|2 =

∑
j∈I

λj |〈u, ϕj〉|2 <∞,

and D(A1/2) ⊂ Y . Then

‖A1/2u−B1/2u‖L2(Ω)

≤ C
∥∥A1/2u−

m∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj

∥∥+ C
∥∥B1/2u−

m∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj

∥∥→ 0

as m→∞. Therefore, A1/2u = B1/2u almost everywhere in Ω for any u ∈ D(A1/2)
and B1/2 is an extension of the operator A1/2.

Let u ∈ D(−∆) ⊂ X. As λj ≥ 1 for any j ∈ I, we have∑
j∈I

λj |〈u, ϕj〉|2 ≤
∑
j∈I

λ2
j |〈u, ϕj〉|2 <∞.

Then D(−∆) ⊂ D(B1/2) and

B1/2u =
∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj .

As B1/2u ∈ X and ∑
j∈I

λj |〈B1/2u, ϕj〉|2 =
∑
j∈I

λ2
j |〈u, ϕj〉|2 <∞,

then B1/2u ∈ D(B1/2).
By the orthonormality of the eigenfunctions it follows that

B1/2 ◦B1/2u =
∑
j∈I

λ
1/2
j 〈B1/2u, ϕj〉ϕj =

∑
j∈I

λj〈u, ϕk〉ϕj = −∆u, ∀u ∈ D(−∆).

Also note that

〈u,B1/2u〉 =
∑
j∈I

λ
1/2
j |〈u, ϕj〉|

2 ≥ 0, ∀u ∈ D(B1/2)

�

3.2. Operator in Ωb. In this section we shall use the eigenvalues and correspond-
ing eigenfunctions of −∆ with Neumann boundary condition on Ωb. The eigen-
functions are given by the bessel and cosine, sine functions, see e.g. [12, page 108].
We shall use also the properties of Bessel functions, see e.g. [1, 5, 19, 22, 27]. We
have that

(x, y) = (α cos θ, α sin θ), ∀(x, y) ∈ Ωb,

where α ∈ (−π, π) and θ ∈ R. Thus consider u ∈ D(A1/2) and define the function
u such that

u(x, y) =

{
U(α, θ) if − π ≤ α ≤ π
U(−α− 2π, θ) if − 3π ≤ α ≤ −π,

where U(α, θ) = u(α cos θ, α sin θ) for any α ∈ (−3π, π) and θ ∈ R.
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Consider ũ : R2 → R the 4π-periodic radial extension of u such that

ũ(x, y) = Ũ(α, θ)

=

{
U(α− 4kπ, θ) if (4k − 1)π ≤ α ≤ (4k + 1)π
U(−α+ 2(2k − 1)π, θ) if (4k − 3)π ≤ α ≤ (4k − 1)π,

(3.1)

with k ∈ Z.

Lemma 3.4 ([2, Lemma 9]). The function defined in (3.1) satisfies the following
properties

(1) Ũ(α+ 4kπ, θ) = Ũ(α, θ), for all α, θ ∈ R, and all k ∈ Z.
(2) Ũ(−α− 2π, θ) = Ũ(α, θ), for all α, θ ∈ R.
(3) ũ ∈ C(R2).

Proof. The proof of (1) and (2) follows from the definition of Ũ in 3.1 and (3)
follows from the fact that D(A1/2) is embedded in a C1,α space. �

Similarly to the previous section, we first verify the existence and uniqueness of
classical solution of problem (1.4). Consider two auxiliary results whose statements
are in [2].

Proposition 3.5 ([2, Prop. 10]). Consider the function V : [0, π)×R×(0,∞)→ R
with

V (r, θ, z) =
∑

(j,k)∈I

e−
µjk
π zJk

(µjk
π
r
)[
ajk cos(kθ) + bjk sin(kθ)

]
,

where Jk are the Bessel functions of order k, µjk are positive zeros from J ′k and

ajk =
2µ2

jk

π3(µ2
jk − k2)J2

k (µjk)

∫ 2π

0

∫ π

0

rU(r, θ) cos(kθ)Jk
(µjk
π
r
)
dr dθ,

bjk =
2µ2

jk

π3(µ2
jk − k2)J2

k (µjk)

∫ 2π

0

∫ π

0

rU(r, θ) sin(kθ)Jk
(µjk
π
r
)
dr dθ.

(3.2)

Then V ∈ C2([0, π)× R× (0,∞)).

The proof of the above proposition follows from the properties of Bessel functions.

Theorem 3.6 ([2, Theorem 10]). Let u ∈ D(A1/2) and v : Ωb × (0,∞)→ R given
by

v(x, y, z) = V (r, θ, z)

=
∑

(j,k)∈I

e−
µjk
π zJk

(µjk
π
r
)[
ajk cos(kθ) + bjk sin(kθ)

]
,

for every (x, y, z) ∈ (Ωb\{(0, 0)}) × (0,∞), where ajk and bjk are given by (3.2)
and for every z > 0 we have:

(1)

v(0, 0, z) =
∞∑
j=2

aj0e
−
µj0
π z,
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(2)

∂v

∂x
(0, 0, z) =

1
2π

∞∑
j=1

aj1µj1e
−
µj1
π z,

∂v

∂y
(0, 0, z) =

1
2π

∞∑
j=1

bj1µj1e
−
µj1
π z,

∂v

∂z
(0, 0, z) = − 1

π

∞∑
j=2

aj0µj0e
−
µj0
π z,

(3)

∂2v

∂x2
(0, 0, z) =

1
4π2

∞∑
j=1

aj2µ
2
j2e
−
µj2
π z − 1

2π2

∞∑
j=2

aj0µ
2
j0e
−
µj0
π z,

∂2v

∂y2
(0, 0, z) = − 1

4π2

∞∑
j=1

aj2µ
2
j2e
−
µj2
π z − 1

2π2

∞∑
j=2

aj0µ
2
j0e
−
µj0
π z,

∂2v

∂z2
(0, 0, z) =

1
π2

∞∑
j=2

aj0µ
2
j0e
−
µj0
π z,

∂2v

∂x∂y
(0, 0, z) =

1
4π2

∞∑
j=1

bj2µ
2
j2e
−
µj2
π z,

∂2v

∂x∂z
(0, 0, z) = − 1

2π2

∞∑
j=1

aj1µ
2
j1e
−
µj1
π z,

∂2v

∂y∂z
(0, 0, z) = − 1

2π2

∞∑
j=1

bj1µ
2
j1e
−
µj1
π z.

Then v is the unique function that satisfies the following conditions:

(1) v ∈ C2(Ωb × (0,∞)).
(2) ∆v(x, y, z) = 0 in Ωb × (0,∞).
(3) v(·, ·, z) = u(·, ·) almost everywhere on Ωb.
(4) ∂v

∂n = 0 on ∂Ωb × [0,∞).
(5) limz→∞ ‖v(·, ·, z)‖L2(Ωb) = limz→∞ ‖vz(·, ·, z)‖L2(Ωb) = 0.
(6)

∫
Ωb
v(x, z) dx = 0 for any z ≥ 0.

Proof. The proof follows by considering the eigenfunction decomposition of the
Neumann Laplacian in the ball and the properties of Bessel functions. Let us show
that v is continuous at (0, 0, z) for any z > 0 the others cases are analogous.

Let z > 0 and (xm, ym, zm) → (0, 0, z) as m → ∞. Then (rm, θm, zm) is a
associated sequence with (xm, ym, zm) where rm → 0 and zm → z asm→∞. Thus

|v(xm, ym, zm)− v(0, 0, z)| ≤
∞∑
j=2

∣∣J0

(µj0
π
rm
)
e−

µj0
π zm − e−

µj0
π z
∣∣|aj0|

+
∞∑

j,k≥1

∣∣Jk(µjk
π
rm
)∣∣e−µjkπ zm [|ajk|+ |bjk|].
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Note that
lim
m→∞

J0

(µj0
π
rm
)

= 1 and lim
m→∞

Jk
(µjk
π
rm
)

= 0,

then
lim
m→∞

v(xm, ym, zm) = v(0, 0, z).

�

Theorem 3.7. Let ṽ : R3
+ → R the 4π-periodic radial extension of the function v

of Theorem 3.6, namely,

ṽ(x, y, z) = Ṽ (α, θ, z)

=

{
V̂ (α− 4kπ, θ, z) if (4k − 1)π ≤ α ≤ (4k + 1)π,
V̂ (−α+ 2(2k − 1)π, θ, z) if (4k − 3)π ≤ α ≤ (4k − 1)π,

where V̂ (α, θ, z) = v(α cos θ, α sin θ, z) for all α, θ ∈ R, and all z > 0. Then, ṽ is
the unique classical solution of (1.4).

Proof. We have that v ∈ C2(Ωb×(0,∞)) by the previous theorem. Then ṽ ∈ C(R3
+)

by Lemma 3.4. Because of the periodicity the derivatives of ṽ are continuous in
R3

+, except possibly at the points

(x, y, z) = (mπ cos θ,mπ sin θ, z) with m ∈ Z∗.
Using the periodicity, symmetry and chain rule, we will verify the continuity of the
functions

∂Ṽ

∂α
,

∂Ṽ

∂θ
,

∂2Ṽ

∂θ2
,

∂2Ṽ

∂α2
,

∂2Ṽ

∂θ∂α
,

∂2Ṽ

∂α∂z
,

∂2Ṽ

∂θ∂z
at points (±π, θ, z).

As v ∈ C2(Ωb × (0,∞)), then V and V̂ are C2 at points (π, θ, z) for any θ ∈ R,
z > 0. Thus,

lim
h→0+

Ṽ (π, θ + h, z)− Ṽ (π, θ, z)
h

=
∂V̂

∂θ
(π, θ, z),

lim
h→0−

Ṽ (π, θ + h, z)− Ṽ (π, θ, z)
h

=
∂V̂

∂θ
(π, θ, z),

Then there exists ∂Ṽ
∂θ (π, θ, z) such that

∂Ṽ

∂θ
(π, θ, z) = −

∑
(j,k)≥1

kJk(µjk)e−
µjk
π z(−ajk sin(kθ) + bjk cos(kθ)).

Therefore, ∂Ṽ∂θ is continuous in (π, θ, z) and (−π, θ, z) for any θ ∈ R, z > 0. Similarly

∂Ṽ

∂α
,

∂2Ṽ

∂θ∂α
,
∂2Ṽ

∂θ2
,
∂2Ṽ

∂α2
,

∂2Ṽ

∂α∂z
,

∂2Ṽ

∂θ∂z

are continuous in (±π, θ, z) for any θ ∈ R, z > 0. It is easy to verify the smoothness
of the derivatives of Ṽ with respect the variable z; then ṽ ∈ C2(R3

+). Note that

Ṽ (α+ 4kπ, θ, 0) = lim
z→0+

Ṽ (α+ 4kπ, θ, z)

= lim
z→0+

Ṽ (α, θ, z)

= Ṽ (α, θ, 0), ∀k ∈ Z, ∀α, θ ∈ R.
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By the extension properties,

Ṽ (α+ 4kπ, θ, z) = Ṽ (α, θ, z), ∀k ∈ Z, ∀α, θ ∈ R, ∀z > 0.

Analogously we have

Ṽ (−α− 2π, θ, z) = Ṽ (α, θ, z), ∀k ∈ Z, ∀α, θ ∈ R, ∀z ≥ 0.

As ṽ = v on Ωb × (0,∞) and

v(·, 0) = u(·) almost everywhere on Ωb,

it follows that ṽ(·, 0) = ũ(·) almost everywhere on R2.
We have that ∆v = 0 in Ωb × (0,∞); then

∆ṽ(x, y, z) =
1
π2

∑
(j,k)∈I

Tjk(µjk)e−
µjk
π z[ajk cos(kθ) + bjk sin(kθ)] = 0

for all θ ∈ R, z > 0, where Tjk(µjk) = µ2
jkJ

′′

k (µjk)+µjkJ ′k(µjk)+(µ2
jk−k2)Jk(µjk).

Moreover,

∆ṽ(x, y, z) = ∆ṽ(π cos(θ + π), π sin(θ + π), z) = 0, ∀θ ∈ R, z > 0.

We have ∫
Ωb

ṽ(x, y, z) dx dy =
∫

Ωb

v(x, y, z) dx dy = 0, ∀z ≥ 0,

lim
z→∞

‖ṽ(·, ·, z)‖L2(Ωb) = lim
z→∞

‖v(·, ·, z)‖L2(Ωb) = 0,

lim
z→∞

‖ṽz(·, ·, z)‖L2(Ωb) = lim
z→∞

‖v(·, ·, z)‖L2(Ωb) = 0.

Therefore, ṽ is classical solution of the problem (1.4). The uniqueness follows
similarly to the previous section. �

Lemma 3.8. The operator A1/2 defined in (1.3) and (1.2) is well defined and

A1/2u =
∑
j∈I

λ
1/2
j 〈u, ϕj〉ϕj ,

where (ϕj)j∈I and (λj)j∈I are the eigenfunctions and the eigenvalues of the −∆
with Neumann boundary condition on Ωb, respectively.

The proof of the above lemma is analogous to Lemma 3.2 and is omitted. We
conclude this section by proving the Theorem 2.1.

Theorem 3.9. The operator B1/2 defined in (1.5) and (1.6) is well defined. More-
over, B1/2 is an extension of the operator A1/2 and coincides with the operator
(−∆)1/2 in Ωb, that is,

〈u,B1/2u〉 ≥ 0, ∀u ∈ D(B1/2),

B1/2 ◦B1/2u = −∆u, ∀u ∈ D(−∆).

Proof. Let u ∈ Y . Then the series∑
j∈I

λ
1/2
j < u,ϕj > ϕj ,

converges in L2(Ωb) and thus B1/2u ∈ L2(Ωb).
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Consider the partial sum

sm(r, θ) =
m∑
j∈I

λ
1/2
j 〈U,ϕj〉ϕj(r, θ),

it follows by Holder’s inequality which∣∣ ∫
Ωb

B1/2u(x, y) dx dy
∣∣ ≤ ∫ 2π

0

∫ π

0

r
∣∣B1/2U(r, θ)− sm(r, θ)

∣∣ dr dθ
≤M‖B1/2U − sm‖L2((0,π)×(0,2π);r) → 0 as m→∞;

then B1/2u ∈ X. Thus the operator B1/2 is well defined by uniqueness of the
Fourier-Bessel series.

The proof that B1/2 is an extension of the operator A1/2 and coincides with
(−∆)1/2 in Ω is analogous to cases of the domains Ωi e Ωq. �

4. Application

In this section we study the existence of nontrivial weak solution of the nonlocal
problem (1.7), namely, the existence of a nontrivial function u with u = (ṽ(·, 0))|Ω
where ṽ is almost everywhere even with respect to x, ṽ ∈ H1

per(R
n+1
+ ),∫

Ω

ṽ(x, z)dx = 0, ∀z ≥ 0,

lim
T→∞

‖ṽ(·, T )‖L2(Ω) = lim
T→∞

‖ṽz(·, T )‖L2(Ω) = 0,∫ ∞
0

∫
Ω

∇ṽ(x, z)∇ϕ̃(x, z) dx dz =
∫

Ω

up(x)ϕ̃(x, 0) dx,

for every ϕ̃ ∈ H1
per(R

n+1
+ ) satisfying the same conditions as ṽ.

Consider for the nontrivial weak solution in Ωi with the condition

ṽ(x+ π, 0) = −ṽ(x, 0) (4.1)

almost everywhere for x ∈ R, and in Ωq with the condition

ṽ(x+ π, y, 0) = −ṽ(x, y, 0), (4.2)

almost everywhere for (x, y) ∈ R2. Note that the condition in Ωq could be with
respect to y.

Our goal is to apply the Lagrange multiplier theorem in linear topological spaces
from [3] and thus obtain the existence of nontrivial weak solution of nonlinear
problem (1.7).

Lemma 4.1. Consider the set H of functions ṽ, even almost everywhere in Rn+1

with respect to x, which satisfy (4.1) or (4.2) according with the domain Ω,∫
Ω

ṽ(x, z)dx = 0, ∀z ≥ 0,

lim
T→∞

‖ṽ(·, T )‖L2(Ω) = lim
T→∞

‖ṽz(·, T )‖L2(Ω) = 0.

Then there are nontrivial functions in (H, ‖ · ‖H) which is a Hilbert space with the
norm

‖ṽ‖H =
(∫ ∞

0

∫
Ω

|∇ṽ(x, z)|2 dx dz
)1/2

.
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Proof. Consider the functions

ṽ1(x) = e−z cos(x), ṽ2(x) = e−z cos(x1) cos(x2),

with x = (x1, x2) ∈ Rn. Note that ṽ1, ṽ2 ∈ H according with the domain Ω. Follows
from [2, Lemma 12] that (H, ‖ · ‖H) is a Hilbert space. �

For any a > 0 consider the functional I : H → R given by

I(ṽ) =
1
2

∫ ∞
0

∫
Ω

|∇ṽ|2 dx dz,

and consider the set

Ha =
{
ṽ ∈ H :

∫
Ω

(ṽ(x, 0))p+1dx = a
}
.

Proposition 4.2. There is ṽ ∈ Ha with I(ṽ) = minw̃∈Ha I(w̃).

Proof. Let m = inf{I(ṽ) : ṽ ∈ Ha}. We have that {I(ṽ) : ṽ ∈ Ha} 6= ∅, and by the
definition of infimum,

lim
j→∞

I(ṽj) = m,

where {ṽj}j∈N ⊂ Ha.
Since {I(ṽj)}j∈N ⊂ R, there exists M > 0 such that

‖ṽj‖2H =
∫ ∞

0

∫
Ω

|∇ṽj |2 dx dz = 2I(ṽj) ≤ 2M .

Then {ṽj}j∈N is bounded in H. Thus, using compact immersion (see [25, Theorem
4.10.1]) there is a subsequence {ṽjk}k∈N and ṽ ∈ H such that

ṽjk ⇀ ṽ in H,

ṽjk(·, 0)→ ṽ(·, 0) in Lp+1(Qn),

with Qn defined in (2.1).
By the properties of convex functions, we have

(p+ 1)

Z
Ω

(ṽjk(x, 0))p(ṽ(x, 0)− ṽjk(x, 0))dx ≤
Z

Ω

(ṽ(x, 0))p+1dx− a

≤ (p+ 1)

Z
Ω

(ṽ(x, 0))p(ṽ(x, 0)− ṽjk(x, 0))dx.

Note that ∣∣∣ ∫
Ω

(ṽjk(x, 0))p(ṽ(x, 0)− ṽjk(x, 0))dx
∣∣∣

≤ ‖ṽjk(·, 0)‖
L
p+1
p
‖ṽ(·, 0)− ṽjk(·, 0)|‖Lp+1 → 0,∣∣∣ ∫

Ω

(ṽ(x, 0))p(ṽ(x, 0)− ṽjk(x, 0))dx
∣∣∣

≤ ‖ṽ(·, 0)‖
L
p+1
p
‖ṽ(·, 0)− ṽjk(·, 0)|‖Lp+1 → 0,

thus ∫
Ω

(ṽ(x, 0))p+1dx = a.

Then ṽ ∈ Ha and I(ṽ) ≥ m. Using the properties of convex function, we obtain
that

I(ṽjk) ≥ −I(ṽ) +
∫ ∞

0

∫
Ω

∇ṽ · ∇ṽjk dx dz. (4.3)
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Thus, making k → ∞ in (4.3), it follows that m ≥ I(ṽ) and therefore I(ṽ) =
minw̃∈Ha I(w̃). �

Theorem 4.3. The nonlinear problem (1.7) admits a nontrivial weak solution in
Ω.

Proof. Consider the functions g : H → R given by

w̃ 7→ 1
p+ 1

∫
Ω

(w̃(x, 0))p+1dx− a

p+ 1
,

and f : H → R given by

w̃ 7→ 1
2

∫ ∞
0

∫
Ω

|∇w̃|2 dx dz.

Thus,

|f(ṽ + ϕ̃)− f(ṽ)− 〈Df(ṽ), ϕ̃〉| = 1
2
‖ϕ̃‖2H ,

where

〈Df(ṽ), ϕ̃〉 =
∫ ∞

0

∫
Ω

∇ṽ∇ϕ̃ dx dz, ∀ϕ̃ ∈ H

and therefore, f is strongly H-differentiable at ṽ.
Consider Dg(ṽ) : H → R such that

〈Dg(ṽ), ϕ̃〉 =
∫

Ω

(ṽ(x, 0))pϕ̃(x, 0)dx, ∀ϕ̃ ∈ H.

Then ∣∣g(ṽ + tϕ̃)− g(ṽ)
t

− 〈Dg(ṽ), ϕ̃〉
∣∣

=
1
|t|

∣∣∣ 1
p+ 1

∫
Ωq

(ṽ(x, 0) + tϕ̃(x, 0))p+1dx− 1
p+ 1

∫
Ωq

(ṽ(x, 0))p+1dx

− t
∫

Ωq

(ṽ(x, 0))pϕ̃(x, 0)dx
∣∣∣.

(4.4)

By Taylor’s formula in [18], we have

1
p+ 1

∫
Ωq

(ṽ(x, 0) + tϕ̃(x, 0))p+1dx

=
1

p+ 1

∫
Ωq

(ṽ(x, 0))p+1dx+ t

∫
Ωq

(ṽ(x, 0)p)ϕ̃(x, 0)dx

+
pt2

2!

∫
Ωq

(ṽ(x, 0))p−1(ϕ̃(x, y, 0))2dx

+
p(p− 1)

3!

∫
Ωq

(ṽ(x, 0))p−2(ϕ̃(x, y, 0))3dx+
1

p+ 1

∫
Ωq

r3(tϕ̃(x, 0))dx,

where limt→0
r3(tϕ̃(x,0))
(tϕ̃(x,0))3 = 0. Thus in (4.4) we have∣∣g(ṽ + tϕ̃)− g(ṽ)

t
− 〈Dg(ṽ), ϕ̃〉

∣∣ ≤ p|t|
2!

∫
Ωq

|ṽ(x, 0)|p−1|ϕ̃(x, 0)|2dx

+
p(p− 1)|t|2

3!

∫
Ωq

|ṽ(x, 0)|p−2|ϕ̃(x, 0)|3dx
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+
1

p+ 1

∫
Ωq

|r3(tϕ̃(x, 0))|dx.

Then, by Holder’s inequality and the continuous immersions in [25, Theorem 4.6.1],
it follows that

H1/2
per (Rn) ↪→ L4(Qn), H1/2

per (Rn) ↪→ L2(p−1)(Qn), H1/2
per (Rn) ↪→ L

6(p−1)
p (Qn).

Then∣∣∣g(ṽ + tϕ̃)− g(ṽ)
t

− 〈Dg(ṽ), ϕ̃〉
∣∣∣

≤ p|t|
2!
‖ṽ(·, 0)‖p−1

L2(p−1)(Qn)
‖ϕ̃(·, 0)‖2L4(Qn)

+
p(p− 1)|t|2

3!
‖ṽ(·, 0)‖p−2

L2(p−1)(Qn)
‖ϕ̃(·, 0)‖1/3

L
6(p−1)
p (Qn)

+
1

p+ 1

∫
Ω

|r3(tϕ̃(x, 0))|dx,

where limt→0
r3(tϕ̃(x,0))
(tϕ̃(x,0))3 = 0. Thus for any ε > 0, exists δ > 0 such that |t| < δ

implies that∣∣∣g(ṽ + tϕ̃)− g(ṽ)
t

− 〈Dg(ṽ), ϕ̃〉
∣∣∣

≤ pδ

2!
‖ṽ(·, 0)‖p−1

L2(p−1)(Qn)
‖ϕ̃(·, 0)‖2L4(Qn)

+
p(p− 1)δ2

3!
‖ṽ(·, 0)‖p−2

L2(p−1)(Qn)
‖ϕ̃(·, 0)‖1/3

L
6(p−1)
p (Qn)

+
εδ3

p+ 1
‖ϕ̃(·, 0)‖3L3(Qn),

Moreover, there is δ > 0 such that P (δ) < ε, where

P (δ) =
pδ

2!
‖ṽ(·, 0)‖p−1

L2(p−1)(Qn)
‖ϕ̃(·, 0)‖2L4(Qn)

+
p(p− 1)δ

2

3!
‖ṽ(·, 0)‖p−2

L2(p−1)(Qn)
‖ϕ̃(·, 0)‖1/3

L
6(p−1)
p (Qn)

+
εδ

3

p+ 1
‖ṽ(·, 0)‖L2(p−1)(Qn) ;

then g is H−differentiable at ṽ. By Taylor’s formula in [18] we have

|g(w̃ + tϕ̃)− g(w̃)|

≤ |t|
∫

Ω

|w̃(x, 0)|p|ϕ̃(x, 0)|dx+
p|t|2

2!

∫
Ω

|w̃(x, 0)|p−1|ϕ̃(x, 0)|2dx

+
p(p− 1)|t|3

3!

∫
Ω

|w̃(x, 0)|p−2|ϕ̃(x, 0)|3dx+
1

p+ 1

∫
Ω

|r3(tϕ̃(x, 0))|dx,

for every (w̃, ϕ̃) ∈ H ×H.
Using the immersions in [25, Theorem 4.6.1]

H1/2
per (Rn) ↪→ L

4p
3 (Qn), H1/2

per (Rn) ↪→ L4(Qn)

we conclude that (w̃(·, 0))p ∈ L4/3(Qn) and ϕ̃(·, 0) ∈ L4(Qn). Then, by Holder’s
inequality it follows that g is H-continuous on H.

Suppose that Dg(ṽ) = 0, then

0 = 〈Dg(ṽ), ṽ〉 =
∫

Ω

(ṽ(x, 0))p+1dx = a,
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which is an absurd, then Dg(ṽ) 6= 0. Therefore by Lagrange multiplier theorem
there is λ ∈ R such that∫ ∞

0

∫
Ω

∇ṽ∇ϕ̃ dx dz = λ

∫
Ω

(ṽ(x, 0))pϕ̃(x, 0)dx, ∀ϕ̃ ∈ H

Taking w̃ = λ−
1

1−p ṽ ∈ H we have∫ ∞
0

∫
Ω

∇w̃∇ϕ̃ dx dz =
∫

Ω

(w̃(x, 0))pϕ̃(x, 0)dx, ∀ϕ̃ ∈ H

Thus the nonlinear problem (1.7) admits a weak solution. Note that the solution
w̃ is nontrivial. If w̃ = 0 then λ = 0 and∫ ∞

0

∫
Ω

|∇ṽ|2 dx dz = 0

which implies ṽ = 0 almost everywhere, which is an absurd. Therefore, the nonlin-
ear problem (1.7) admits nontrivial weak solution. �
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[15] Iório R.; Iório, V. M.; Fourier Analysis and Partial Differential Equations. New York: Cam-
bridge University Press, 2001. 411 p.
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[17] Kozlov, V. A.; Maz’ya, V. G.; Rossmann, J.; Elliptic Boundary value problems in domains
with point singularities. Providence, R. I.: American Mathematical Society, 1997. 414 p.
(Mathematical surveys and monographs)

[18] Lima, E. L.; Curso de Análise, Volume 2. Rio de Janeiro: IMPA, 2000. 557 p. (Projeto
Euclides)



18 M. O. ALVES, S. M. OLIVA EJDE-2014/12

[19] Maccann, R. C.; Lower Bounds for the Zeros of Bessel Functions. Proceedings of the American

Mathematical Society, v. 64, n.1, p. 101-103, 1977.

[20] Montefusco, E.; Pellacci, B.; Verzini, G.; Fractional diffusion with Neumann boundary con-
ditions: the logistic equation. Discrete and Continuous Dynamical Systems - Series B, v. 18,

p. 2175-2202, 2013.

[21] Pazy, A.; Semigroups of Linear Operators and Applications to Partial Differential Equations.
New York: Springer-Verlag, 1983. 279 p.

[22] Polyanin, A. D.; Handbook of Linear Partial Differential Equations for Engineers and Sci-

entists. Boca Raton: Chapman & Hall/CRC, 2002. 781 p.
[23] Stinga, P. R.; Torrea, J. L.; Extension problem and Harnack’s inequality for some fractional

operators. Comm. in Partial Differential Equations, v. 35, p. 2092-2122, 2010.

[24] Tolstov, G. P.; Fourier Series. New Jersey: Prentice-Hall, 1962. 336 p.
[25] Triebel, H.; Interpolation theory, function spaces, differential operators. Amsterdam: North-

Holland Publishing Company, 1978. 528 p.
[26] Yosida, K.; Functional analysis, 6th ed. Berlin: Springer, 1980. 501 p.

[27] Watson, G. N.; A Treatise on the Theory of Bessel Functions. New York: Cambridge Uni-

versity Press, 1945. 804 p.

Michele de Oliveira Alves
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