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GLOBAL EXISTENCE AND BLOWUP FOR FREE BOUNDARY
PROBLEMS OF COUPLED REACTION-DIFFUSION SYSTEMS

JIANPING SUN, HAIHUA LU, SHUANGLONG GAN, LANG CHEN

Abstract. This article concerns a free boundary problem for a reaction-

diffusion system modeling the cooperative interaction of two diffusion biologi-

cal species in one space dimension. First we show the existence and uniqueness
of a local classical solution, then we study the asymptotic behavior of the free

boundary problem. Our results show that the free boundary problem admits a

global solution if the inter-specific competitions are strong, while, if the inter-
specific competitions are weak, there exist the blowup solution and a global

fast solution.

1. Introduction

We consider the free boundary problem
ut − d1uxx = u(a1 − b1ur + vp), t > 0, 0 < x < h(t),

vt − d2vxx = v(a2 − b2vs + uq), t > 0, 0 < x < h(t),
u = v = 0, t > 0, x = 0,

u = v = 0, h′(t) = −µ(ux + ρvx), t > 0, x = h(t),

h(0) = h0, 0 < h0 <∞,
u(x, 0) = u0(x), v(x, 0) = v0(x), 0 ≤ x ≤ h0,

(1.1)

where ai ≥ 0, p, q, r, s, bi, di (i = 1, 2) and µ are positive constants, x = h(t) is the
free boundary to be determined together with u(t, x) and v(t, x). System (1.1) is
usually referred as the cooperative system. It provides a simple model to describe,
for instance, the cooperative interaction of two diffusing biological species. u and
v represent the densities of two species, a1 and a2 are their growth rates. Here, it
is assumed that each species finds its subsistence from the activity of the other one
(represented by the reaction terms vp and uq ), and disappears by a destruction
mechanism, corresponding for instance to overcrowding or the action of a predator
(represented by the absorption terms b1ur and b2vs). For more background for the
system, we can refer to [10, 12] and references therein.

As we know, the free boundary problems have been used to describe different
types of mathematical models. For the study of free boundary problems for some
biological models, we refer to, for instance [3, 4, 5, 8, 9, 15] and references cited
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therein. Let us recall some work about the blow-up results to the reaction-diffusion
equations or systems with free boundaries. In [17], Zhang and Lin investigated the
behavior of the positive solution u(t, x) to a parabolic model with double fronts free
boundaries:

ut − duxx = up, t > 0, g(t) < x < h(t),

u(t, g(t)) = 0, g′(t) = µux(t, g(t), t > 0,

u(t, h(t)) = 0, h′(t) = µux(t, h(t), t > 0,

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x), v(0, x) = v0(x), −h0 ≤ x ≤ h0.

(1.2)

The result showed that when p > 1 blowup occurs if the initial datum is large
enough and that the solution is global and fast, which decays uniformly at an
exponential rate if the initial datum is small, while there is a global and slow
solution provided that the initial value is suitably large. In [13], Ling et al. studied
the global existence and blow-up for a parabolic equation with a nonlocal source
and absorption

ut − duxx =
∫ h(t)

g(t)

up(t, x)dx− kuq, t > 0, g(t) < x < h(t),

with the same initial and boundary conditions as in (1.2). As far as the coupled
system is concerned, Kim et al. [10] considered the mutualistic model

ut − d1uxx = u(a1 − b1u+ c1v), t > 0, 0 < x < h(t),

vt − d2vxx = v(a2 − b2v + c2u), t > 0, 0 < x <∞,
u(t, x) = 0, t > 0, h(t) < x <∞,

u = 0, h′(t) = −µux, t > 0, x = h(t),

ux(t, 0) = vx(t, 0) = 0, t > 0,

h(0) = b, 0 < b <∞,
u(0, x) = u0(x) ≥ 0, 0 ≤ x ≤ b,
v(0, x) = v0(x) ≥ 0, 0 ≤ x ≤ ∞.

They showed the existence and uniqueness of a classical local solution and the
asymptotic behavior of the solution. And they showed that the free boundary
problem admits a global slow solution if the inter-specific competitions are strong,
while if the inter-specific competitions are weak there exist the blowup solution and
global fast solution.

As we know, sometimes both species have a tendency to emigrate from the
boundaries to obtain their new habitat; i.e., they will move outward along the
unknown curves (free boundaries) as time increases. It is assumed that the move-
ment speeds of free boundaries are proportional to the sum of gradient of these two
species, i.e.

h′(t) = −µ(ux + ρvx),
which is the well-known Stefan type condition and whose ecological background
can be found in [1].

In this article, our interests in studying the long time behavior of the solution
of (1.1) is motivated by previous discussion. Differently from above, we put zero
Dirichlet boundary conditions at the fixed boundary. This condition means that the
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habitat is restricted by a hostile environment from the left and the species cannot
survive on the fixed boundary. We will show that if pq < rs, the solution of (1.1)
is global while if pq > rs, there exist a blowup solution and a global fast solution
of (1.1). To this end, we assume that the initial functions u0(x) and v0(x) satisfy

u0, v0 ∈ C2([0, h0]), u0(0) = v0(0) = u0(h0) = v0(h0) = 0,

u0(x), v0(x) > 0 in (0, h0).
(1.3)

Now let us recall some blowup results of the corresponding problem on a fixed
domain under Dirichlet boundary condition with nonnegative initial data:

ut = d1∆u+ u(a1 − b1ur + vp), t > 0, x ∈ Ω,

vt = d2∆v + v(a2 + uq − b2vs), t > 0, x ∈ Ω,
u = v = 0, t > 0, x ∈ ∂Ω,

(1.4)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. By constructing
blowup sub-solution or bounded super-solutions, Li and Wang [12] obtained the op-
timal conditions on the exponent of reaction and absorption terms for the existence
or nonexistence of global solutions. The main results in [12] are stated as follows.

Proposition 1.1 ([12, Theorem 1]). If pq < rs, then all solutions of (1.4) are
global and uniformly bounded.

Proposition 1.2 ([12, Theorem 3]). Suppose that pq > rs. If bq1b
r0
2 < 1 for some

r0 > 0 satisfying pq = r0s, or bs01 b
p
2 < 1 for some s0 > 0 satisfying pq = rs0, then

all solutions of (1.4) blows up in finite time with suitable initial data.

The rest of the paper is organized as follows. In the next section, local existence
and uniqueness of the free boundary problem are obtained by using the contraction
mapping theorem. In Section 3 a priori estimates will be derived and the global
existence will be given for the case pq < rs. Section 4 deals with the global existence
and nonexistence of a classical positive solution for the case pq > rs.

2. Existence and uniqueness

In this section, we first prove the existence and uniqueness of a local solution
using the contraction mapping theorem.

Theorem 2.1. For any given (u0(x), v0(x)) satisfying (1.3) and any α ∈ (0, 1),
there is a T > 0 such that problem (1.1) admits a unique solution

(u, v, h) ∈ (C
1+α

2 ,1+α(D̄T ))2 × C
1+α

2 ([0, T ]).

Moreover,
‖u, v‖

C
1+α

2 ,1+α(D̄T )
+ ‖h‖

C
1+α

2 ([0,T ])
≤ C, (2.1)

where DT = (0, T ] × (0, h(t)), C and T are positive constants only depending on
h0, α, ‖u0, v0‖C2([0,h0]). Here and in the following,

‖u, v‖X := ‖u‖X + ‖v‖X .

Proof. As in [2, 6], we first straighten the free boundaries. Let ζ(y) be a function
in C3(R) satisfying

ζ(y) =

{
1 if |y − h0| < h0/4,
0 if |y − h0| > h0/2,
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ζ ′(y) <
6
h0
, ∀y.

Consider the transformation

(t, y) 7→ (t, x), where x = y + ζ(y)(h(t)− h0), 0 ≤ y <∞.

As long as |h(t) − h0| ≤ h0/8, the above transformation is a diffeomorphism from
[0,∞) onto [0,∞). Moreover, it changes the free boundary x = h(t) to the line
y = h0. If we set

u(t, x) = u(t, y + ζ(y)(h(t)− h0)) = w(t, y),

v(t, x) = v(t, y + ζ(y)(h(t)− h0)) = z(t, y),

then the free boundary problem (1.1) becomes

wt −Ad1wyy − (Bd1 + h′C)wy = w (a1 − b1wr + zp) , t > 0, 0 < y < h0,

zt −Ad2zyy − (Bd2 + h′C)zy = z (a2 + wq − b2zs) , t > 0, 0 < y < h0,

w(t, 0) = z(t, 0) = w(t, h0) = z(t, h0) = 0, t > 0,

w(0, y) = u0(y), z(0, y) = v0(y), 0 ≤ y ≤ h0,

(2.2)

where

A := A(h(t), y) =
1

(1 + ζ ′(y)(h(t)− h0))2
,

B := B(h(t), y) = − ζ ′′(y)(h(t)− h0))
(1 + ζ ′(y)(h(t)− h0))3

,

C := C(h(t), y) =
ζ(y)

1 + ζ ′(y)(h(t)− h0)
.

Denote h1 = −µ(u′0(h0) + ρv′0(h0)), and for 0 < T ≤ h0
8(1+h1) , define ∆T = [0, T ]×

[0, h0],

D1T =
{
w ∈ C α

2 ,α(∆T ) : w(t, y) ≥ 0, w(0, y) = u0(y), w(t, h0) = 0,

‖w − u0‖C α
2 ,α(∆T )

≤ 1
}
,

D2T = {h ∈ C1([0, T ]) : h(0) = h0, h
′(0) = h1, ‖h′ − h1‖C([0,T ]) ≤ 1}.

It is easily seen that the set D = D1T ×D2T is a closed convex set in C
α
2 ,α(∆T )×

C1([0, T ]).
Next, we shall prove the existence and uniqueness result by using the contraction

mapping theorem. First, we observe that due to our choice of T , for any given
(w, h) ∈ D, we have

|h(t)− h0| ≤ T (1 + h1) ≤ h0

8
.

Therefore the transformation (t, y) → (t, x) introduced at the beginning of the
proof is well defined. Applying standard Lp theory and then the Sobolev imbedding
theorem, we find that for any (w, h) ∈ D, the initial boundary value problem

zt −Ad2zyy − (Bd2 + h′C)zy = z (a2 + wq − b2zs) , t > 0, 0 < y < h0,

z(t, 0) = z(t, h0) = 0, t > 0,

z(0, y) = v0(y), 0 ≤ y ≤ h0,

(2.3)



EJDE-2014/122 GLOBAL EXISTENCE AND BLOWUP 5

admits a unique solution (see [11]) z ∈ C 1+α
2 ,1+α(∆T ), and

‖z‖
C

1+α
2 ,1+α(∆T )

≤ C1.

Moreover, the initial boundary value problem

wt −Ad1wyy − (Bd1 + h′C)wy = w (a1 − b1wr + zp) , t > 0, 0 < y < h0,

w(t, 0) = w(t, h0) = 0, t > 0,

w(0, y) = u0(y), 0 ≤ y ≤ h0,

(2.4)

admits a unique solution w ∈ C 1+α
2 ,1+α(∆T ), and

‖w‖
C

1+α
2 ,1+α(∆T )

≤ C2, (2.5)

where C1, C2 are two constants depending on h0, α, u0, v0.
Defining

h(t) = h0 −
∫ t

0

µ(wy(τ, h0) + ρzy(τ, h0))dτ,

we have

h
′
(t) = −µ(wy(t, h0) + ρzy(t, h0)), h(0) = h0, h

′
(0) = h1, (2.6)

and hence h
′ ∈ Cα/2([0, t]) with

‖h′‖Cα/2([0,t]) ≤ C3 := µ(C2 + ρC1). (2.7)

We now define F : D → C
α
2 ,α(∆T )× C1([0, T ]) by

F(w, h) = (w, h).

Clearly (w, h) ∈ D is a fixed point of F if and only if it solves (2.2).
By (2.7)) and (2.5), we have

‖h′ − h1‖C([0,T ]) ≤ ‖h
′‖Cα/2([0,T ])Tα/2 ≤ C3T

α/2,

‖w − u0‖C α
2 ,α(∆T )

≤ ‖w‖
C

1+α
2 ,0(∆T )

T
1+α

2 + ‖w‖
C

1+α
2 ,0(∆T )

T
1
2 + h1−α

0 ‖wy‖Cα/2,0(∆T )T
α/2‖

≤ C2

(
T

1+α
2 + T

1
2 + h1−α

0 Tα/2
)
.

Therefore, if we take T ≤ min{1, C−2/α
3 , [(2 + h1−α

0 )C1]−2/α}, then F maps D into
itself.

Next we prove that F is a contraction mapping on D for T > 0 sufficiently small.
Let (wi, hi) ∈ D(i = 1, 2) and denote (wi, hi) = F(wi, hi). Then it follows from
(2.5) and (2.7) that

‖wi‖
C

1+α
2 ,1+α(∆T )

≤ C2, ‖h′i‖Cα/2([0,t]) ≤ C3. (2.8)

Setting U = w1 − w2, V = z1 − z2, we find that V (t, y) and U(t, y) satisfy

Vt −A(h2, y)d2Vyy − (B(h2, y)d2 + h′2C(h2, y))Vy
= [A(h1, y)−A(h2, y)]d2z1,yy + [B(h1, y)−B(h2, y)]d2z1,y

+ [h′1C(h1, y)− h′2C(h2, y)]z1,y + (a2 − b2Φ2(t, y) + wq1)(z1 − z2)

+ z2Ψ2(t, y)(w1 − w2), t > 0, 0 < y < h0,

V (t, 0) = V (t, h0) = 0, t > 0,
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V (0, y) = 0, 0 ≤ y ≤ h0,

and
Ut −A(h2, y)d1Uyy − (B(h2, y) + h′2C(h2, y))Uy
= [A(h1, y)−A(h2, y)]d1w1,yy + [B(h1, y)−B(h2, y)]d1w1,y

+ [h′1C(h1, y)− h′2C(h2, y)]w1,y + (a1 − b1Φ1(t, y) + zp1)(w1 − w2)

+ w2Ψ1(t, y)(z1 − z2), t > 0, 0 < y < h0,

U(t, 0) = U(t, h0) = 0, t > 0,

U(0, y) = 0, 0 ≤ y ≤ h0,

where

Φ1(t, y) =
∫ 1

0

(r + 1)(θw1 + (1− θ)w2)rdθ,

Φ2(t, y) =
∫ 1

0

(s+ 1)(θz1 + (1− θ)z2)sdθ,

Ψ1(t, y) =
∫ 1

0

p(θz1 + (1− θ)z2)p−1dθ,

Ψ2(t, y) =
∫ 1

0

q(θw1 + (1− θ)w2)q−1dθ.

Using standard partial differential equation theory [11], the Lp estimates for para-
bolic equations and Sobolev’s imbedding theorem, we obtain

‖z1 − z2‖
C

1+α
2 ,1+α(∆T )

≤ C4(‖w1 − w2‖C(∆T ) + ‖h1 − h2‖C1([0,T ])), (2.9)

‖w1 − w2‖
C

1+α
2 ,1+α(∆T )

≤ C4(‖w1 − w2‖C(∆T ) + ‖h1 − h2‖C1([0,T ]) + ‖z1 − z2‖C(∆T ))

≤ C5(‖w1 − w2‖C(∆T ) + ‖h1 − h2‖C1([0,T ])).

(2.10)

using (2.6), we have

‖h′1 − h
′
2‖Cα/2([0,T ]) ≤ µ(‖w1 − w2‖Cα/2,0(∆T ) + ρ‖z1 − z2‖C α

2 ,0(∆T )
). (2.11)

Combing (2.9)-(2.11), assuming T ≤ 1, and applying mean value theorem, we
obtain

‖w1 − w2‖
C

1+α
2 ,1+α(∆T )

+ ‖h′1 − h
′
2‖Cα/2([0,T ])

≤ C6(‖w1 − w2‖C(∆T ) + ‖h1 − h2‖C1([0,T ])),

which implies

‖w1 − w2‖Cα/2,α(∆T ) ≤ ‖w1 − w2‖
C

1+α
2 ,0(∆T )

T
1+α

2 + ‖w1 − w2‖
C

1+α
2 ,0(∆T )

T 1/2

+ h1−α
0 ‖w1y − w2y‖Cα/2,0(∆T )T

α
2

≤ (2 + h1−α
0 )T

α
2 ‖w1 − w2‖

C
1+α

2 ,1+α(∆T )
.

Hence, for

T := min
{

1, (4 + 2h1−α
0 )−2/α, C

−2/α
3 , [(2 + h1−α

0 )C1]−2/α,
h0

8(1 + h1)
}
,
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we have

‖w1 − w2‖Cα/2,α(∆T ) + ‖h1 − h2‖C1([0,T ])

≤ (2 + h1−α
0 )T

α
2 ‖w1 − w2‖

C
1+α

2 ,1+α(∆T )
+ 2Tα/2‖h′1 − h′2‖Cα/2([0,T ])

≤ (2 + h1−α
0 )T

α
2 C6(‖w1 − w2‖C(∆T ) + ‖h1 − h2‖C1([0,T ]))

≤ 1
2

(‖w1 − w2‖Cα/2,α(∆T ) + ‖h1 − h2‖C1([0,T ])).

This shows that for this T , F is a contraction mapping on D. It now follows from the
contraction mapping theorem that F has a unique fixed point (w, h) inD. Moreover,
by the Schauder estimates, we have additional regularity for (w, z, h) as a solution
of (2.2), namely, h ∈ C1+α

2 ([0, T ]) and w, z ∈ C 1+α
2 ,1+α((0, T ]× [0, h0]), and (2.5),

(2.7) hold. In other words, (w(t, y), z(t, y), h(t)) is a unique local classical solution
of the problem (2.2). Hence, (u, v, h) is a unique classical solution of (1.1). �

Theorem 2.2. The free boundary for the problem (1.1) is strictly monotone in-
creasing; i.e., for any solution in (0, T ], we have h′(t) > 0 for 0 < t ≤ T .

Proof. Firstly, as u > 0 for 0 < x < h(t) and u = 0 at x = h(t), we see that
ux(t, h(t)) ≤ 0 and so h′(t) ≥ 0. Since we only know h ∈ C1+α

2 ([0,∞)), it can not
be guaranteed that the domain (0,∞)× [0, h(t)] has an interior sphere property at
the right boundary x = h(t). hence, the Hopf lemma cannot be used directly to get
h′(t) > 0. To solve this, we use a transformation to straighten the free boundary
x = h(t). Define y = x/h(t) and w(t, y) = u(t, x), z(t, y) = v(t, x). A series of
detailed calculation asserts that

wt − d1ζ(t)wyy − ξ(t, y)wy = w(a1 − b1wr + zp), t > 0, 0 < y < 1,

zt − d2ζ(t)zyy − ξ(t, y)zy = z(a2 − b2zs + wq), t > 0, 0 < y < 1,

w(t, 0) = w(t, 1) = 0, t > 0,

w(0, y) = u0(h0y), z(0, y) = v0(h0y), 0 ≤ y ≤ 1,

where ζ(t) = h−2(t), ξ(t, y) = yh′(t)/h(t). This is an initial and boundary value
problem with fixed boundary. Since w > 0, z > 0 for t > 0 and 0 < y < 1, by
the Hopf lemma, we have w(y, 1) < 0, z(y, 1) < 0 for t > 0. This combines with
the relation ux = h−1(t)wy and vx = h−1(t)zy to derive that ux(t, h(t)) < 0 and
vx(t, h(t)) < 0 and so h′(t) > 0 for t > 0. �

It is observed that there exists a T such that the solution exists in the time
interval [0, T ]. The maximal existing time of the solution Tmax depends on a prior
estimate with respect to ‖u‖L∞ , ‖v‖L∞ and h′(t). Next we show that if ‖u‖L∞ <∞
or ‖v‖L∞ <∞, the solution can be extended. Therefore we first give the following
lemma.

Lemma 2.3. Let (u, v, h) be a solution to problem (1.1) defined for t ∈ (0, T0) for
some T0 ∈ (0,+∞]. If M1 : =‖u‖L∞([0,T ]×[0,h(t)]) < ∞, then there exist constants
M2 and M3 independent of T0 such that

0 < v(t, x) ≤M2(M1), 0 < h′(t) ≤M3(M1)

for 0 < t < T0, 0 ≤ x < h(t).
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Proof. By (1.1), we obtain

vt − d2vxx ≤ v(a2 +Mq
1 − b2vs), 0 < t < T0, 0 ≤ x < h(t).

It follows from the comparison principle that v(t, x) ≤ v(t) for t ∈ (0, T0) and
x ∈ [0, h(t)], where v(t) is a unique solution of the problem

dv

dt
= v(a2 +Mq

1 − b2vs), t > 0; v(0) = ‖v0‖∞.

It is obvious that v̄ is globally bounded. Thus we have

v(t, x) ≤M2 := sup
t≥0

v(t).

Moreover, by Theorem 2.2, we have h′(t) > 0 for t ∈ (0, T0). It remains to show
that h′(t) ≤ M2 for all t ∈ (0, T0) with some M2 independent of T0. To this end,
we define

ΩM := {(t, x) : 0 < t < T0, h(t)− 1/M < x < h(t)}
and construct an auxiliary function

ω(t, x) := M1[2M(h(t)− x)−M2(h(t)− x)2].

We will choose M so that ω(t, x) ≥ u(t, x) holds over ΩM .
Direct calculations show that, for (t, x) ∈ ΩM ,

wt = 2M1Mh′(t)(1−M(h(t)− x)) ≥ 0, −wxx = 2M1M
2,

u(a1 − b1ur + vp) ≤M1(a1 +Mp
2 ).

It follows that

ωt − d1ωxx ≥M1(a1 +Mp
2 ) ≥ u(a1 − b1ur + vp)

if M2 ≥ a1+Mp
2

2d1
. On the other hand,

ω(t, h(t)− 1/M) = M1 ≥ u(t, h(t)− 1/M), ω(t, h(t)) = 0 = u(t, h(t)).

Thus, if we can choose M such that

u0(x) ≤ ω(0, x) for x ∈ [h0 − 1/M, h0], (2.12)

then we can apply the maximum principle to ω−u over ΩM to deduce that u(t, x) ≤
ω(t, x) for (t, x) ∈ ΩM . It would then follow that

ux(t, h(t)) ≥ ωx(t, h(t)) = −2MM1.

With the same method, we can deduce

vx(t, h(t)) ≥ ωx(t, h(t)) = −2MM2,

if M2 ≥ a2+Mq
1

2d2
. Hence, if M2 ≥ max{a1+Mp

2
2d1

,
a2+Mq

1
2d2

}, we have

h′(t) = −µ(ux(t, h(t)) + ρvx(t, h(t))) ≤M3 := 2Mµ(M1 + ρM2).

To complete the proof, we need only find some M such that (2.12) holds. By direct
calculation, we obtain

u0(x) =
∫ x

h0

u′0(y)dy ≤ ‖u′0‖C([0,h0])(h0 − x) on [h0 − 1/M, h0],

ω(0, x) = M1[2M(h0 − x)−M2(h0 − x)2] ≥M1M(h0 − x).
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Therefore, upon choosing M ≥ ‖u
′
0‖C([0,h0])

M1
, (2.12) follows. To conclude, we choose

M := max
{a1 +Mp

2

2d1
,
a2 +Mq

1

2d2
,
‖u′0‖C([0,h0])

M1
,
‖v′0‖C([0,h0])

M2

}
,

thus the proof is complete. �

With the same method as in proof of [6, Theorem 2.3], we can get the existence
and uniqueness of a global solution for (1.1).

Theorem 2.4. The solution of problem (1.1) exists and is unique, and it can
be extended to [0, Tmax) where Tmax ≤ ∞. Moreover, if Tmax < ∞, we have
lim supt→Tmax

‖u, v‖L∞([0,h(t)]×[0,t]) =∞.

Proof. It follows from the uniqueness that there is a Tmax such that [0, Tmax) is the
maximal time interval in which the solution exists. In order to prove the present
theorem, it suffices to show that, when Tmax <∞,

lim sup
t→Tmax

‖u, v‖L∞([0,t]×[0,h(t)]) =∞.

In what follows we use the contradiction argument. Assume that Tmax < ∞
and ‖u‖L∞([0,Tmax)×[0,h(t)]) < ∞. Since v ≤ M2(M) in [0, h(t)] × [0, Tmax) and
0 < h′(t) ≤ M3 in [0, Tmax) by Lemma 2.3, using a bootstrap argument and
the Schauder’s estimate yields a priori bound of ‖u(t, x), v(t, x)‖C1+α([0,h(t)] for all
t ∈ [0, Tmax). Let the bound be M4. It follows from the proof of Theorem 2.1 that
there exists a τ > 0 depending only on M1,M2,M3 and M4 such that the solution
of the problem (1.1) with the initial time Tmax − τ/2 can be extended uniquely
to the time Tmax − τ/2 + τ that contradicts the assumption. Thus the proof is
completed. �

3. Global solution for the case pq < rs

We first give a comparison principle, whose proof is standard and we omit it (see
[16]).

Lemma 3.1. Let ai(x, t), bi(x, t), ci(x, t), (i = 1, 2), be continuous functions in
Ω × (0, T ). Assume that ai(x, t), ci(x, t) ≥ 0 in Ω × (0, T ) and bi(x, t), ci(x, t) are
bounded on Ω̄× [0, T0] for any T0 < T . If functions ui belong to C2,1(Ω× (0, T ))∩
C(Ω̄× [0, T ]), i = 1, 2, and satisfy

u1t ≤ (≥)a1∆u1 + b1u1 + c1u2, 0 < t < T, x ∈ Ω,

u2t ≤ (≥)a2∆u2 + b2u2 + c2u1, 0 < t < T, x ∈ Ω,

u1(0, x) ≤ (≥)0, u2(0, x) ≤ (≥)0, x ∈ Ω,

u1(t, x) ≤ (≥)0, u2(t, x) ≤ (≥)0, 0 < t < T, x ∈ ∂Ω,

(3.1)

then
(u1, u2) ≤ (≥)0, ∀(x, t) ∈ Ω̄× [0, T ), i = 1, 2.

In order to get the global existence, we aim to construct a constant supersolution
of (1.1). Now, we state a simple fact without proof.

Lemma 3.2 ([12, Lemma 1]). If p, q, r, s > 0 and pq < rs, then for any positive
constants A,B, there exist two positive constants M1 and M2 such that AMr

1 ≥
Mp

2 and BMs
2 ≥ M

q
1. In addition, if (M1,M2) is a solution to this inequalities,
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(kM1, `M2) is a solution to such inequalities for every k, ` ≥ 1 satisfying kq/s ≤
` ≤ kr/p.

Lemma 3.3. If pq < rs, the solution of the free boundary problem (1.1) satisfies

0 < u(t, x) <M1, 0 < v(x, t) ≤M2 for 0 ≤ t ≤ T, 0 ≤ x < h(t),

where Mi is independent of T for i = 1, 2.

Proof. Fix C = max{maxΩ̄ u0(x),maxΩ̄ v0(x)}. We seek a pair of constant M1,
M2 such that M1,M2 ≥ C, and

b1Mr
1 > a1 +Mp

2, b2Ms
2 ≥ a2 +Mq

1. (3.2)

To begin with, we choose (M1,M2) such that a1 ≤Mp
2 and a2 ≤Mq

1. Therefore,
(3.2) holds provided that

b1Mr
1 > 2Mp

2, b2Ms
2 ≥ 2Mq

1.

Since pq < rs, the existence of suitable M1 and M2 is guaranteed by Lemma 3.2.
Next we prove that for any l > h0, (u(t, x), v(t, x)) ≤ (M1,M2) := (u, v). From

the above process, we have (u, v) satisfies

ut − d1uxx ≥ u(a1 − b1ur + vp), 0 < t ≤ T, 0 < x < l,

vt − d2vxx ≥ v(a2 + uq − b2vs), 0 < t ≤ T, 0 < x < l,

u ≥ 0, v ≥ 0, 0 < t ≤ T, x = 0, l,

u(0, x) ≥ u0(x), v(0, x) ≥ v0(x) 0 ≤ x ≤ l.

Set w = ū− u, z = v̄ − v, then we have

wt − d1wxx ≥ (a1 − b1Φ3(t, x) + vp)w + ūΨ3(t, x)z, 0 < t ≤ T, 0 < x < l,

zt − d2zxx ≥ (a2 − b2Φ4(t, x) + uq)w + v̄Ψ4(t, x)z, 0 < t ≤ T, 0 < x < l,

w ≥ 0, z ≥ 0, 0 < t ≤ T, x = 0, l,

w(0, x) ≥ 0, z(0, x) ≥ 0, 0 ≤ x ≤ l,

where

Φ3(t, x) =
∫ 1

0

(r + 1)(θū+ (1− θ)u)rdθ, Φ4(t, x) =
∫ 1

0

(s+ 1)(θv̄ + (1− θ)v)sdθ,

Ψ3(t, x) =
∫ 1

0

p(θv̄ + (1− θ)v)p−1dθ, Ψ4(t, x) =
∫ 1

0

q(θū+ (1− θ)u)q−1dθ.

Using Lemma 3.1 in [0, T ] × [0, l] shows that u ≤ u and v ≤ v. Now for any fixed
(t0, x0) ∈ [0, T ] × [0, h(t)], let l be sufficiently large so that (t0, x0) ∈ [0, T ] × [0, l],
and it follows from the above proof that

u(t0, x0) ≤ u(t0, x0) =M1,

v(t0, x0) ≤ v(t0, x0) =M2,

which gives the desired estimates. �

Combining Theorem 2.4 with Lemma 3.3 yields the existence of a global solution.

Theorem 3.4. If pq < rs, the free boundary problem (1.1) admits a unique global
classical solution.
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4. Global and nonglobal solutions for the case pq > rs

In this section, we consider the asymptotic behavior of the solution for the case
pq > rs. First we give the blowup result.

Theorem 4.1. Assume that pq > rs. If bq1b
r0
2 < 1 for some r0 > 0 satisfying

pq = r0s, or bs01 b
p
2 < 1 for some s0 > 0 satisfying pq = rs0, then all solutions of

(1.1) blow up in finite time with suitable initial data.

Proof. To show this, it suffices to compare the free boundary problem with the
corresponding problem in the fixed domain:

ut − d1uxx = u(a1 − b1ur + vp), t > 0, 0 < x < h0,

vt − d2vxx = v(a2 + uq − b2vs), t > 0, 0 < x < h0,

u(t, 0) = v(t, 0) = 0, t > 0,

u(t, h0) = v(t, h0) = 0, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, 0 ≤ x ≤ h0

(4.1)

It follows from Proposition 1.2 that the solution blows up if bq1b
r0
2 < 1 for some

r0 > 0 satisfying pq = r0s, or bs01 b
p
2 < 1 for some s0 > 0 satisfying pq = rs0. We

conclude the result by using comparison principle for the fixed boundary. �

Now we present a comparison principle for u, v and the free boundary x = h(t)
which can be used to estimate the solution (u(t, x), v(t, x)) and the free boundary
x = h(t).

Lemma 4.2. Suppose that T ∈ (0,∞), h ∈ C1([0, T ]), u, v ∈ C(D
∗
1,T )∩C1,2(D∗1,T )

with D∗1,T = (0, T ]× (0, h(t)), and

ut − d1uxx ≥ u(a1 − b1ur + vp), t > 0, 0 < x < h(t),

vt − d2vxx ≥ v(a2 + uq − b2vs), t > 0, 0 < x < h(t),
ū, v̄ ≥ 0, t > 0, x = 0,

ū = v̄ = 0, h̄′(t) ≥ −µ(ūx + ρv̄x), t > 0, x = h̄(t),

ū(0, x) ≥ u0(x), v̄(0, x) ≥ v0(x), 0 ≤ x ≤ h0.

If h(0) ≤ h(0),

(ū(0, x), v̄(0, x)) ≥ (0, 0) on [0, h̄(0)],

(u0(x), v0(x)) ≤ (u(0, x), v(0, x)) on [0, h0],

then the solution (u, v, h) of the free boundary problem (1.1) satisfies h(t) ≤ h(t) in
(0, T ], (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) in [0, T ]× (0, h(t)).

Proof. We first assume that h(0) > h(0). Then h(t) > h(t) for small t > 0. We
can derive that h(t) > h(t) for all t ≥ 0. If this is not true, there exists t∗ > 0 such
that h(t∗) = h(t∗) and h(t) > h(t) for all t ∈ (0, t∗). Thus, h

′
(t∗) < h′(t∗). Recall

that (u0(x), v0(x)) ≤ (u(0, x), v(0, x)) on [0, h0], u(t∗, h(t∗)) = 0 = u(t∗, h(t∗)) and
v(t∗, h(t∗)) = 0 = v(t∗, h(t∗)). As the proof of Lemma 3.3, and applying Lemma
3.1 for the fixed boundary, we can obtain that (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) in
(0, t∗)× (0, h(t∗)) and

∂

∂x
(u− u)

∣∣
(t∗,h(t∗))

≥ 0,
∂

∂x
(v − v)

∣∣
(t∗,h(t∗))

≥ 0,
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which shows that

h′(t∗) = −µ
(∂u
∂x

(t∗, h(t∗)) + ρ
∂v

∂x
(t∗, h(t∗))

)
≤ −µ

(∂u
∂x

(t∗, h(t∗)) + ρ
∂v

∂x
(t∗, h(t∗))

)
≤ h′(t∗).

This leads to a contradiction, which proves that h(t) < h(t) for 0 ≤ t ≤ T in
the case h(0) > h(0). The general case can be established through approximation
(we also can refer to [8, Lemma 5.1]). Since h(t) ≤ h(t) for 0 ≤ t ≤ T , we have
(u(t, x), v(t, x) ≤ (u(t, x), v(t, x)) in [0, T ]× (0, h(t)). �

Remark 4.3. The pair (u, v, h) in Lemma 4.2 is usually called an upper solution
of (1.1). We can define a lower solution by reversing all the inequalities in the
obvious places. Moreover, one can easily prove an analogue of Lemma 4.2 for lower
solutions.

Next we present some conditions so that the global fast solution is possible.

Theorem 4.4. If pq > rs, then the free boundary problem (1.1) admits a global
fast solution, provided the initial data is suitably small and h0 is suitably small.

Proof. It suffices to construct the suitable global supersolution. Inspired by [10],
we define

σ(t) = 2h0(2− e−γt), t ≥ 0;

V (y) = cos
(π

2
y
)
, 0 ≤ y ≤ 1;

w(t, x) = z(t, x) = εe−αtV (
x

σ(t)
)
, t ≥ 0, 0 ≤ x ≤ σ(t),

where γ, α and ε > 0 are to be chosen later. Direct computation yields

wt − d1wxx − w(a1 − b1wr + zp)

≥ εe−αt[−αV + d1V σ
−2(

π

2
)2 − V (a1 − b1wr + zp)]

≥ εe−αtV
[
−α+

(π
2
)2 d1

16h2
0

− a1 − εp
]
,

and

zt − d2zxx − z(a2 + zq − b2zs) ≥ εe−αtV
[
−α+

(π
2
)2 d2

16h2
0

− a2 − εq
]
,

for all t > 0 and 0 < x < σ(t). On the other hand, we have σ′(t) = 2γh0e
−γt > 0

and −wx(t, σ(t)) = −zx(t, σ(t)) < 2εσ−1(t)e−αt. Now we choose h0 that satisfies

ai ≤
(π

2
)2 di

64h2
0

, i = 1, 2; α = γ = min
{(π

2
)2 d1

64h2
0

,
(π

2
)2 d2

64h2
0

}
,

ε = min
{((π

2
)2 d1

64h2
0

)1/p

,
((π

2
)2 d2

64h2
0

)1/q

,
8h2

0γ

µπ(1 + ρ)

}
.

Then we have

wt − d1wxx ≥ w(a1 − b1wr + zp), t > 0, 0 < x < σ(t),

zt − d2zxx ≥ z(a2 + wq − b2zs), t > 0, 0 < x < σ(t),
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w(t, 0) ≥ 0, z(t, 0) ≥ 0,

w(t, x) = z(t, x) = 0, σ′(t) > −µ(
∂w

∂x
+ ρ

∂z

∂x
), t > 0, x = σ(t),

σ(0) = 2h0 > h0.

By Lemma 4.2, one can show that h(t) < σ(t), as long as the solution exists
u(t, x) < w(t, x), v(t, x) < z(t, x) for 0 ≤ x ≤ h(t). In particular, it follows from
Lemma 4.2 that (u, v, h) exists globally and limt→∞ h(t) <∞. �

Acknowledgments. This work was supported by natural science fund for colleges
and universities in Jiangsu province (12KJB110018), by the natural science fund
of Nantong University (12Z031, 13040435, 03080719), and by the college students
innovative projects, 2013. We would like to express our sincere gratitude to the
anonymous referees their valuable suggestions.

References

[1] G. Bunting, Y. Du, K. Krakowski; Spreading speed revisited: Analysis of a free boundary

model, Networks and Heterogeneous Media (special issue dedicated to H. Matano), 7(2012),
583-603.

[2] X. F. Chen, A. Friedman; A free boundary problem arising in a model of wound healing,

SIAM J. Math. Anal., 32(2000), 778-800.
[3] X. F. Chen, A. Friedman; A free boundary problem for an elliptic-hyperbolic system: an

application to tumor growth, SIAM J. Math. Anal., 35(2003), 974-986.
[4] Y. Du, Z. Guo; Spreading-vanishing dichotomy in the diffusive logistic model with a free

boundary, II, J. Differential Equations, 250(2011), 4336-4366.

[5] Y. Du, Z. Guo; The Stefan problem for the Fisher-KPP equation, J. Differential Equations,
253(3)(2012), 996–1035.

[6] Y. Du, Z. G. Lin; Spreading-vanishing dichotomy in the diffusive logistic model with a free

boundary, SIAM J. Math. Anal., 42(2010), 377-405.
[7] H. Ghidouche, P. Souplet, D. Tarzia; Decay of global solutions, stability and blow-up for a

reaction-diffusion problem with free boundary. Proc Amer Math Soc, 129(2001), 781-792.

[8] J. S. Guo, V. H. Wu; On a free boundary problem for a two-species weak competition system,
J. Dyn. Diff. Equat., 24(2012), 873-895.

[9] D. Hilhorst, M. Mimura, R. Schätzle, Vanishing latent heat limit in a Stefan-like problem
arising in biology, Nonlinear Anal.: Real World Appl., 4(2003), 261-285.

[10] K. Kim, Z. G. Lin, Z. Lin; global existence and blowup of solution to a free boundary problem

for multualistic model, Science China, Mathematics, 53(8)(2010), 2085-2095.
[11] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva; Linear and Quasilinear Equations of

Parabolic Type, Academic Press, New York, London, 1968.

[12] H. L. Li, M. X. Wang; Critical exponents and lower bounds of blow-up rate for a reaction-
diffusion system, Nonlinear Analysis, 63(2005), 1083–1093.

[13] Z. Lin, Z. G. Lin, M. Pedersen; Global existence and blowup for a parabolic equation with a

non-local source and absorption, Acta Appl. Math. 124(2013), 171-186
[14] A. F. Nindjina, M. A. Aziz-Alaouib, M. Cadivel; Analysis of a predatorCprey model with

modified LeslieCGower and Holling-type II schemes with time delay, Nonlinear Anal.: Real

World Appl. 7(2006), 1104-1118.
[15] R. Peng, X. Q. Zhao; The diffusive logistic model with a free boundary and seasonal succes-

sion, Discrete Cont. Dyn. Syst. A, 33(5)(2013), 2007-2031.

[16] M. X. Wang, C. H. Xie; A degenerate strongly coupled quasilinear parabolic system not in
divergence form, Z. angew. Math. Phys. 55 (2004) 741-755.

[17] Q. Y. Zhang, Z. G. Lin; Blowup, global fast and slow solutions to a parabolic system with dou-

ble fronts free boundary, Discrete and Continuous Dynamical Systems, Series b, 17(1)(2012),
429-444.



14 J. SUN, H. LU, S. GAN, L. CHEN EJDE-2014/122

Jianping Sun

School of science, Nantong University, Nantong 226007, China

E-mail address: jpsun@ntu.edu.cn

Haihua Lu (Corresponding author)

School of science, Nantong University, Nantong 226007, China
E-mail address: haihualu ntu@163.com

Shuanglong Gan

School of science, Nantong University, Nantong 226007, China
E-mail address: 1102072021@lxy.ntu.edu.cn

Lang Chen
School of science, Nantong University, Nantong 226007, China

E-mail address: 814653119@qq.com


	1. Introduction
	2. Existence and uniqueness
	3. Global solution for the case pq<rs
	4. Global and nonglobal solutions for the case pq>rs
	Acknowledgments

	References

