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NONLOCAL DEGENERATE REACTION-DIFFUSION
EQUATIONS WITH GENERAL NONLINEAR DIFFUSION TERM

SIKIRU ADIGUN SANNI

ABSTRACT. We study a class of second-order nonlocal degenerate semilinear
reaction-diffusion equations with general nonlinear diffusion term. Under a set
of conditions on the general nonlinear diffusivity and nonlinear nonlocal source
term, we prove global existence and uniqueness results in a subset of a Sobolev
space. Furthermore, we prove nonexistence of smooth solution or blow-up
of solution under some other set of conditions. Lastly, we give illustrative
examples for which our results apply.

1. INTRODUCTION

We consider the degenerate semilinear parabolic second-order initial boundary
value problem

ur — (P(t, x, w)ug ) = f(u), in (0,7] x (0,a) (1.1)
u(t,0) =0, wu(t,a) =0, in (0,7] (1.2)
u(0,2) = g(x), z€(0,a). (1.3)

This equation is degenerate at the boundary, and its nonnegative nonlinear dif-
fusivity ¢(t,x,u) : [0,7] x [0,a] x R — R and its nonlinear nonlocal source term
f(u) : R — R (with f(0) = 0) satisfy some combinations of the following conditions:

~uP < f(u), for some constant p > 1 (1.4)
0<¢":=¢(t,z,u) < B, (1.5)

A < @™ = (0, z,u(0,z))and |¢2°| < By, (1.6)
10:" (| L2(0. ;L5 (0,0)] < O (L.7)

[¢ul < L1 = [¢" — ¢"| < Li|u— 1], (1.8)
|¢¢| < Br and [¢) — ¢}| < La|u —v|, (1.9)

|9 — &l < Lslu — 0], (1.10)

If'(w) <L = |f(u) = f(v)] < Lju—v], (1.11)
(W) < L' = |f'(u) = f'(v)| < L'|u—1], (1.12)
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for some strictly positive constants v, B, By, A, o, L1, Lo, L3, L and L’. Note that
Oy is the total derivative of ¢, while ¢} is the partial derivative of ¢* with respect
to the argument ¢ only. The condition f(0) = 0 is necessary for compatibility; so
that both sides of vanish on the boundary.

Second-order parabolic equations describe the time-evolution of the density of
some physical quantity u, say chemical concentration, temperature or electric po-
tential, etc.

Nondegenerate reaction-diffusion equations, the case ¢(t, z,u) > 0, with nonlocal
source have been considered by several authors; see for example [2 [5 14 15l [16]
17, 20, 22], 23]. Examples of authors who have investigated nondegenerate reaction-
diffusion equations with local source terms are Cazenave and Lions [6], Friedman
and McLeod [12], Giga and Kohn [I3], and Ni et al. [I5]. Among several authors
who have investigated degenerate reaction-diffusion equations are Budd et al. [3],
Budd et al. [4], Chen et al. [§], Chun and Li [7], Floater [1I], and Souplet [20] 21].
The latter mentioned authors are concerned with the blow-up properties of the
solutions to the various problems considered.

Equations (1.1)—-(L.3) are considered, by Chen and Lihua [9], with the partic-
ular degenerate diffusion term (r%us;), (0 < o < 1) and the local source term
bf(u(zo(t),t)), where b > 0. The authors show that, under certain conditions,
global solutions exist and are uniformly bounded for small b or small initial data;
while the solutions blow up for large b or large initial data. Motivated by the work
of Chen and Lihua [6], Sanni [18] considered (L.1)-(L.3) with the general diffusion
term (¢(z)uy), and the nonlocal source term f(u). Under some conditions on the
diffusion and the source terms, the author proved the existence and uniqueness
of global weak solutions to the class of semilinear degenerate problems in some
weighted Sobolev spaces. A further improvement on this research area was carried
out by Sanni [I9]; who considered a class of nonlocal degenerate reaction-diffusion
equations with localized nonlinear diffusion term ¢, (t,z) = [ ¢(t, s, u(t,s)) ds.
Under a set of conditions on the localized nonlinear diffusivity and nonlinear non-
local source term, the author proved global existence and uniqueness result in the
whole of some weighted Sobolev spaces. Furthermore, the author proved nonexis-
tence of smooth solution or blow-up of solution under some other set of conditions.

The current work is an improvement on the paper [19]. The use of the nonlinear
degenerate diffusion term introduces more difficulty in the analysis than in [I9].
Under a set of conditions on the nonlinear diffusivity and nonlinear nonlocal source
term, we prove global existence and uniqueness result in a subset of a Sobolev space.
Furthermore, we prove nonexistence of smooth solution or blow-up of solution under
another set of conditions.

The remaining part of this paper is organized as follows. In Section 2, we define
the spaces used in this paper, give the definition of our weak solution and state
some existing theorems. In Section 3, we construct Galerkin approximations for
an auxiliary linear problem, obtain energy estimates and prove the existence of a
unique weak solution to the linear problem. The existence of unique weak solutions
to the nonlinear problems 7 is proved in subsection 4.1. The nonexistence
of smooth solution or blow up of solution is proved in subsection 4.2. In Section 5,
we give illustrative examples for which our results are applicable.
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2. PRELIMINARIES

We adopt the idea of not considering u as a function of = and ¢, but rather as a
mapping u : [0,7] — HE(0,a) defined by

[u®)(z) :=u(t,z) (z€(0,a), t€l0,T)).
Let L?(0,a) := {u: (0,a) — R such that |[u|z2¢.q) < 0o} with the norm
(0,a)

a 1/2
llallz2(0,q) := (/ qux) < 0.
0

Let L>[0,T; L?(0,a)] be the space of all measurable functions u : [0,7] — L?(0, a)
with the norm

llall oo, 752(0,a)] = €ss SUPg << lall2(0,q) < 00.

Let Q C R™ and H(Q) N H*(Q) := {u: Q — R such that lull 3 @)k @) < oo}
with the norm

LN v
lall 2 (@)nmre@) = (/0 > IV dl“) < 0.
r=1
Let L2[0,T; H}(Q) N H*(Q)] be the space of all measurable functions u : [0,7] —
H(9) N H*(Q) with the norm

T 1/2
lall 2o, () (0] = (/o |IUI|§15(Q)ﬂHk(Q)dt) < 0.

Let H**(2) be the dual space of H(Q) N H*(Q) with the norm
[ull ek @) = sup{{u,v) : v € Hy(2) N HQ), [[v]l gy (oynmro) < 1} < oo,

where (-, -) is the pairing of H}(Q) N H*(Q) with its dual.
Let L2[0, T; H**(Q)] be the space of all measurable functions u : [0, 7] — H**()
with the norm

o 1/2
lall 220,70 ()] = (/0 ||u||H*k(Q)dt) < 0o0.

Let H}(0,a) be the closure of the C°(0,a) in H'(0,a), with the norm

@ 1/2
||11||H3(0,a) = (/0 uxdx) < 0.

Let L?[0,T; H}(0,a)] be the space of all measurable functions u : [0,T] — HJ (0, a)
with the norm

T 1/2
Il L2g0,7: 18 (0,0)) = (/O ||“”§ié<0»a>dt> <o

Let L>°[0,T; H}(0, a)] be the space of all measurable functions u : [0, T] — Hg (0, a)
with the norm

|\U||Loc[o,T;Hg(o,a)] 1= €SSSUpPg<i<T ||11||H5(o,a) < o0.
Let H=1(0,a) be the dual space of H{(0,a) with the norm

lull -1(0,0) := sup{{u,v) : v € H&(O,a)7 HU||H&(O,@) <1} < o0
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where (-,-) is the pairing of H{(0,a) with its dual. Let L?[0,T; H1(0,a)] be the
space of all measurable functions u : [0,7] — H~1(0,a) with the norm

T ) 1/2
llora-som = ([ Tl gad) <.
Let H*(0,a) be the dual space of H}(0,a) N H?(0,a) with the norm
||UHH*(0,a) = sup{(u,v> HECAS H(%(O,Cl) N HQ(Ova)7 ||U||Hé(0,a)ﬁH2(0,a) < 1} < 0,
where (-, -) is the pairing of Hg(0,a) N H?(0,a) with its dual; and

@ a 1/2
1l 3 0,0)nH2(0,0) = (/ uZde +/ ufmdx) < o0.
0 0

Let L?[0,T; H*(0,a) be the space of all measurable functions u : [0,T] — H*(0, a)
with the norm

T 1/2
llallz2(0,7;m5%(0,0) = (/0 ||u|ﬁq*(0’a)dt) < oo.

Let C%'/2(0,a) be the Holder space of bounded and continuous functions u with
exponent 1/2, with the norm

Hu||CO~1/2(O,a) = ||U\|C(0,a) + [U]COJ/?(O,a)v
where
HUHC(o,a) = sup |u(z)]
z€(0,a)

and the (1/2)th-Hélder seminorm is
u(z) — u(y)|
[u]co.1/2 = sup —_ I
© (0,a) z,y€(0,a), z#y |:L' - y|1/2 }

Definition 2.1. By a weak solution of the degenerate parabolic initial boundary
value problem (|1.1)—(1.3), we mean a function u such that

u € L>[0,T;Hy(0,a) N H?*(0,a)], u' € L>[0,T;H;(0,a),
u, € L*[0,T; H*(0,a), u',u” € L?[0,T;H'(0,a)],
and that satisfies
/Oa u'vdr + /Oa o(t, T, u)ugvyde = /Oa f(u)vdz, (2.2)
for each v € H}(0,a), a.e. 0 <t < T, and
u(0) =g, (2.3)

(2.1)

where g € H2(0,a) N H*(0, a).
The following Sobolev embedding is a special case of the theorem proved in [10].
Theorem 2.2. Ifu € H(0,a), then u € C%'/2(0,a), and we have the estimate
[ullcorrz(o,a) < Cllullz(o,a), (2.4)
where C' = C(a) is a constant.

The next Poincaré-Friedrichs inequality is proved in [24].
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Theorem 2.3. Let u € H}(Q2) and Q@ C R" be a bounded domain. Then there
exists a constant C = C(2) such that
[ull2) < Cllullmy o) (2.5)
The following Corollary to Theorem follows easily from Theorem [2.3
Corollary 2.4. Ifu € H}(0,a), then u € C%'/2(0,a), and we have the estimate

[ull corrz(0,ay < Cllull (0,05 (2.6)
for some constant C = C(a).
The following theorem is a generalization of the theorem proved in [I0].

Theorem 2.5. Let u € L2[0,T; H}(Q) N H*(Q)] with v’ € L2[0,T; H**(Q)].

(i) Thenu € C[0,T; H*=1(Q)] (after possibly being redefined on a set of measure
zero).

(i) The mapping t — ||u(t)||%1k,1(m is absolutely continuous, with

(O e+ ) = 200 (1) u(0) (27)

forae 0<t<T.
(#ii) Furthermore, we have the estimate

e ()@ < C ()| ego,rmgenms oy + 10 Ol

(2.8)

where C' = C(T).

Proof. We establish the proof in 3 steps.

Step 1. As in [I0], we extend u to a larger interval [—3,T + §] for § > 0, and

define the regularization um = Nm-1 * u (where n,,-1 is the usual mollifier on R

and m > 1). Thus for m=!,n=1,

d -1 —1
aﬂum () =™ ()l Fr-1(0

:2(um

—1 -1 -1

/(t) _ u’n, ,(t)’ um

() = (1))

where (-, ) gr-1() denotes the inner product in H*=1(Q). Integrating this equation
over [s, t] yields

—1 n-1
[u™ () —u" ()71

= [lu™ " (s) = u" ()1 3ums g (2.9)

HE-1(Q)

-1 -1

+ 2/ (umfl’(T) — u"fl’(T),um (1) —u™ (7))dr,

for all 0 < s,t < T; where (-,-) denotes the pairing of the space H}(2) N H*()
with its dual. Next, fix s € (0,7") for which
umfl(s) —u(s) in H*Y(Q), as m — .

Consequently, (2.9) implies

limsup sup [[u™
m,n—o00 0<t<T

1

-1
() —u" (D720,
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T
< lim ™ (1) =0 ()2 gy
m,n—oo Jq
. r m*1 n’l 2
+ lim [u™ (1) —u (T)“Hé(Q)QHk(Q)dT = 0.

m,n—o0 Jq

It follows that the smoothed functions {u”fl]ﬁf:1 is a Cauchy sequence which
converges in C[0,T; H*=1(Q)] to v € C[0,T; H*=1(Q)]. Since u™ ' (t) — u(t) for
a.e. t, we conclude that u = v a.e.

Step 2. Hence, we have analogous equation to (2.9]), namely:

(Ol = I @iy +2 [ @ (0w (e 210)

S

-1
m
[

We send m to oo in the last equation, and identify u with v above, to obtain

()l Fx-1 (@) = () 1 Fx1 e + 2/ (' (), u(r))dr, (2.11)

for all 0 < s,t < T. By the fundamental theorem of Lebesgue integral calculus, due
to Lebesgue (see page 129 of [1]), (2.11)) implies that the mapping ¢t — |ju(¢) ||?{k_1(9)
is absolutely continuous. Differentiating (2.11)) yields (2.7) for a.e. 0 <¢ < T.
Step 3. Integrate (2.11)) with respect to s over [0,t], to obtain

e 0
t t t

:/0 Hu(s)u?{k_l(mdsm/o /(u/(r),u(r))des
, f

< / Ja(t)|Z0 s gyt + 2T / |, w)dt
0 0

T T
S/O ||u||§1k—1(n)dt+2T/o lall 2o, 112 ) 1 10 Nl 220,70 (21

< L+ D)l 203 @)nare ey T LI Z 20,7515 0

where we used Young inequality and a simplification. From whence ({2.8]) follows.
|

Remark 2.6. It is trivial to show that, if s € L>°[0,T; L?(0, a)] and f satisfies the
Lipschitz condition ([1.11)), with f(0) = 0, then we have the estimate

£ ()l o [0,1522(0,a)) < LISl Loej0,7,L2(0,a)] < 005 (2.12)
so that f(s) € L>[0,T; L?*(0,a)] .

Remark 2.7. We will use the following equivalent form to (1.1) in most of our
analysis:

t
up — (P"0uy )y = (/ &(b“druz) + f(u), in (0,7] x (0,a). (2.13)
0 xr
Remark 2.8. Notice that, by applying Holder inequality, (L.7)) implies

t
/ |0,¢"|dr < VT||8:¢"|| 210,71 (0,0 < oVT, for 0<t <T. (2.14)
0
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3. AUXILIARY LINEAR PROBLEM

Consider the degenerate linear parabolic initial boundary value problem

ug — (P(t, x, $)ug)s = f(s(t,x)), in (0,7] x (0,a) (3.1)
u(t,0) =0, wu(t,a) =0, in (0,7]
u(0,z) = g(z), =z € (0,a),

where s € L°°[0,7T;L?(0,a)] is a known function, with d;s € L2[0,T;L*(0,a)],

0;¢° € L2[0,T,L>°(0,a)] and so := s(0,x) € H}(0,a) N H*(0,a).
The definition of our weak solution for (3.1))—(3.3]) is the same as in the Def-
inition with ¢(t,z,u) and f(u) replaced by ¢(t,z,s) and f(s) respectively.
We shall build a weak solution of our degenerate parabolic problem (3.1)—(3.3) by

constructing some finite-dimensional approximations (Galerkin approximations),
before passing to limits.

3.1. Construction of approximate solution. Assume that the functions wy =
wi(x) (k=1,...) are smooth,
{wy,}32, is an orthogonal basis of H{(0,a), (3.4)
{wy,}72; is an orthonormal basis of L?(0, a). (3.5)
(We can for example take {wy}72 ; to be the complete set of appropriately normal-
ized eigenfunctions for —88,—; in H}(0,a)).

We fix a positive integer m; and look for function u™ : [0, 7] — H}(0,a) of the
form

u” = f: d (t)wg, (3.6)
k=1
where we intend to select the coefficients d¥ (t) (0 <t <T), k=1,...,m so that
dr (0) = /Oa gwrdx, (k=1,...,m), (3.7)
/Oa u" wydr + /Oa o(t, x, s)ul (wy)de = /Oa f($)wgdz. (3.8)

We now construct approximate solutions.

Theorem 3.1. There exists a unique function u™ of the form (3.6)) satisfying
(3.7 —(3.8) for each integer m =1,2,....
Proof. From (3.5)), if u™ has the structure (3.6)), then

/um/wkdx:/ Zd’fn'(t)widz:dfn'(t). (3.9)
0 0

Note that, by (L.5]),
0 S/ o(t, z, s) g (wi)z|da = dfn(t)/ o(t,x, 8)|(wi)o|*dz = dy, (H)R*(2),
0 0

where h*(t) = [ ¢(t, @, s)|(wp)zPde < B [§ [(w)e|?dz < oo (k = 1,...,m).

Further, define f*(t) := [' f(s)wgdx. Thus becomes
dy, () + h* (8)dy, (1) = fA (1), (3.10)
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subject to the condition (3.7). By the standard existence theory for ordinary dif-
ferential equations, there exists a unique absolutely continuous function d.,(t) =
(dL(t),...,dm(t)), which satisfies and for a.e. 0 <t <7T. Thus u™
defined by solves uniquely for a.e. 0 <t <T. O

3.2. Energy estimates.

Theorem 3.2. Let g € H(0,a) N H*(0,a) and the conditions (L.5)-(1.9) and
(1.11)—(L.12) be satisfied. Then there exists a constant C > 0 such that

- m 2 m/ 2
sup (IR 1) 243 00,00 + 10 1) 203 0.0 )

+ ||u21/||%2[0,T;H*(0,a) + ||um/||%2[O,T;H*1(O,a)] + ”um//”%ﬂo,T;H*l(O,a)] (3.11)

< C(IIsl3ep0.r2200 + 196513210, 7502 01 + 1933 0.0) + 1501 20.0) )
form = 1,2,...; where C = C(L,L',a,\, 0,B, By,c1), where ¢; is the principal
etgenvalue of 88722' In particular, if s = g, then we have the estimate

m 2 m/ 2
OiltlgT (||u O3 0,0)n12(0,0) T 11 (t)HHg(o,a))

(3.12)

ml 2

+ ||u;m||2L2[0,T;H*(0,a) + ||um/||%2[0,T;H*1(0,a)] + [lu HL2[0,T;H*1(0,¢1)]

< Cliglts(o.0) = A-

Proof. We split the proof in ten steps.

Step 1. In this step and the next, we estimate some initial values. Estimate
for [[u™ (O)H%.W(O,a)' Let ¢, be the eigenvalue corresponding to the eigenvector wy.
Then we have

—(wk)m:ckwk, k=1,2,..., (0<Cl SCQSC;;...). (313)

Notice that the definition of u™ defined by (3.6]) implies, in particular, that u7 = 0,
u . =0, and ul} = 0 on 9(0,a). We thus deduce, by repeated integration

TXrxrx P o e e o i o
by parts, the following estimates:

[0 (0)[172 0.0y < €1 /a W ()07 grma0n (0) = 1 00 (0) 122 0.0y (3.14)

I (01132 0,a) < / W (0)U,a0ra (0) = €17 000 (0)[720,)-  (3.15)

N O < 657 [ WO (0) = 2 e O (316)

[0 (0122 0.0y < 01_1/0 W (00000 (0) = 1 00 (0) 172 0,0y (3.17)
where ¢; is the principal eigenvalue of . Using 7, we thus have

Hu ( )||H4 0,a) < C(Cl)Huwwwz( )H%Q(O,a) = C(Cl)A um(o)u;na:w:vwwa:a:(o)dx7

(3.18)
by integrating by parts repeatedly. Now

a a
W (0) € spanfuw }iy, / ™ (O)wgdz = d¥,(0) = / guds.
0 0
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Consequently, integrating by parts repeatedly, we have
a
9 0) sy € Cler) [ 90 (0)d

:C(Cl)/ gmmu%m(o)dx
0

1 m
< SO (0,0 + Clen)llgllzrao,a).

where we used the Cauchy inequality. Simplifying the last inequality,
[a™(0) || zr4(0,a) < Clen) 19l r4(0,0)- (3.19)
Step 2. Estimate for ||um’(0)||§12(07a). Take (3.8)) on t=0 and use (3.13)) to deduce

/a llml(O)C];2 (U/k)xmm:vdx
0 (3.20)

— f/ ¢Sou;"(0)c;2(wk)mmmdm+/ f(so)clz?(wk)mmdx.
0 0

Multiply by c2d¥’(0) and sum over from k = 1 to m to deduce

/ um’(O)um'mm(O)dx:—/ (bs"u;"(O)um'mxm(O)dac—&—/ f(so)u™ sppzda.
0 0 0

(3.21)

Notice that u™’ derived from (3.6 implies that u?2’ = 0 and u_.’(0) = 0 on

TTXIT

09(0,a). We thus have the following analogous estimates to (3.19):
™ (0)[17r2(0,0) < Clen) 0™ 20 (0)[[ 20,0y = C(Cl)/o u™(0)u™ 1400 (0)dz.

Using (3.21)) in the last inequality, we obtain

™ (0) s 0.0

<0l [ O O+ [ o0 rna(0)d)

< C(er) (B /0 O e (0)] i — B /0 O (0]
o [ Hoon i)

< ClenB)( [ MO a0 o~ [ R (0™ 0] d
[ s0head 50) + (500 500 (01 (itegrating by parts)

< Cler B)( [ M O™ @)l + [ (s0)ef (50

+ (s0)a " (s0) 0™ 2 (0)d)

< Cer B, Ly L) (Ju™ ()13 0.0) [0™ () L12(0.0) + 150 172(0.0) [0 () 122 0,)
(using Holder inequality, (1.11)), (1.12)) and simplifying)

< elu™(0) 2 0.0) + € Cler, B Ly L) (10" 0)3rs(0.0) + Is0l3r2 0.0 )



10 S. A. SANNI

EJDE-2014/124

where we used the Cauchy inequality with e Choosing e sufficiently small and sim-
plifying, yield:

0™ (0) 32 0,0) < Cler, B Lo 2) (0™ (0) s 0.0) + 03220,

i : (3.22)
< C(e1, B, L, ) (119 0.0) + 150l 2(0.0))
where we have employed ((3.19)

Step 3. Multiplying (3.8) by d¥'(t), summing over k = 1

=1,...,m, recalling (3.6
and integrating by parts, we deduce
d

2™ Ol 00+ 55 (| 07O Pds)
a t a

—2/ (/ 8r¢sdr)u;”u;”/dx+2/ f(s)yu™dx
0 0 0

< Vo (a2 (000 + 102 O 0.) + 9™ O 0 + | 1£(6)P,

(3.23)
using (2.14) and Cauchy inequality. Simplifying (3.23), integrating over [0,¢] and
using (1.5)) and (1.6]), we deduce

t
I 0y A0 0.

<fa/ Jum( ||L2<0a>dr+fa/ Jum

+ I f(s )||L2[0,T;L2(0,a)] + Blu (0)][72(0 a)

Step 4. For a fixed m > 1, define u™ := u™ and differentiate (3.8)) with respect
to t to obtain

/au wkdw+/ p*ouy (wy,), do

/ /8qu5 dr (W) dx—/ O’ ul (wy) dx—|—/ O f (s)wy dx
/ /8T¢ dr )l (W) dx—/ Ol (W) dx+/ Oysf (s)wg dx

(3.25)
r k= 1 ,m. Multiplying by d¥(t), summing over k = 1

.,m, and using
., and -7 we deduce

3.24
HL2(O a)dr ( )

d —m —m
= (||u 220.0)) + 2AE OlE20.0
a t a a
< —2/ (/ 6T¢sdr)|ﬁ;n|2dx—2/ 8t¢su;”ﬁ;”dx+2/ I/ (s)0su™dx
o “Jo 0 0
+ 0™ (0)172(0.0)

< 2VT |0 (D) 72(0,0) + €W Ol (0,) + (40 H10:0° |7 0,0 0 (D)2 0.0
+ L”ats”QLQ(Oﬂ) + L”ﬁm(t)H%Q 0,a)
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Integrating over [0, t], we deduce
t
16 ()12 0.0 + 27 / 1) 20,0y
t t
< (2VTo +¢) / 16 ()12 g,y + (46) / 100612 (.00 (MW ()20

t
+ L/o ||ﬁm(7")||2L2(o,a)d7" + L”atSH%Q[O,T;LQ(O,a)] + ||ﬁm(0)||2L2(o,a)~

(3.26)
Step 5. Combining (3.24)) and (3.26)), choosing T,e¢ > 0 sufficiently small and
simplifying, we deduce

t
0™ ()17 2(0.0) + 05 (|7 2(0.0) +/0 [0 (7|7 20,0y
t
<C(\ B, L) [/0 (141100617 0,0) (7)) (||ﬁm(7")||2L2(o,a) + ||u;n(7”)||i2(o,a))d7“
1 F O E 20122 0.0y + 1068l T 210 72220,y + 05 O F2(0,0) + ||ﬁm(0)||2L?(0,a):|
t
<C(\ B, L) [/0 (14 110:0°(1 00 (0.0 (1)) (||ﬁm(7’)||2L2(o,a) + ||u;n(7’)||%2(o,a))d7"

+ ||5||2L2[0,T;L2(o,a)] + ||3t5||%2[o,T;L2(o,a)] + ||um(0)||§12(0,a) + ||um/(0)||§12(0,a)}7
(3.27)
where we have employed in the last inequality. Extracting appropriate in-
equality from and applying Gronwall inequality we deduce

||ﬁm(t)|‘%2(0,a) + ||u§cn(t)|\2m(o,a)

< ec(TJrUQ)CQ(T + 02)(||8||2L2[0,T;L2(o,a)] + HatSHQL?[o,T;L?(o,a)]
I (O) 20,0y + 0™ (0) 20,0 ) (3.28)
< 2020262002 (HSHQLQ[O,T;L?(O,a)] + ||at3||2L2[o,T;L2(0,a)]
" (O) 20,0y + 0™ (0) 20,0 )
for sufficiently small 7' > 0. Using in (3.27), and employing and (3.22),

we deduce

sup (" (000 + 12O 00)) + 10 Bt 500

<t< (3.29)

< C(||SH%2[0,T;L2(0,(1)] + ”at‘s”%?[O,T;L?(O,a)] + HQH%H(O,LI) + ”50”%2(0@))’
where C' = C(cy, A\, B, L, L, o).
Step 6. As in [I0], fix any v € Hg(0,a), such that [|v]|g10q < 1, and set
v = v + 02, where v! € span{w;}7, and foa viwgpdr =0, (k =1,...,m). Thus
||U1||H3(0,a) < [vllga0,0) < 1, since {wi}32, are orthogonal in H}(0,a). Hence,
using (3.8), we deduce for a.e. 0 <t < T that

a a a
/ um'vldx—l—/ o(t, z,s)ulvlde :/ f(s)v'da. (3.30)
0 0 0
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Using Holder inequality and the last equality, (3.6) implies

(um/,v1>:/ um'vdas:/ u™vldx
0 0
2/ f(s)vldx—/ B(t,x, s)ulvldr
0 0

< )220, 0 122(0,0) + Bllu™ 30,0 10" 113 0,0y, (using (L.5))
C@f($)e20.m v 12 0.0) + Bl 2 0.0 10" 1 12 0.0)-

by Poincaré-Friedrichs inequality (Theorem [2.3)). Therefore,

™, 01| < Ca, BY(1£() 20,0 + 10" 300 ) (3.31)

since ||v1||H&(0,a) < 1. We thus have

[a™ 100 < Cla BY (1 $)lz0a) + 10"y 0m),  (3:32)
using . We can easily deduce
HumI”zL?[O,T;H—l(O,a)]
< Cla, B) (T 0.7:113 0.0 + 17) 20,7022 0.00))

< C(a, B) (Il w o rosrp 0.0y + I Eepo 1200 (3:33)
for sufficiently small T" > 0

< C(||5H%2[O,T;L2(O,a)] + ||8t3||2L2[o,T;L2(o,a)] + HQH%H(O,a) + ||80||?{2(O,a))7

where C' = C(c1, L, a, B,o, ) and where we have employed (2.12)) and (3.29)).

Step 7. Next, we show that u” € L2[0,7; H~'(0,a)]. We employ once more the
function v of Step 4. Using (3.8]), we deduce for a.e. 0 < ¢ < T that

/ m! 1dx+/qbtxs ’v;dx:—/ 0o (t, x, s)ull'v, +/ Orsf’(s)vtde.
0 0

(3.34)
Thus, (3.6 implies

o)

a a
" "
:/ m vdm—/ molde
0 0

—/ qﬁ(t,x,s)u?/v}cdx—/ 3t¢(t,x,s)u?v;dx+/ Osf'(s)v'dx
0 0 0

< Bl[u™ ()l a2 0,0 10 | 2 0,0) + 1066° | L= 0,00 0™ () | 122 (0,0 10" | 22 0,0)
+ LC()10ss] L2 0,0) 10" 1272 0,09
(using (|1.5)), (L.11), Hélder and Poincaré-Friedrichs inequalities)

< C(a L, B) (J0™ () my(0.0) + 100" | < 0.0 0™ ()0, + 1005 220, )
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since [[v*]| g1 (0,q) < 1. Therefore,

[0 10,00 < Cla, L B) (11 (1) sy 0.0

. N (3.35)
106" |00 s1D 10 ()l 0.0) + 1915l 22(0.0))-
0<t<T
Integrating ([3.35)) over [0,T], we deduce
HumHHLﬂO,T;H*l(O,a)]
< C(a,L,B) (Hum/(t)||L2[0,T;H5(0,a)] + ||at3||L2[0,T;L2(0,a)]
(3.36)

+ 100 20200y sU2 107 )]y 0.0 )
0<t<T

< C(HSH%z[o,T;M(o,a)] + ||6t8||iz[0,T;L2(0,a)] + HQH%I‘I(O,a) + ||SO||%12(O,a))7
where C' = C(a, B, A\, L,0); and we have employed ({3.29).

Step 8. We estimate |[u}L|[z~[0,7;22(0,a)]- Now, (3.13) implies that (wy)z.(0) =
(wg)zz(a) = 0. Using the Remark (13.8), (3.13) and integration by parts, we

deduce

- [ e () ar)od
:/ qﬁfc‘)u?c;l(wk)mdm—k/ qﬁsougzcc,;l(wk)mdx
0 0

S/ Um’clzl(wk)mdl“-i'\/if/ |u;’;c;1(wk)m|dx—/ f(S)clzl(wk)de.
0 0 0

Multiplying by cxdE, (t) and summing from k = 1 to m, we deduce

a a
/Oum";|2d:r§/0 ¢S°|u;’;|2dm

a a
< —/ d);f’u;”u;’;dx—k\/fa/ \u;’;|2d:c
0 0

—l—/ um/u;r;dx—/ f(s)ultdx
0 0
< ‘/T0|uﬁa(t)||2m(o,a) + Bellui (D)1 7200
1 m m
o (™ 122 0.0y + BRI 2200 + 15620 )

where we used (1.6), (2.14)) and Cauchy inequality (with and without €). Choosing
T, e > 0 sufficiently small in the last inequality and simplifying, we deduce

sup [[uf ()[|72(0.a)
0<t<T

<C Hum||2Loo 0,T;H2(0,a)] T ”um/”%w[O,T;L?(O,a)] + ”f(s)”%w[O,T;L?(O,a)] (3.37)
[ 0(0,a)]
< C(HS||%2[O,T;L2(O,CL)] + ||6t3||2L2[0,T;L2(0,a)] + ”9”?14(0,(1) + ||50||§12(0,a)>7

where C = C(a, B, By, \,0,L,L’,c1); and we have employed (1.6, (1.7), (2.12)),
and (3.29).
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Step 9. Estimate for |[ul" || z2j0,7;1+(0,0)- For k=1,...,m, (3.8) and (3.13) imply
that

—/ u™ (wy,) zzd / oty z, s)ul (W) gz d / f(s)(wi)zzdz, (3.38)
0

which, on integrating the left hand side by parts, one deduces

/Oa w (w)ada < B/Oa ™ (1) — /Oaf(s)(wk)md:r, (3.39)

where we used (1.5)). Fix any v € H}(0,a)N H?(0,a) such that vl 22 0,0)nE2(0,a) <

1 and set v = v' + v?, where v}, € span{wi}j, and [} 02 wpdz = 0, (k =

L,...,m). Consequently, [v'|l11(0.0)nm2(0,0) < IVllH20.0)nH2(0,0) < 1, since the
functions {wy }3°, are orthogonal in H} (0, a). Hence, using (3.39)), we have

/ 1alar:<B/ [ultv m|dm—/ f(s)vi, dx. (3.40)
0

Using Holder inequality and the last equality, (3.6) implies

a a
(u;"'m;) :/ u;"’vxz/ u?/v;dx
0 0
a a
<5 [ el lde - [ f(s)eldo
0 0

< Nvrellz2(0,0) (Bluge |l 20,0y + 1 ()l £2(0,0))
< Nvgell 73 0,0)n 82 0,0) (Bl | 22(0,0) + 1 (91| 22(0,0)) -

Consequently, we have
[ 0g)] < (Blluigll20.0) + 1 £ (9l 22 (0.a)) (3.41)

since ||Ul||H3(0,a)mH2(0,a) < 1. Therefore,

0 || 0,0) < (Bl z20,0) + 1 (8) ]| £2(0,0) ) - (3.42)

Squaring both sides of (3.42)), integrating with respect to ¢ from t =0 to t = T and
simplifying, we deduce

HU?I”%z[O,T;H*(O,a)
< 2B2”um”%oc[o,T;Hé(o,a)mH%o’a)] + 2T”f(s)||2L°<>[0,T;L2(0,a)] (3.43)

< C(||5H%2[O,T;L2(O,a)] + ||8t3||2L2[o,T;L2(o,a)] + HQH%I“(O,a) + ||SO||?{2(O,a))7

where C = C(a, B, By, A\,0,L,L',c1); and T > 0 is chosen sufficiently small; and

we have employed ([2.12)), (3.29) and (3.37).
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Step 10. We finally estimate ||um/||Loo[0,T;H01(07a)]. Multiply (3.25)) by dfn//(t), sum
from k =1 to m and integrate by parts to deduce

a d a
—m/|2 S0 |zmMm |2
2/0 |a |dx+7dt(/0 @ |ux|da:)

a t a a
:_/ (/ 8T¢>Sdr) |a;"|2dx+/ at¢8\a$|2dx+2/ 0,5 umE™ do
0 0 0 0

a a
+ 2 8 S g’;—m/d + 2/ a / —’m/d
/0 Lo ul a™ dx ; sf(s)u™ dx (3.44)

< (\/Ta+||at¢5||Loo(o7a))/ |a;"|2dx+3e/ o™ |?dx
0 0

(1966313 0.y 1™ 13 0.1 0.0

F110:0° 1170 (0,0 1055 7 = 0,722 (0,00 + LQHatS”QL?(O,a))’
where used the Cauchy inequality with €. Choosing € > 0 sufficiently small, simpli-

fying and integrating over [0, t], we deduce

t
™ ()13 0.0 < €O, L) / (VT + 11006 (1)l .0 ) 10" (1) 313,y
+ ||um|‘%oo[o,T;H3(o,a)] + ||u%||%w[0,T;L2(0,a)]
11051210, 7122 0,00 + 107 0) 2 0.0 )-
Applying the Gronwall inequality to the last inequality, we deduce
sup_[[u™ ()11 0.0
0<t<T
<C(Ao0,L) <||Um||ioo[o ret 0.0y T 10T 0,722 (0,0
) e (3.45)
+ ||8t5||L2[0,T;L2(0,a)] + [[u™ (0)||H2(0,a))a (for some fixed T' > 0)
< C(||SH%2[O,T;L2(O,a)] + ”at‘s”%z[O,T;L?(O,a)] + HQH%H(O,Q) + ”50”%2(0,11))’

where C' = C(a, B, By, \,0, L, L, c1) and we have used (3.22)), (3.29)) and (3.37).
Using (3.29)), (3.33)), (3.36]), (3.37) and (3.45), we deduce (3.11]), as desired. The
particular case follows readily by substituting s = g in (3.11)) to deduce (3.12). O

3.3. Existence of unique solution to the auxiliary linear problem.

Theorem 3.3. The auziliary linear problem (3.1)—(3.3)) has a unique solution
u € L>®0,T; H}(0,a) N H*(0,a)], u' € L®[0,T;Hy(0,a)], (3.46)
u, € L0, T; H*(0,a), u’,u” € L*[0,T; H *(0,a)]. '

Proof. The proof is split in four steps.
Step 1. Notice that the energy estimates (3.11)) imply that the sequences:

{u™1°°_, is bounded in L*[0,T; Ha(0,a) N H?(0,a)],
{u™}e°_, is bounded in L>[0,T; HJ (0, a)],
{u™}2°_, is bounded in L*[0,T; H*(0,a),

m=1
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{u™}e°_, is bounded in L*[0,T; H'(0,a)],

{u™"}2°_, is bounded in L%[0,T; H~(0, a)].

Consequently, there exists a subsequence {u” }°, C {u™}2°_; and a function u €

L*°[0,T; HE(0,a) N H?(0,a)], with u’ € L*°[0,T; H}(0,a)], u, € L*[0,T; H*(0,a)
v’ € L?0,T; H~1(0,a)] and u” € L?[0,T; H~ (0, a)] such that

u™ —u in L0, T; Hi(0,a) N H*(0,a)], (3.47)

u™’ —u' in L*[0,T; H}(0,a)], (3.48)

u™ —u, in L2[0,T;H*(0,a), (3.49)

u™’ —u' in L*[0,T; H '(0,a)], (3.50)

u™” ~u” in L*[0,T; H*(0,a)]. (3.51)

Step 2. Next we fix an integer M and choose a function v € C*[0,T; H}(0,a)] of
the form

M
v=> d"t)w, [ (3.52)
k=1

where {d*}? | are given smooth functions. We choose m > M, sum over k =
1,..., M, and then integrate with respect to t, to get

T ra T ra T a
/ / um'vdacdt—i—/ / o(t,x, s)ul'v, dxdt:/ / f(s)vdzdt. (3.53)
o Jo o Jo o Jo

Using (1.5)), it is trivial to show that

T ra
| /0 /0 o(t,x,s) (0] — uy) v, da di| (3.54)

< BT[Jug" — ug|| oo, 712 (0,001 1V 0,722 (0,0))-

We set m = my in (3.53), employ (3.54)), recall (3.47)—(3.48) and pass to weak

limits, to get

T ra T ra T pra
/ / u'vdz dt+/ / o(t, x, s)u,v, dedt = / / f(s)vdxdt. (3.55)
o Jo o Jo o Jo

Since the functions of the form (3.52) are dense in L?[0,T; HZ(0,a)], (3.55) holds
for all functions in this space. In particular

/0 uvdz—l—/o gb(t,x,s)uxvmdx:/o f(s)vdz, (3.56)

for each v € H}(0,a) and a.e. 0 <t <T.
Step 3. We now prove that u(0) = g. Note that (3.55) is equivalent to

T a T a
_/ / vudz dt—|—/ o(t,x, s)uyv, dx dt
0o Jo o Jo

:/OT /Oaf(s)vda:dt+/0a u(0)v(0)dz, o
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for each v € C[0,T; H}(0, a)] with v(T) = 0. Similarly, (3.53) is equivalent to

T a
/ / u™ dx dt + / / o(t,x, s)ult v, dr dt
o Jo

. (3.58)
= / / f(s)vdz dt+/ u™(0)v(0)dz.
o Jo 0
Setting m = my in and using once again 7, we deduce
T a T a
- / / viudz dt —|—/ / o(t,x, s)uyv, dr dt
0 0 0 0 (359)

:/OT/Oaf(s)vdxdt+/OagV(0)d$7

since u,,, (0) — g € L?(0,a). Comparing (3.57) and (3.59)), we conclude that
u(0) = g, as v(0) is arbitrary.

Step 4. We now prove uniqueness. Let u and u be two solutions of (3.1)—(3.3).
Then u — u satisfies

/ (u— ) vdz — / 6(t, 3, 5) (1 — )0y dz = 0, (3.60)
0 0
(u—1u)(0) =0, (3.61)
for each v € H}(0,a). Setting v =u — ua in (3.60) we deduce
1d
S () = /qbtxs|(u—u) 2dz <0, (3.62)
Integrating (3.62)) over [0,¢] and applying (3 , we conclude that u = a. (]

4. MAIN RESULTS

4.1. Existence of unique solutions to the nonlinear problems. We deduce
from Theorem [2.5|and Corollary[2.4] after u is possibly redefined on a set of measure
zero, that (2.1) implies that u € C[0,T; CO’1/2(O,a)] with u’ € C[0,T; L?(0,a)].

Theorem 4.1. Suppose condztwns (1.5) - hold. Then, there exist unique
weak solutions to the problems —(1.3)).

Proof. The proof consists of nine steps.

Step 1. Banach fixed point theorem will be applied in the space
X :={UeC0,T;C%%0,a)] : U € C[0,T; L*(0,a)]},
equipped with the norm
IUllx = max (|[T()llgo1r2(0,0) + 10" Ol L2(0,0)) -

0<t<T
A fixed point argument to f is
we— (Bt uhwy), = f(u), in [0,T] x (0,0) (4.1)
w(t,0) =0, w(t,a)=0, in (0,7 (4.2)

U)(O,.T) = g(:r), T € (O,G).
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For a given function u € X, Theorems [3.2] and [3.3] ensure the existence and unique-
ness of the solution to (4.1))—(4.3]), namely:

w e L®[0,T; Hy(0,a) N H*(0,a)], w' € L>[0,T; Hy(0,a)],
wl, € L?[0,T; H*(0,a), w',w" € L*[0,T;H*(0,a)],
with the estimate
2 2 2
2 (I g 00 W Ol 00) + W0 700

+ ||W,||%2[O,T;H*1(O,a)} + Hw/,‘&?[o,T;H*l(O,a)] (4.4)

< (X + 90 )
where C = C(L,a, \, B, 0, ¢1). Notice in particular that, if u = g, then we have the
estimate
2 2 2
s (WO 0.0 + WO g 0.) + W0 rm 0.0

4.
W 1320, 0 + 19" 200,711 0.0 (4.5)

< gl = A
Step 2. Now, define a mapping M : X — X by setting M[u] = w whenever w
is derived from u via (4.1)—(4.3). We will show that M is a contraction mapping

for sufficiently small time T > 0. We choose u,i € X and define M[u] = w,
M[u] = w. For two weak solutions w, w € X of (L.1)-(4.3), we deduce

/a(w v ”*/ $(0, 2, u(0))(W — W), vpda
/ /6r¢7“xu ))d )(w—v”v)szdx (4.6)

- [ ) = otz @) v do+ [ () - f@)vd
(w = W)(0) =0, (47)
for each v € H}(0,a). Setting v = (w — W)’ in and using (1.6)—-(1.8), we

deduce
t

2/ 1w’ (r) = W' ()| 7200y + M (W) = W () 1 72 0,0)

/\\
=
~
\
—~
~
~—
QU
8
QU
=

<2 [ [7( [ ot e wet) - w0,
“2 [ [ (60 = 60 sl ) — W)
w2 [ 0w - f@)w - wyds

<VTo [ (Iw0) = W00+ 190) =500

+ 6_IC(LI)||V~V||2L<>O[o,T;Hg(o,a)mHQ(o,a)] /0 [a(r) — ﬁ(r)”QCOvW(o,a)dr
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/ W/ () =5 ()12 0 + € / W' () — %' ()2 0.0y

L e C(a, L) / [a(r) = )20 ss .

where we used the Cauchy inequality with and without e.
Step 3. We next differentiate (4.1)—(4.2)) to deduce:

/a (w—w)" vdz + /a #(0,z,u(0))(w — W), v, dx
0 0
- / 01" (W — W) pvzda — / (0™ — 0y ™) Wyvda (4.8)
0 0

ooy v+ [ - W @),
0 0
Dy (w — W) (0) = 0, (4.9)

for each v € H}(0,a). Setting v = (w — W)’ in and using (L.6), we deduce
190 = Ol + 22 [ I0) =

0,670 (wa(r) — W (1) (W, () — (1)) da dr

(a 6 = 0,6"") ) W, (r)(W(r) =W, () dwdr  (4.10)

(¢“<T 6 ) WL () (Wi (r) = Wi (1)) da dr

+2 / / (1) (a(r)) — & £/ (8()] (W () — ' (r)) da dr.

We estimate the terms on the right side of (4.10]) using (1.5]), (1.8)—(1.12); and by
applying Holder, Cauchy and Sobolev inequalities, as appropriate, thus:

fzj / 8, 6% (W, (1) — W (r)) (W (r) — W, (1)) da dr

<2 / 10,65 e 0. [ (1) = %) 173 0.0 [ (1) = ") 13 0.y
(4.11)

<e/ W' () = % (") L 1 0.0

o / 101603 g I W(r) = () 33,0

9 / t / NCECE ar¢ﬁ<r>) Wa (1) (W, (r) — W, (r)) da dr

_ u( a(r) u(r), ./ a(r) ~ ’
S / / (620 — 680 4 G20 (1) — G2 (1)) W (1) (W (1)
)) dx dr
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t a ~
— -2 [ [ [er0) - 20+ i () - W)
0 JO
+ 5 ()@ — 8| W () (Wi (r) — Wi (1)) da dr
t
<2 [ [Cla.Lalu(r) = 60 oo + Ll () = 00
+ [ x Lsflu(r) - ﬁ<r>||co,m<o,a>} 1972 (r) /2 0.l () =) g 0,0y

< [ 10 = 000
te ITC(a,Ll,LQ,Lg)(l + ”ﬁ”X)HWZH%OC[07T;Hé(0,a)mH2(0,a)}

t
() = 50+ 100) = 1) )

_2// ) 680} W (wir) — W(r)), dedr

< i [ ) = Gl W ) — 0] drdr
0
t
<2t [ ulr) = 0)lleos 200 ¥ () 22000 [W2) = W 1) 20y (412)
<eMw ||Loc[0TH1(o a)]/ [[a(r) (T)||200,1/2(0,a)d7"

—|—e/ [Iw' (r )”Hl(o o) dr.

2 / / [ (1) £ (u(r)) — & () f(&)] (w — W) dedr

. / / £/ () (0 () — & (1) + & () (F (u(r)
W () — W' (1) dar dr

§2L/ / () — & ()| () — W' (1) d (413
Lol / / & ()| [u(r) — () [/ () — %' ()| de dr
< Cla, L I)(1 + [[]%) / () = 86 220,

t
() = 800 ) € [ I ) =5 000

Using estimates (4.11))—(4.13]) in (4.10]), combining the ensuing inequality with (4.9)),
choosing T, € > 0 sufficiently small and simplifying, we deduce

W' () = W' (1) 72(0,0) + [IW(E) = W) 0,0
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t
< C|:/0 (1 + ||8T¢u(r)”%oo(0’a)) (HW’(T) . V~V/(7‘)||%2(0,a)
W () = W) 3 0.0y )+ (L4 18013 (14 190 o213 0,002 000
t
+ HVKII”QLOO[O,T;Hol(O,a)]) /O (||u(r) - ﬁ("’)||2co,1/2(0’a) + ||U./(’l°) — ﬁ/(T)H%?(O,a))dr}
t
< C[/O (1 + ||3T¢U(r)||ioo(0,a)) (HW’(T) - W/(T)”%%o,a)
+ [[w(r) — W(T)HH(}(07G))dr + (||u||X T |‘gHH4(07a))

t
x / () = 801 /20,0) + 10 0) = & 00,0 ) ], (4.14)
where C' = C(a,L,L’, Ly, Lo, L3, \,0,¢1) and we have estimated
H‘X’H%m[O,T;Hé(o,a)ﬁHz(O,a)] + ||V~V,H%°C[O,T;Hé(07a)]
by the bound in . Applying Gronwall inequality to (4.14), we deduce
W () = (1) 220, + I90(8) = % (8) 201 (00

5 B 2
< e +0*)eC ™) 1) (Jal + 9l 0.0) (4.15)

t
[ (10) = 500 s+ 1) = 0 )

Step 4. Since the bound in (4.15]) is not uniform, we will solve the problem in a
bounded subset K of X, defined by

K:={u:u-ge Xy, ||lulx <2VA},

where X is the set where the initial and boundary values of u — g are zero; and A
is the bound in (4.5). Notice that for u,u € K, (4.15) gives

W' () = W' () 72(0,0) + IW(E) = W32 0,0

) 2
<C [C(T + 02)eCTHeT) 4 1} (4A + ||9||%14(0,a)) (4.16)

t
(1000 = 80 oo+ 10 0) = H ) )
We will show that if 7" > 0 is sufficiently small, then
. 1 .
MIK] € K and [M[u] - M[d]|x < gllu—allx,

for all u,u € K. Notice that (4.16]) implies

W' (8) = %' ()l172(0,0) + IW () = % ()12 0,0

2\ ,C(T+o? 2 2 =112 (4.17)
< CIOT + 0T+ 4 AT (48 + 93000y ) Il — a1l

Maximizing the left side of (4.17)) and applying the Corollary (2.4]), we have

2 2 ~
Iw(t) = W)} < C [CT + )T+ 4 1) T (48 + llgllya 0. a0l
(4.18)
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The definition of the mapping M and the estimate (4.5 imply that
Mlg] < VA < 2V/A; (4.19)
so that M[g] € K. Thus the set K is not empty. For an arbitrary u € K, using

(AT (E19). we deduce
I MTulllx = | Mg)llx + [1M[u] — M[g]]|x

2 1/2
<VA+ (c [C(T +02)eCT+o") | 1} T(4A + ngzz;(o,a))z(y\))
< 2VA,

for sufficiently small T > 0; so that || M[u]||x C K. Since u was arbitrarily chosen,
it follows that M[K] C K. Furthermore, if ' > 0 is chosen sufficiently small so
that

12 1
(€ e+ 3T+ 1] T(AA + g 0.)’) T < 5 (4.20)
then we have that )
I24[u]) = Ml < Hu ] x,

for all u,u € K; so that M is a strict contraction mapping for 7" > 0 sufficiently
small such that (4.20) holds.

Step 5. Now write u’ = g. For k = 0,1,2,..., inductively define u*+! ¢
L2[0,T; HY(0,a)], with u**Y € L2]0,7; H=1(0, a)] to be the unique weak solution
of the linear boundary value problem

% (uk“) — (p(t, , uF)ubt), = f(WF), in (0,T] x (0,a) (4.21)
uF L (t,0) =0, wFTi(t,a) =0, in (0,7 (4.22)
w10, 2) = g(z) = €(0,a). (4.23)

Notice that Theorem [3.3|justifies our definition of u**! as the unique weak solution
of (4.21)—(4.23)). Consequently, by the definition of the mapping M, we deduce for
k=0,1,2,...,

u*tt = Muh].
Since M is contractive (for sufficiently small 7' > 0), there exists u € X such that

lim u**! = lim M[u*] = M[u] = u. (4.24)

k—oo k—o0

Step 6. Using (4.4), we obtain

k+1 2 k+17 2
0Zier (e O3 0 =00 + 18 Ol g0 s 0.01)

1 20 s 0,00 + 10 20 201 0,00 F 10 I 20,7001 0,0) (4.25)

< C (Il + 193000 )
from where using (4.24]) and sending & to infinity on the right-hand side we deduce
sup [ (1)l o<jo,7: 113 0,008 0,00 < 00 (4.26)
k

sup ”ukJrl/HL‘X’[O,T;Hé(O,a)] < o0, (4.27)
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sup [0 20,78 (0,0) < 00, (4.28)
Sl}ip ||uk+1/”L?[O,T;H*l(o,a)] < 00, (4.29)
S‘;P ||uk+1/”L2[O,T;H—1(O,a)] < 0. (4.30)

The inequalities (4.26)-(4.30) imply the existence of a subsequence {u*/}32, C
{u*}2 | and a function u € L2[0,T; H}(0,a)], with u’ € L>[0,T; H}(0,a)], u), €
L2[0,T; H*(0,a) and v’ € L%[0,T; H1(0,a)] and u” € L?[0,T; H1(0,a)] , such
that

W5 uin L[0T HY(0,0) 1 (0, ) 31
W L0, T HA(0, ) e
Wl i 120, T2 B0, ), (4.33)
ub’ =’ in L?[0,T; H (0, a)], (4.54)
ut’” ~u” in L20,T; H(0,a)]. (4.35)

Further, we deduce
17 ()l 7:22 0,01 < Cllu¥x -

for some constant C' > 0. Using (|4.24)), we take the limit on the right side of ({4.36)
to conclude

sup I1f (@*) | s fo,7:22 0,0y < 00 (4.37)
Then there existence of a subsequence {f(ukj)}}”;l € L>[0,T; L?(0,a)] and func-
tion f(u) € L>[0,T; L*(0,a)] such that
fah) = f(u) in L2°[0,T; L*(0, )]

Step 7. We next verify that u is a weak solution of (I.1))—(1.3). For brevity,
we take the subsequence {u*1}22, of the last step as the sequence {u*}7°,. Fix
v € L2[0,T; H}(0,a)]. Since u**! is the unique weak solution of (4.21)-(4.23), we
have

T a T a T a
/ / w1y da dt +/ / ot z, M), de dt = / / f(uM)odz dt,
0 0 0 0 0 0 (

4.38)
u"t(0) = g. (4.39)

Passage to limit is not immediately apparent in the second term on the left side of

([@:38). Notice that
T ra
| / / [qﬁ(t’x’uk)uifrl - qS(t,x,u)uz} Vg dx dt|
0 0

T a
‘ /0 /0 [(ﬁ(t,x, uk) (ulgz'"1 — ux) +u, (¢(t,x, uk) — o(t, x, u))] vy dx dt’

T a a
§/ (B/ |u’;+17um||fuz|dx+L1/ |uk7u| |um||vm|da¢)dt
0 0 0
(Using and (L.3))
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T a a
< / (B/ i — | fo,| dz + Ly ut — u||co,1/2(07a)/ el v, dz) dt
0 0 0

k+1
< \/THUHL"‘[O,T;HS(OA)] (B Hu - “HLoo[o,T;Hg(o,a)]

K .
+ Lilull e o, 0.0 19 = 0ll Lo 2213 0.0 ) —0 ask—oo,  (440)

where we applied Corollary Using (4.31)), (4.32)), the deduction on {f(u*) 2
in the last step and (4.40)), we send k& — oo in (4.38)—(4.39)) to obtain

/()T/Oaufudde/OT /0 (b(t,z,u)(m)uwvxdazdt:/f /Oaf(u)vdxdt, (4.41)

u(0) =g, (4.42)
from where we deduce (2.2)—(2.3)) as desired.
Step 8. For any given 7" > 0, we select 77 > 0 sufficiently small that
1

2

Banach fixed point theorem can be applied to find a weak solution u € K of the
problem (L.I)-(L.3) on the time interval [0,7}]. Since u(t) € K for a.e. 0 <t <T,
we can upon redefining 77 if necessary assume that u(77) € K. The argument above
can be used to extend our solution to the time interval [T7,277]. We continue after
finitely many steps to construct a weak solution of f existing on the whole
interval [0, T].

Step 9. Lastly, we prove uniqueness. Suppose there exists two weak solutions u

and @ of (1.1))—(1.3). Then we have w = u, w = @ in (4.16)); and using Corollary
2.4 we deduce:

[a(t) = @)l E0./2(0,0) + 10 () = &' )1 Z2(0,0)
< [lu(t) — ()l 0,0) + 10 (1) = &' (B)][72(0.0)

2
- 44
< IO + )T >+1](4A+||g||z4<o,a)) (449)

t
« | (||u<r>—a<r>||éo,1/2(o,a>+||u’<r> NI OQ)

for t € [0,T]. Gronwall inequality applied to 3) implies that u = . O

(o + e 1] 73 (10 + ) ) <

4.2. Nonexistence or blow-up of solution.

Theorem 4.2. Let the conditions and hold. Assume further that
(i) wy is a smooth eigenfunction [10] corresponding to the principal eigenvalue
p1 >0 of =4 in H}(0,a),
(i) w1 >0 in (0,a) and [ widz =1, without loss of generality.
Define

n(t) := /Oa u(t,z)wi(z)de (0<t<T),

1 yn(0)P~! )

t* = og (
(p—1)Bm n(0)P~t — By
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If n(0) = [, gwide > (%) "' then, for sufficiently large T > 0, there does not

exist a smooth solution u of (1.1)—(1.3). Either the solution is not smooth enough
to justify some calculation; or
a

lim u(z, t)widr = 0o

te—t* 0
for some 0 < t, <t* <T; in which case the solution blows-up.
Proof. If we replace 8 and ¥(z) of [19] by B and 1 respectively, then the proof of
the theorem is precisely the same as that of [19]. O

5. ILLUSTRATIVE EXAMPLES

Note that if (1.5) and (|1.7); and the first inequalities in (1.6)), (1.8)), (1.11) and
(1.12) are satisfied, we can deduce from (3.29) that u; € L?[0,T; H}(0,a)]. On the
other hand, we have the following result.

Theorem 5.1. Assume that the first inequalities in (1.8) and (1.9) are satis-
fied, namely; ¢ < Ly and ¢} < By, for some strictly positive constants L;
and By. If u; € L?[0,T; H}(0,a)], then there exists a constant o > 0 such that

[10:"(| L2107, (0,a)] < O
Proof. By Corollary 2.4 we have
000" | = [¢) + dyue| < [&7] + |dul|w]
< Bi+ Liljue| corrz0,ay < B+ LiC(a)[uell 1 0,0)
Maximizing the left side of on [0, a], squaring both sides and integrating over
[0,T] we deduce
||8t¢u||L2[O,T,L°O(O,a)] < C(B1,L1,7) (1 + ||Ut||L2[0,T;H3(0,a)]) =:0. (5.2)
|

(5.1)

Example 5.2. Consider

((1 + 2% + ¢ sin® u) sin ==
Ut —

ur> —V11+u® -1, in(0,7] % (0,a) (5.3)

t+ sin %F
u(t,0) =0, u(t,a) =0, in (0,T] (5.4)
(0, z) = sin % z € (0,a), (5.5)

where o« > 2. We have that
1 2 a2 P X
(I+a°+t sin ) sin = >0,

t +sin ©* -
Equation (5.3)) is degenerate at the boundary 9(0,a), f(0) = 0, and g := sin ©* €
H}(0,a) N H*(0,a). Now, the hypothesis of Theorem is satisfied with L; :=
27! and By := oT“~2. Hence, assuming a priori that u; € L%[0,T; H}(0,a)], we
deduce, using Theorem [5.1] that

100" | 210,715 0,y < C(T) (1 + HutHLZ[o,T;Hg(o,a)]) =:0.

The functions ¢* and f(u) satisfy the remaining conditions of (1.5)—(1.12)) with
B:=1+a?>+T* \:=1, By :=2a, Ly :==2(a+1)T°"2 L3:=2T*"' L:=1and

¢(t7 €L, U) =
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L' := 2. Consequently, the existence and uniqueness of weak solution to (5.3)—(5.5|)
is guaranteed by Theorem 4.1

Example 5.3. We next give an example where there does not exist a smooth
solution or where the solution blows up. Consider the problem

uy — (sin? wug), =%, in [0,7] x (0,1) (5.6)

u(t,0) =0, wu(t,1)=0, in (0,T] (5.7)

u(0,2) = 6rsinmx, x € (0,1). (5.8)

Note that the conditions of Theorem [.2] are satisfied, with B := 1, v := 1, and
p:=2>1. Now w; := §sin7z is an eigenfunction corresponding to the principal

eigenvalue p; := 72 of —u” in H(0,1). Note that w; is smooth and that
1
wy > 0in (0,1), / wyde = 1. (5.9)
0

Suppose u is a smooth solution of ([5.6))—(5.8). Since g := 6w sinwx > 0, g #Z 0, we
have u > 0 within (0,7 x (0,1) by the strong maximum principle. Define

1 1
n(t) = / u(t, x)wide = / u(t, x) (g sinwm) de (0<t<T). (5.10)
0 0
We have
1 1
3 B
n(0) :/ gwidx =/ 67rsin7mc(I sinmz)dr = ~w* > et Y
0 0 2 2 v

Consequently, by Theorem either there cannot exist a smooth solution of ([5.6))—
(5.8); or else

1
. ™ .
thir% ; u(z, t>(§ sinTa)dr = oo
for some 0 < t, < t*, where
1
t* = — log 3;
0
in which case the solution blows-up in a finite time.

Acknowledgments. The author would like to thank the anonymous referee whose
thoughtful comments improved the original version of this manuscript.

REFERENCES

[1] K. B. Athreya, S. N. Lahiri; Measure theory and probability theory, Springer, 2006.

[2] A. Bose, G. A. Kriegsmann; Stability of localized structures in non-local reaction-diffusion
equations, Methods Appl. Anal. 5 (1998), No. 4, 351-366.

[3] C. Budd, J. Dold, A. Stuart; Blow-up in a partial differential equation with constrained first
integral, SIAM J. Appl. Math., 53 (1993), 718-742.

[4] C. Budd, V. A. Galaktionov, J. Chen; Focusing blow-up for quasilinear parabolic equations,
Proc. Roy. Soc. Edinb., 128A (1998), 965-992.

[5] A. Calsina, C. Perello, J. Saldana; Non-local reaction-diffusion equations modelling predator-
prey coevolution, Publ. Mat. 389 (1994), 315-325.

[6] T. Cazenave, P. L. Lions; Solutions globales d’équations de la chaleur semilinéares, Comm.
Partial Differential Equations 9 (1984), 955-978.

[7] C. Y. Chan, H. T. Liu; Global ezistence of solutions for degenerate semilinear parabolic
equations, Nonlinear Anal., 34 (1998), 617-628.

[8] Y. Chen, Q. Liu, C. Xie; Blow-up for degenerate parabolic equations with nonlocal source,
Proc. Amer. Math. Soc., 132 (2003), No. 1, 135-145.



EJDE-2014/124 REACTION-DIFFUSION EQUATIONS 27

[9] Y. Chen, L. Lihua; Boundedness of global positive solutions of a localized degenerate parabolic

equation, J. Adv. Res. Differ. Eqn. 4 (2011), No. 1, 63-80.

[10] L. C. Evans; Partial Differential Equations, American Mathematical Society, Providence,

Rhode Island, 1998.

[11] M. S. Floater; Blow up at the boundary for degenerate semilinear parabolic equations, Arch.

Rat. Mech. Anal., 114 (1991), 57-77.

[12] A. Friedman, B. McLeod; Blow-up of positive solutions of semilinear heat equations, Indiana

Univ. Math. J. 34 (1985), 425-447.

[13] Y. Giga, R.V. Kohn; Asymptotic self-similar blow-up of semilinear heat equations, Comm.

Pure Appl. Math. 38 (1985), 297-319.

[14] C. Mu, D. Liu, S. Zhou; Properties of positive solutions for a nonlocal reaction-diffusion

equation with nonlocal nonlinear boundary condition, J. Korean Math. Soc. 47 (2010), No.
6, 1317-1328.

[15] W. M. Ni, P. E. Sacks, J. Tavantzis; On the asymptotic behavior of solutions of certain

(16]

(17]
(18]
(19]
20]
21]
(22]
23]

24]

quasilinear parabolic equations, J. Differential Equations 54 (1984), 97-120.

C. Peng, Z. Yang, B. Xie; Global existence and blow-up for the degenerate and singular
nonlinear parabolic system with a nonlocal source, Nonlinear Anal. 72 (2010), No. 5, 2474~
2487.

J. Rubinstein, P. Sternberg; Nonlocal reaction-diffusion equations and nucleation, IMA J.
Appl. Math. 48 (1992), No. 3, 249-264.

S. A. Sanni; Global unique weak solutions of nonlocal degenerate reaction-diffusion equations
in weighted Sobolev’s spaces, Int. J. Evol. Equ., 6 (2011), no. 3, 279-291.

S. A. Sanni; On a class of nonlocal degenerate reaction-diffusion equations with localized
nonlinear diffusion term, Int. Journal of Math Analysis, 7 (2013), no. 4, 155-174.

P. Souplet; Blow-up in Nonlocal Reaction-Diffusion FEquations, STAM J. Math. Anal. 29
(1998), No. 6, 1301-1334.

P. Souplet; Uniform blow-up profile and boundary behavior for diffusion equations with non-
local nonlinear source, J. Differential Equations, 153 (1999), 374-406.

Y. Wang, C. Mu, Z. Xiang; Properties of Positive Solution for Nonlocal Reaction-Diffusion
Equation with Nonlocal Boundary, Bound. Value Probl. 2007 (2007), Article ID 64579, 1-12.
P. Weng, X-Q. Zhao; Spatial dynamics of a monlocal and delayed population model in a
periodic habitat, Discrete Contin. Dyn. Syst. 29 (2011), No. 1, 343-366.

E. Zeidler; Applied Functional Analysis: Applications to Mathematical Physics, Applied
Mathematical Series 108, Springer, 1995.

SIKIRU ADIGUN SANNI

DEPARTMENT OF MATHEMATICS & STATISTICS, UNIVERSITY OF U0, Uyvo 520003, NIGERIA

E-mail address: sikirusanni@yahoo.com



	1. Introduction
	2. Preliminaries
	3. Auxiliary linear problem
	3.1. Construction of approximate solution
	3.2. Energy estimates
	3.3. Existence of unique solution to the auxiliary linear problem

	4. Main results
	4.1. Existence of unique solutions to the nonlinear problems
	4.2. Nonexistence or blow-up of solution

	5. Illustrative examples
	Acknowledgments

	References

