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GROWTH OF MEROMORPHIC SOLUTIONS OF HIGHER
ORDER LINEAR DIFFERENTIAL EQUATIONS

LIJUN WANG, HUIFANG LIU

Abstract. In this article, we investigate the growth of meromorphic solutions
of the differential equations

f (k) +Ak−1f
(k−1) + · · ·+A0f = 0,

f (k) +Ak−1f
(k−1) + · · ·+A0f = F,

where Aj , F (j = 0, . . . , k − 1) are meromorphic functions. When there exists

one dominant coefficient with lower order less than 1/2, we obtain some es-
timations of the hyper order and the hyper convergence exponent of zeros of

meromorphic solutions of the above equations.

1. Introduction and statement of results

It is assumed that the reader is familiar with the standard notations and the
fundamental results of the Nevanlinna theory [10, 13, 16]. Let f(z) be a nonconstant
meromorphic function in the complex plane. We use the symbols σ(f) and µ(f) to
denote the order and the lower order of f respectively, and use λ(f) and λ(1/f) to
denote the convergence exponent of zeros and poles of f , respectively. In order to
estimate the rate of growth of meromorphic function of infinite order more precisely,
we recall the following definitions.

Definition 1.1 ([13]). Let f(z) be a nonconstant meromorphic function in the
complex plane. Its hyper order σ2(f) is defined by

σ2(f) = lim sup
r→+∞

log+ log+ T (r, f)
log r

.

Definition 1.2 ([13]). Let f(z) be a nonconstant meromorphic function in the
complex plane. Its hyper convergence exponent of zeros and distinct zeros of f(z)
are respectively defined by

λ2(f) = lim sup
r→+∞

log+ log+N(r, f)
log r

, λ2(f) = lim sup
r→+∞

log+ log+N(r, f)
log r

.

Consider the second-order linear differential equation

f ′′ +A(z)f ′ +B(z)f = 0, (1.1)
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where A(z), B(z) are entire functions. It is well known that every nonconstant
solution f of (1.1) has infinite order if σ(A) < σ(B). When the order of the
coefficients of (1.1) are less than 1/2, Gundersen [8] proved the following result.

Theorem 1.3. Suppose that A(z), B(z) are entire functions. If σ(B) < σ(A) <
1/2, or A(z) is transcendental and σ(A) = 0, B(z) is a polynomial, then every
nonconstant solution f of (1.1) satisfies σ(f) =∞.

Hellerstein, Miles and Rossi [11] investigated the case σ(B) < σ(A) ≤ 1/2,
and also obtained that every nonconstant solution f of (1.1) satisfies σ(f) = ∞,
which improved Theorem 1.3. Meanwhile, in [12] they also considered the linear
differential equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = F, (1.2)

and obtained the following result.

Theorem 1.4. Suppose that A0, A1, . . . , Ak−1, F are entire functions. If there
exists some s ∈ {0, 1, . . . , k−1} such that max{σ(F ), σ(Aj) : j 6= s} < σ(As) ≤ 1/2,
then every solution f of (1.2) is either a polynomial or a transcendental entire
function of infinite order.

When the coefficients A0, A1, . . . , Ak−1 and F are meromorphic functions, many
authors investigated the value distribution of solutions of (1.2) and its correspond-
ing homogeneous differential equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = 0 (1.3)

(see [1, 2, 5, 6, 7, 15]). Especially, Chen [5] obtained the following result.

Theorem 1.5. Suppose that A0, A1, . . . , Ak−1 are meromorphic functions. If there
exists some As(0 ≤ s ≤ k − 1) satisfying

max
{
σ(Aj)(j 6= s), λ(

1
As

)
}
< µ(As) ≤ σ(As) < 1/2,

then every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities, of (1.3) satisfies σ2(f) = σ(As), and every nontranscenden-
tal meromorphic solutions f is a polynomial with degree deg f ≤ s− 1.

In [7], the authors pointed out that the condition that the multiplicity of poles
of the solution f is uniformly bounded in Theorem 1.5 is necessary (see Remark
3.1). The above obtained results are related to the question: what conditions on
coefficients Aj(j = 0, . . . , k − 1) will guarantee that every transcendental solution
of (1.2) or (1.3) is of infinite order? From Theorems 1.3–1.5, we know that the
answer is affirmative, if there exists one dominant coefficient As such that µ(As) ≤
σ(As) < 1/2. In this paper, we continue to investigate the above question. In the
following results, we estimate the hyper order, the hyper convergence exponent of
zeros of transcendental meromorphic solutions of (1.2) or (1.3) under the condition
that the dominant coefficient As satisfying µ(As) < 1/2.

Theorem 1.6. Suppose that A0, A1, . . . , Ak−1, F are meromorphic functions of
finite order. If there exists some As(0 ≤ s ≤ k − 1) such that

b = max
{
σ(F ), σ(Aj)(j 6= s), λ

( 1
As

)}
< µ(As) < 1/2, (1.4)

Then
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(i) Every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities, of (1.2) satisfies µ(As) ≤ σ2(f) ≤ σ(As). Further-
more, if F 6≡ 0, then we have µ(As) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(As).

(ii) If s ≥ 2, then every nontranscendental meromorphic solution f of (1.2) is a
polynomial with degree deg f ≤ s−1. If s = 0 or 1, then every nonconstant
solution of (1.2) is transcendental.

Corollary 1.7. Suppose that A0, A1, . . . , Ak−1, F (6≡ 0) are meromorphic functions.
If there exists some As(0 ≤ s ≤ k − 1) such that

max
{
σ(F ), σ(Aj)(j 6= s), λ

( 1
As

)}
< µ(As) = σ(As) < 1/2,

then every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities, of (1.2) satisfies λ2(f) = λ2(f) = σ2(f) = σ(As).

Corollary 1.8. Suppose that A0, A1, . . . , Ak−1, F ( 6≡ 0) are entire functions. If
there exists some As(0 ≤ s ≤ k − 1) such that

max{σ(F ), σ(Aj)(j 6= s)} < µ(As) = σ(As) < 1/2,

then every transcendental solution f of (1.2) satisfies λ2(f) = λ2(f) = σ2(f) =
σ(As), and every nontranscendental solution f is a polynomial with degree deg f ≤
s− 1.

Remark 1.9. From Corollary 1.8, we obtain the precise estimation of the growth
of transcendental solutions in Theorem 1.4 when µ(As) = σ(As) < 1/2.

When F is of infinite order, we obtain the following results.

Theorem 1.10. Suppose that A0, A1, . . . , Ak−1, Q(6≡ 0) are meromorphic functions
of finite order, P is a transcendental entire function, such that

max
{
σ(P ), σ(Q), σ(Aj)(1 ≤ j ≤ k − 1), λ

( 1
A0

)}
< µ(A0) <

1
2
. (1.5)

Then every solution f of the equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = QeP (1.6)

is transcendental, and every transcendental meromorphic solution f whose poles
are of uniformly bounded multiplicities, of (1.6) satisfies µ(A0) ≤ λ2(f) = λ2(f) =
σ2(f) ≤ σ(A0).

Corollary 1.11. Suppose that A0, A1, . . . , Ak−1, Q( 6≡ 0) are entire functions of
finite order, P is a transcendental entire function, such that

max{σ(P ), σ(Q), σ(Aj)(1 ≤ j ≤ k − 1)} < µ(A0) <
1
2
.

Then every solution f of (1.6) satisfies µ(A0) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(A0).

Corollary 1.12. Suppose that A0, A1, . . . , Ak−1, Q( 6≡ 0) are entire functions of
finite order, P is a transcendental entire function, such that

max{σ(P ), σ(Q), σ(Aj)(1 ≤ j ≤ k − 1)} < µ(A0) = σ(A0) <
1
2
.

Then every solution f of (1.6) satisfies λ2(f) = λ2(f) = σ2(f) = σ(A0).
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2. Preliminaries

Lemma 2.1 ([9]). Let f(z) be a transcendental meromorphic function, and let
Γ = {(k1, j1), . . . , (km, jm)} be a finite set of distinct pairs of integers such that
ki > ji ≥ 0 (i = 1, . . . ,m). Let α > 1 be a given constant. Then there exists a set
E ⊂ (1,+∞) that has a finite logarithmic measure, and a constant B > 0 depending
only on α and Γ, such that for all z with |z| = r 6∈ [0, 1]∪E and (k, j) ∈ Γ, we have∣∣f (k)(z)

f (j)(z)

∣∣ ≤ B(T (αr, f)
r

logα r · log T (αr, f)
)k−j

.

It is known that the Wiman-Valiron theory (see [13]) is an important tool while
considering the value distribution theory of entire solutions of differential equations.
In [5], using the Wiman-Valiron theory for entire functions and the Hadamard
factorization theorem for meromorphic functions, the author obtained the following
Wiman-Valiron theory for meromorphic functions, which is a generalization of [14,
Lemma 5]. Their proofs are quite parallel.

Lemma 2.2 ([5]). Let f(z) = g(z)/d(z) be a meromorphic function, where g(z)
and d(z) are entire functions, such that

µ(g) = µ(f) = µ ≤ σ(g) = σ(f) ≤ +∞, λ(d) = σ(d) = λ
( 1
f

)
< µ.

Then there exists a set E ⊂ (1,+∞) that has a finite logarithmic measure, such
that for point z with |z| = r 6∈ [0, 1] ∪ E and |g(z)| = M(r, g), we have

f (n)(z)
f(z)

=
(vg(r)

z

)n
(1 + o(1)), (n ≥ 1),

where vg(r) denotes the central index of g(z).

Lemma 2.3 ([5]). Let f(z) = g(z)/d(z) be a meromorphic function, where g(z)
and d(z) are entire functions, such that

µ(g) = µ(f) = µ ≤ σ(g) = σ(f) ≤ +∞, λ(d) = σ(d) = λ
( 1
f

)
< µ.

Then there exists a set E ⊂ (1,+∞) that has a finite logarithmic measure, such
that for point z with |z| = r 6∈ [0, 1] ∪ E and |g(z)| = M(r, g), we have∣∣ f(z)

f (s)(z)

∣∣ ≤ r2s,
where s is a positive integer.

Since [5, Lemma 2.3] is published in Chinese, for the convenience of the non-
Chinese readers, we show the following proof of [5, Lemma 2.3].

Proof. By Lemma 2.2, there exists a set E1 ⊂ (1,+∞) that has a finite logarithmic
measure, such that for point z with |z| = r 6∈ [0, 1] ∪ E1 and |g(z)| = M(r, g), we
have

f (s)(z)
f(z)

=
(vg(r)

z

)s
(1 + o(1)). (2.1)

Since µ(g) = lim infr→∞
log+ vg(r)

log r , for any given ε > 0, there exists R > 0 such that

vg(r) > rµ(g)−ε (2.2)
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holds for r > R. If µ(g) = ∞, then we replace µ(g) − ε by a sufficiently large
positive constant M . Let E = E1

⋃
[1, R], then E has a finite logarithmic measure,

and by (2.1) and (2.2), we obtain the result in Lemma 2.3. �

Lemma 2.4 ([4, 6]). Let g(z) be a meromorphic function of finite order. Then
for any given ε > 0, there exists a set E ⊂ (1,+∞) that has a finite logarithmic
measure, such that for all z with |z| = r 6∈ [0, 1]∪E, we have |g(z)| ≤ exp{rσ(g)+ε}.

Lemma 2.5 ([3, 15]). Let g(z) be an entire function with 0 ≤ µ(g) < 1. Then for
every α ∈ (µ(g), 1), there exists a set E ⊂ [0,∞) such that

log densE ≥ 1− µ(g)
α

,

where E = {r ∈ [0,∞) : m(r) > M(r) cosπα}, m(r) = inf |z|=r log |g(z)|, M(r) =
sup|z|=r log |g(z)|.

Lemma 2.6 ([13]). Let g : (0,∞) → R and h : (0,∞) → R be monotone nonde-
creasing functions such that g(r) ≤ h(r) outside of an exceptional set H of finite
logarithmic measure. Then for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr)
holds for all r > r0.

Lemma 2.7. Let f(z) be a meromorphic function such that λ(1/f) < µ(f) < 1/2.
Then for any given ε (0 < 2ε < µ(f) − λ(1/f)), there exists a set E ⊂ (1,+∞)
with log densE > 0, such that for all z satisfying |z| = r ∈ E, we have

|f(z)| ≥ exp{(1− o(1))rµ(f)−ε}.

The above result might be known, but we give the proof for the convenience of
the readers.

Proof. From the Hadamard factorization theorem, we obtain

f(z) =
g(z)
d(z)

, (2.3)

where g(z) is an entire function, d(z) is the canonical product of f(z) formed with
its poles such that

λ(d) = σ(d) = λ
( 1
f

)
< µ(f). (2.4)

By (2.3) we obtain T (r, g) ≤ T (r, f) + T (r, d). Then combining with (2.4), we
obtain µ(g) ≤ µ(f). On the other hand, take a sequence {rn} such that

lim
rn→∞

log T (rn, g)
log rn

= µ(g),

hence we have

lim inf
rn→∞

log T (rn, f)
log rn

≥ µ(f). (2.5)

By (2.4) and (2.5), for any given ε(0 < 2ε < µ(f)−σ(d)), there exists a subsequence
of {rn}, for convenience, we also denote it as {rn}, such that for sufficiently large
rn, we have

T (rn, f) > rµ(f)−ε
n , T (rn, d) < rσ(d)+ε

n .

Then combining with T (r, f) ≤ T (r, g) + T (r, d) + O(1), we obtain µ(f) ≤ µ(g).
Hence we have

µ(g) = µ(f) < 1/2.
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By Lemma 2.5, set α0 =
1
2+µ(g)

2 , then there exists a set E1 with log densE1 ≥
1− µ(g)

α0
, such that for all z with |z| = r ∈ E1, we have

log |g(z)| ≥ cos(πα0) logM(r, g). (2.6)

By the definition of µ(g), for any given ε(0 < 2ε < µ(f)−λ( 1
f )), there exists r1 > 0

such that

logM(r, g) ≥ rµ(g)− ε
2 (2.7)

holds for r > r1. Since

cos(πα0)rµ(g)− ε
2

rµ(g)−ε → +∞, (r → +∞), (2.8)

by (2.6)–(2.8), there exists r2(≥ r1) such that for all z with |z| = r ∈ E1 \ [0, r2],
we have

|g(z)| ≥ exp{cos(πα0)rµ(g)− ε
2 } ≥ exp{rµ(g)−ε}. (2.9)

On the other hand, there exists R > 0 such that for r > R, we have

|d(z)| ≤ exp{rσ(d)+ε}. (2.10)

Set E = E1 ∩ [R,+∞] ∩ [r2,+∞], then log densE > 0. By (2.3),(2.9) and (2.10),
we obtain that

|f(z)| ≥ exp{rµ(g)−ε − rσ(d)+ε} = exp{(1− o(1))rµ(f)−ε}

holds for |z| = r ∈ E. �

3. Proofs of main results

In the sequel, we use the symbols E and E1 to denote any set of finite logarithmic
measure and any set of finite linear measure, not necessarily the same at each
occurrence. We also use M to denote any positive constant, not necessarily the
same at each occurrence.

Proof of Theorem 1.6. Firstly, suppose that f(z) is a transcendental meromorphic
solution whose poles are of uniformly bounded multiplicities of (1.2). From (1.2),
we know that the poles of f(z) can only occur at the poles of A0, A1, . . . , Ak−1, F .
Note that the multiplicities of poles of f are uniformly bounded, and thus we have

n(r, f) ≤ O
{k−1∑
j=0

n(r,Aj) + n(r, F )
}
. (3.1)

Then by (1.4) and (3.1) we obtain

λ
( 1
f

)
≤ b. (3.2)

From (1.2) we obtain

−As =
f (k)

f (s)
+ · · ·+As+1 ·

f (s+1)

f (s)
+
[
As−1 ·

f (s−1)

f
+ · · ·+A0

]
· f
f (s)
− F
f

f

f (s)
. (3.3)
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By the lemma of the logarithmic derivative and (3.3), we obtain

T (r,As) ≤ N(r,As) +
∑
j 6=s

m(r,Aj) +m(r,
F

f
) + 2m(r,

f

f (s)
) +O(log rT (r, f))

≤ N(r,As) +
∑
j 6=s

T (r,Aj) + T (r, F ) + T (r,
1
f

)

+ 2N(r, f (s)) + 2N(r,
1
f

) +O(log rT (r, f))

≤ N(r,As) +
∑
j 6=s

T (r,Aj) + T (r, F ) + 2(s+ 1)N(r, f)

+ 3T (r, f) +O(log rT (r, f))

≤ N(r,As) +
∑
j 6=s

T (r,Aj) + T (r, F ) + 2(s+ 1)N(r, f)

+ 4T (r, f), (r 6∈ E1).
(3.4)

By (1.4), (3.2), (3.4) and Lemma 2.6, we obtain

µ(As) ≤ µ(f). (3.5)

From the Hadamard factorization theorem, we obtain

f(z) =
g(z)
d(z)

, (3.6)

where g(z) is an entire function, d(z) is the canonical product of f(z) formed with
its poles such that λ(d) = σ(d) = λ( 1

f ). By (1.4),(3.2) and (3.5), we obtain

λ(d) = σ(d) = λ(
1
f

) < µ(f). (3.7)

By the definition of order, for any given ε(0 < 2ε < σ(f) − σ(d)), there exists a
sequence {rn} such that for sufficiently large rn, we have

T (rn, f) > rσ(f)−ε
n , T (rn, d) < rσ(d)+ε

n . (3.8)

By (3.6), we obtain
T (r, f) ≤ T (r, g) + T (r, d) +O(1). (3.9)

Hence by (3.8) and (3.9), we obtain σ(f) ≤ σ(g). On the other hand, by (3.6) we
obtain T (r, g) ≤ T (r, f) + T (r, d). Then combining with (3.7), we obtain σ(g) ≤
σ(f). Hence we have

σ(g) = σ(f). (3.10)

Using the similar proof to that of Lemma 2.7, we obtain

µ(g) = µ(f). (3.11)

So by (3.7), (3.10),(3.11) and Lemma 2.3, there exists a set E ⊂ (1,+∞) of finite
logarithmic measure, such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E and |g(z)| =
M(r, g), we have ∣∣ f(z)

f (s)(z)

∣∣ ≤ r2s. (3.12)
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By Lemma 2.1, there exists a set E ⊂ (1,∞) of finite logarithmic measure and
B > 0, such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E, we have

|f
(j)(z)
f (s)(z)

| ≤ Br[T (2r, f)]j−s+1, (j = s+ 1, . . . , k), (3.13)

|f
(j)(z)
f(z)

| ≤ Br[T (2r, f)]j+1, (j = 1, . . . , s− 1). (3.14)

By (1.4), (3.2), (3.7) and Lemma 2.4, for any given ε (0 < 2ε < µ(As) − b), there
exists a set E ⊂ (1,+∞) of finite logarithmic measure, such that for all z satisfying
|z| = r 6∈ [0, 1] ∪ E, we have

|Aj(z)| ≤ exp{rb+ε}(j 6= s), |F (z)| ≤ exp{rb+ε/2}, |d(z)| ≤ exp{rb+ε/2}.
(3.15)

Hence for all z satisfying |z| = r 6∈ [0, 1] ∪ E and |g(z)| = M(r, g), we have∣∣∣F (z)
f(z)

∣∣∣ =
|F (z)d(z)|
M(r, g)

≤ exp{rb+ε}. (3.16)

By Lemma 2.7, there exists a set H0 ⊂ (1,+∞) with log densH0 > 0, such that for
all z satisfying |z| = r ∈ H0, we have

|As(z)| ≥ exp{(1− o(1))rµ(As)−ε}. (3.17)

Let H = H0 − ([0, 1] ∪ E), then we have log densH > 0, and for all z satisfying
|z| = r ∈ H and |g(z)| = M(r, g), by (3.3),(3.12)–(3.17), we have

exp{(1− o(1))rµ(As)−ε} ≤ |As(z)|

≤ (k − s) · exp{rb+ε}Br · [T (2r, f)]k−s+1 + s · exp{rb+ε}

×Br · [T (2r, f)]s · r2s + exp{rb+ε} · r2s

≤ (k + 1)Br · exp{rb+ε} · [T (2r, f)]k+1 · r2s.
(3.18)

Hence by (3.18), we obtain σ2(f) ≥ µ(As). Now we prove that σ2(f) ≤ σ(As).
By (3.7), (3.10),(3.11) and Lemma 2.2, there exists a set E ⊂ (1,+∞) of finite
logarithmic measure, such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E and |g(z)| =
M(r, g), we have

f (j)(z)
f(z)

=
(vg(r)

z

)j
(1 + o(1)), (j = 1, . . . , k). (3.19)

By Lemma 2.4, for any given ε > 0, there exists a set E ⊂ (1,+∞) of finite
logarithmic measure, such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E, we have

|As(z)| ≤ exp{rσ(As)+ε}. (3.20)

Then by (1.2), (3.16), (3.19) and (3.20), for all z satisfying |z| = r 6∈ [0, 1] ∪E and
|g(z)| = M(r, g), we have

vg(r) ≤Mr exp{rσ(As)+ε}. (3.21)

Hence by (3.10), (3.21) and Lemma 2.6, we obtain σ2(f) ≤ σ(As).
Let F 6≡ 0. Next we prove that λ2(f) = λ2(f) = σ2(f). By (1.2) we obtain

1
f

=
1
F

(f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A0

)
. (3.22)
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Suppose that z0 is a zero of f with order α(> k), if z0 is not a pole of Aj (j =
0, . . . , k − 1), then z0 must be a zero of F with order α− k. Hence

N
(
r,

1
f

)
≤ kN

(
r,

1
f

)
+N

(
r,

1
F

)
+
k−1∑
j=0

N(r,Aj). (3.23)

By (3.22) we obtain

m
(
r,

1
f

)
≤ m

(
r,

1
F

)
+
k−1∑
j=0

m(r,Aj) +O(log rT (r, f)), (r 6∈ E1). (3.24)

Combining (3.23) and (3.24), we obtain

T (r, f) ≤ kN
(
r,

1
f

)
+ T (r, F ) +

k−1∑
j=0

T (r,Aj) +O(log rT (r, f)), (r 6∈ E1). (3.25)

Take a sequence {r′n} satisfying limr′n→∞
log log T (r′n,f)

log r′n
= σ2(f), set measE1 = δ,

then there exists rn ∈ [r′n, r
′
n + δ + 1] such that

lim inf
rn→∞

log log T (rn, f)
log rn

≥ lim
r′n→∞

log log T (r′n, f)
log(r′n + δ + 1)

= σ2(f). (3.26)

Hence by (1.4), (3.26) and σ2(f) ≥ µ(As), for sufficiently large rn, we have

T (rn, F ) = o(T (rn, f)), T (rn, Aj) = o(T (rn, f)), (0 ≤ j ≤ k − 1). (3.27)

Then by (3.25) and (3.27), we obtain σ2(f) ≤ λ2(f). Since λ2(f) ≤ σ2(f), we
obtain µ(As) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(As).

Secondly, suppose that f is a nonconstant rational solution of (1.2). When
s ≥ 2, if z0 is a pole of f with order m(≥ 1), or f is a polynomial with degree more
than s − 1, then f (s) 6≡ 0. Hence by (1.2), (3.15) and (3.17), for all z satisfying
|z| = r ∈ H0 − ([0, 1] ∪ E), we have

exp{(1− o(1))rµ(As)−ε} ≤ |As(z)| ≤ rM exp{rb+ε}.

This is impossible. So every nontranscendental solution f of (1.2) is a polyno-
mial with degree deg f ≤ s − 1. By the similar argument, we obtain that every
nonconstant solution of (1.2) is transcendental when s = 0 or 1. �

Proof of Theorem 1.10. From the hypothesis we know that every meromorphic so-
lution of (1.6) is of infinite order. So every meromorphic solution of (1.6) is tran-
scendental. Suppose that f(z) is a transcendental meromorphic solution whose
poles are of uniformly bounded multiplicities. Set f = geP , then we have

λ2(g) = λ2(f), λ2(g) = λ2(f). (3.28)

Substituting f = geP into (1.6), we obtain

g(k) +Bk−1g
(k−1) + · · ·+B0g = Q, (3.29)

where

Bk−1 = Ak−1 + kP ′, (3.30)
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Bk−j = Ak−j + (k − j + 1)Ak−j+1P
′ +

j∑
m=2

Ak−j+m

[( m

k − j +m

)
(P ′)m

+Dm−1(P ′)
]
, j = 2, 3, . . . , k; Ak ≡ 1.

(3.31)

Here Dm−1(P ′) is a differential polynomial in P ′ of degree m − 1, its coefficients
are constants. By (1.5),(3.30) and (3.31), we obtain

µ(B0) = µ(A0), λ
( 1
B0

)
< µ(A0), σ(Bj) < µ(A0), (1 ≤ j ≤ k − 1). (3.32)

Hence by (1.5), (3.29),(3.32) and Theorem 1.6, we obtain

µ(A0) ≤ λ2(g) = λ2(g) = σ2(g) ≤ σ(A0). (3.33)

Since σ2(eP ) = σ(P ) < µ(A0) ≤ σ2(g), we obtain σ2(f) = σ2(g). Then combining
(3.28) and (3.33), we obtain µ(A0) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(A0). �
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