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STRICTLY POSITIVE SOLUTIONS FOR ONE-DIMENSIONAL
NONLINEAR ELLIPTIC PROBLEMS

URIEL KAUFMANN, IVÁN MEDRI

Abstract. We study the existence and nonexistence of strictly positive solu-
tions for the elliptic problems Lu = m(x)up in a bounded open interval, with

zero boundary conditions, where L is a strongly uniformly elliptic differential

operator, p ∈ (0, 1), and m is a function that changes sign. We also character-
ize the set of values p for which the problem admits a solution, and in addition

an existence result for other nonlinearities is presented.

1. Introduction

For α < β, let Ω := (α, β) and let m ∈ L2(Ω) be a function that changes sign
in Ω. Let p ∈ (0, 1) and let L be a one-dimensional strongly uniformly elliptic
differential operator given by

Lu := −a(x)u′′ + b(x)u′ + c(x)u, (1.1)

where a, b ∈ C(Ω), 0 ≤ c ∈ L∞(Ω) and a(x) ≥ λ > 0 for all x ∈ Ω. Our aim in this
article is to consider the existence and nonexistence of solutions for the problem

Lu = mup in Ω
u > 0 in Ω
u = 0 on ∂Ω.

(1.2)

The question of existence of strictly positive solutions for semilinear Dirichlet
problems with indefinite nonlinearities as (1.2) is challenging and intriguing, and to
our knowledge there are few results concerning this issue. In contrast to superlinear
problems where any nonnegative (and nontrivial) solution is automatically positive
(and in fact is in the interior of the positive cone under standard assumptions), for
the analogous sublinear equations the situation is far less clear, even in the one-
dimensional case. For instance, it is known that if m is smooth and m+ 6≡ 0 then
for any p ∈ (0, 1) there exist nontrivial nonnegative solutions that actually vanish in
a subset of Ω (see e.g. [1, 5]), and when L = −u′′ one may also construct examples
of strictly positive solutions that do not belong to the interior of the positive cone
(see [6]).
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The problem (1.2) was considered recently in [6] for the laplacian operator, where
several non-comparable sufficient conditions for the existence of solutions where
proved under some evenness assumptions on m. In the present paper we shall
adapt and extend the approach in [6] in order to derive our main results for a
general operator. More precisely, in Section 3 we shall give two non-comparable
sufficient conditions on m in the case b ≡ 0 (see Theorem 3.1 and Remark 3.2), and
when b 6≡ 0 we shall also exhibit sufficient conditions in Theorem 3.5 and Corollary
3.8. Let us mention that these last conditions are non-comparable between each
other nor between the ones in Theorem 3.1. Moreover, one of them substantially
improves the results known for L = −u′′ (see Remarks 3.6, 3.7 and 3.9). Also, as a
consequence of the aforementioned results we shall characterize the set of p′s such
that (1.2) admits a solution and we shall deduce an existence theorem for other
nonlinearities (see Corollaries 3.10 and 3.13 respectively). Let us finally say that
necessary conditions on m for the existence of solutions are stated in Theorem 3.11.

To relate our results to others already existing let us mention that to our knowl-
edge no necessary condition on m is known in the case of a general operator (other
than the obvious one derived from the maximum principle, i.e. m+ 6≡ 0), and the
only sufficient condition we found in the literature is that the solution ϕ of Lϕ = m
in Ω, ϕ = 0 on ∂Ω, satisfies ϕ > 0 in Ω (see [9, Theorem 4.4], [8, Theorem 10.6]).
Let us note that although the above condition is even true for the n-dimensional
problem, it is far from being necessary in the sense that there are examples of (1.2)
having a solution but with the corresponding ϕ satisfying ϕ < 0 in Ω (cf. [6]).
Concerning the laplacian operator, (1.2) was treated in [6, Theorem 2.1], and as we
said before there are also further results there under different evenness assumptions
on m. Let us finally mention that existence of solutions for problem (1.2) has also
been studied when L = −u′′ and m ≥ 0 but assuming that m ∈ C(Ω) (see e.g. [11],
[3] and the references therein), and some similar results to the ones that appear
here have been obtained recently by the authors in [10] for some related problems
involving quasilinear operators.

We would like to conclude this introduction with some few words on the cor-
responding n-dimensional problem. As we noticed in the above paragraph the
condition in [9] is still valid in this case, and some of the techniques in [6] can be
applied if L = −∆ (see Section 3 in [6] for the radial case, and also [7]). We are
strongly convinced that some of the theorems presented here should still have some
counterpart in n dimensions but we are not able to provide a proof.

2. Preliminaries

Since a(x) ≥ λ > 0 for all x ∈ Ω and a ∈ C(Ω), from now on we consider without
loss of generality that L is given by

Lu := −u′′ + b(x)u′ + c(x)u, (2.1)

with b and c as in (1.1). For f ∈ Lr(Ω) with r > 1 we say that u is a (strong)
solution of the problem Lu = f in Ω, u = 0 in ∂Ω, if u ∈ W 2,r(Ω) ∩W 1,r

0 (Ω) and
the equation is satisfied a.e. x ∈ Ω. Given g : Ω× R→ R a Caratheódory function
such that g(., ξ) ∈ L2(Ω) for all ξ, we say that u is a (weak) subsolution of

Lu = g(x, u) in Ω
u = 0 on ∂Ω

(2.2)
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if u ∈W 1,2(Ω), u ≤ 0 on ∂Ω and∫
Ω

u′φ′ + bu′φ+ cuφ ≤
∫

Ω

g(x, u)φ for all 0 ≤ φ ∈W 1,2
0 (Ω).

(Weak) supersolutions are defined analogously.
The following lemma is a direct consequence of the integration by parts formula

(e.g. [2, Corollary 8.10]).

Lemma 2.1. For i : 1, . . . , n, let ui ∈ W 2,2(xi, xi+1) or ui ∈ C2(xi, xi+1) ∩
C1([xi, xi+1]) such that ui(xi+1) = ui+1(xi+1), u′i(xi+1) ≤ u′i+1(xi+1) and

−u′′i + bu′i + cui ≤ g(x, ui) a.e. x ∈ (xi, xi+1) for all i : 1, . . . , n.

Let Ω := (x1, xn+1) and set u(x) := ui(x) for all x ∈ Ω. Then u ∈W 1,2(Ω) and∫
Ω

u′φ′ + bu′φ+ cuφ ≤
∫

Ω

g(x, u)φ for all 0 ≤ φ ∈W 1,2
0 (Ω).

In particular, if also u ≤ 0 on ∂Ω, then u is a subsolution of (2.2).

The next remark compiles some necessary facts about problem (1.2).

Remark 2.2. (i) It is immediate to check that (1.2) possesses a solution if and
only if it has a solution with τm in place of m, for any τ > 0.

(ii) Let us write as usual m = m+ − m− with m+ = max(m, 0) and m− =
max(−m, 0). It is also easy to verify that (1.2) admits arbitrarily large supersolu-
tions (if m+ 6≡ 0; if m+ ≡ 0 there is no solution by the maximum principle). Indeed,
let ϕ > 0 be the solution of Lϕ = m+ in Ω, ϕ = 0 on ∂Ω. Let k ≥ (‖ϕ‖∞+1)p/(1−p).
Then k(ϕ+ 1) is a supersolution since

L(k(ϕ+ 1)) ≥ kLϕ ≥ (k(‖ϕ‖∞ + 1))pm+ ≥ (k(ϕ+ 1))pm in Ω (2.3)

and ϕ = k > 0 on ∂Ω.

The two following lemmas provide some useful upper bounds for the L∞-norm of
the nonnegative subsolutions of (1.2). To avoid overloading the notation we write
from now on

Bα(x) := e
R x
α
b(r)dr, Bα(x) := e−

R x
α
b(r)dr.

Lemma 2.3. Let 0 ≤ u ∈W 2,2(Ω) be such that Lu ≤ mup in Ω. Then

‖u‖L∞(Ω) ≤ [
∫ β

α

Bα(x)‖m+Bα‖L1(α,x)dx]1/(1−p). (2.4)

Proof. Since Bα, u
′ ∈ W 1,2(Ω), we may apply the product differentiation rule and

hence

−(Bαu
′)′ ≤ −(Bαu

′)′ +Bαcu

= Bα(−u′′ + bu′ + cu)

≤ Bαmup ≤ Bαm+‖u‖pL∞(Ω).

Integrating on (α, x) for x ∈ (α, β) (see e.g. [2, Theorem 8.2]) and noting that
Bα(α)u′(α) = u′(α) ≥ 0 we obtain

−Bα(x)u′(x) ≤ ‖u‖pL∞(Ω)

∫ x

α

Bα(t)m+(t)dt.
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Dividing by Bα(x) > 0 and integrating now on (y, β) for y ∈ (α, β), since u(β) = 0
we get

0 ≤ u(y)
‖u‖pL∞(Ω)

≤
∫ β

y

[Bα(x)
∫ x

α

Bα(t)m+(t)dt]dx for all y ∈ (α, β),

and the lemma follows. �

Let
M+ := {x ∈ Ω : m ≥ 0}, M− := {x ∈ Ω : m < 0}. (2.5)

Lemma 2.4. Let 0 ≤ u ∈ W 2,2(Ω) be such that Lu ≤ mup in Ω, and let M+ be
given by (2.5). If c > 0 in M+, then

‖u‖L∞(Ω) ≤ [ sup
x∈M+

m+(x)
c(x)

]1/(1−p).

Proof. Without loss of generality we assume that u 6≡ 0. Furthermore, let us
suppose first that ‖u‖L∞(Ω) > 1. Let x0 ∈ Ω be a point where u attains its absolute
maximum. There exists δ > 0 such that u ≥ 1 in Iδ(x0) := (x0 − δ, x0 + δ). There
also exist x1, x2 ∈ Iδ(x0) satisfying x1 < x0 < x2 and u′(x2) ≤ 0 ≤ u′(x1). We
have that

−(Bαu
′)′ +Bαcu ≤ Bαmup ≤ Bαm+up in Ω

and so in Iδ(x0) we get that (because u ≥ 1 in Iδ(x0)) −(Bαu
′)′ ≤ Bα(m+ − c)u.

Integrating on (x1, x2) we obtain

0 ≤ Bα(x1)u′(x1)−Bα(x2)u′(x2) =
∫ x2

x1

−(Bαu
′)′ ≤

∫ x2

x1

Bα(m+ − c)u. (2.6)

Since u ≥ 1 in (x1, x2) and Bα ≥ e−‖b
+‖∞(x2−α) in (x1, x2), from (2.6) it follows that

there exists E ⊂ (x1, x2) with |E| > 0 (where |E| denotes the Lebesgue measure
of E) such that m+(x) ≥ c(x) a.e. x ∈ E. Moreover, due to the fact that c > 0
a.e. x ∈ M+ it must hold that m+ > 0 a.e. x ∈ E. In particular, E ⊂ M+ and
therefore

1 ≤ sup
x∈E

m+(x)
c(x)

≤ sup
x∈M+

m+(x)
c(x)

. (2.7)

Let u now be as in the statement of the lemma, and let ε > 0. Then

L
u

‖u‖∞ − ε
≤ m

(‖u‖∞ − ε)1−p

( u

‖u‖∞ − ε

)p
.

Applying the first part of the proof with m/(‖u‖∞ − ε)1−p and u/(‖u‖∞ − ε) in
place of m and u respectively, from (2.7) we deduce that(

‖u‖L∞(Ω) − ε
)1−p ≤ sup

x∈M+

m+(x)
c(x)

and since ε is arbitrary this completes the proof of the lemma. �

We shall need the next result when we characterize the set of p′s such that (1.2)
admits a solution.

Lemma 2.5. Suppose (1.2) has a solution u ∈ W 2,2(Ω), and let q ∈ (p, 1). Then
there exists v ∈W 2,2(Ω) solution of (1.2) with q in place of p.
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Proof. Let γ := (1−p)/(1−q). Let 0 ≤ φ ∈ C∞c (Ω), and let Ω′ be an open set such
that suppφ ⊂ Ω′ b Ω. One can check that uγ ∈W 1,2

0 (Ω)∩W 2,2(Ω′). Furthermore,
noticing that γ > 1 and γ − 1 + p = γq we find that

L(uγ) = −γ(u′′uγ−1 + (γ − 1)uγ−2(u′)2) + bγuγ−1u′ + cuγ

≤ γuγ−1(−u′′ + bu′ + cu) ≤ γuγ−1mup

= γm(uγ)q in Ω′.

Multiplying the above inequality by φ, integrating over Ω′ and using the integration
by parts formula we obtain that∫

Ω

(uγ)′φ′ + b(uγ)′φ+ cuγφ =
∫

Ω′
[−(uγ)′′ + b(uγ)′ + cuγ ]φ

≤ γ
∫

Ω

m(uγ)qφ.

Now, let 0 ≤ v ∈ W 1,2
0 (Ω). There exists {φn}n∈N ⊂ C∞c (Ω) with φn ≥ 0 in Ω and

such that φn → v in W 1,2(Ω) (e.g. [4, p. 50]). Employing the above inequality
with φn in place of φ and going to the limit we see that uγ is a subsolution of
(1.2) with γm in place of m. Thus, taking into account Remark 2.2 (i) and (ii)
we get a solution v ∈ W 1,2

0 (Ω) of (1.2), and by standard regularity arguments
v ∈W 2,2(Ω). �

3. Main results

We set

Cp :=
2(1 + p)
(1− p)2

, (3.1)

and for any interval I,

λ1(m, I) := the positive principal eigenvalue for m in I.

Theorem 3.1. Assume b ≡ 0. Let m ∈ L2(Ω) with m− ∈ L∞(Ω) and suppose
there exist α ≤ x0 < x1 ≤ β such that 0 6≡ m ≥ 0 in I := (x0, x1). Let γ :=
max{(β − x0), (x1 − α)} and let Cp be given by (3.1).

(i) If it holds that

‖m−‖L∞(Ω)

‖c‖L∞(Ω)
sinh2

[
γ

√
‖c‖∞
Cp

]
≤ 1
λ1(m, I)

(3.2)

then there exists a solution u ∈W 2,2(Ω) to problem (1.2).
(ii) If it holds that

‖m−‖L∞(Ω)

‖c‖L∞(Ω)
[cosh(γ

√
(1− p)‖c‖L∞(Ω))− 1] ≤ 1

λ1(m, I)
(3.3)

then there exists a solution u ∈W 2,2(Ω) to problem (1.2).

Proof. Recalling Remark 2.2 it suffices to construct a strictly positive (in Ω) sub-
solution u for (1.2) with τm in place of m, for some τ > 0. Moreover, without loss
of generality we may assume that α < x0 < x1 < β (in fact, it shall be clear from
the proof how to proceed if either x0 = α or x1 = β). To provide such u we shall
employ Lemma 2.1 with n = 3 and g(x, ξ) = τm(x)ξp.
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We shall take u2 > 0 with ‖u2‖L∞(I) = 1 as the positive principal eigenfunction
associated to the weight m in I, that is satisfying

Lu2 = λ1(m, I)mu2 in I

u2 = 0 on ∂I.

Since m ≥ 0 in I, for τ > 0 we have that Lu2 = λ1(m, I)mu2 ≤ τmup2 whenever

λ1(m, I) ≤ τ. (3.4)

On the other hand, suppose now that (3.2) holds and pick τ satisfying

‖m−‖L∞(Ω)

‖c‖L∞(Ω)
sinh2

[
γ

√
‖c‖∞
Cp

]
≤ 1
τ
≤ 1
λ1(m, I)

(3.5)

(in particular, (3.4) holds). Let x ∈ [α, x1] and define

f(x) =

√
τ‖m−‖∞
‖c‖∞

sinh[

√
‖c‖∞
Cp

(x− α)].

A few computations show that Cp(f ′)2−‖c‖∞f2 = τ‖m−‖∞ in (α, x1). Moreover,
f(α) = 0, f(x) > 0 for x ∈ (α, x1) and f ′, f ′′ ≥ 0 for such x. Let us now fix
k := 2/(1− p). Then we have

kp = k − 2, k(k − 1) = Cp. (3.6)

We set u1 := fk. Taking into account (3.6) and the above mentioned facts we find
that

Lu1 = −k[(k − 1)fk−2(f ′)2 + fk−1f ′′] + cfk

≤ −Cpfk−2(f ′)2 + ‖c‖∞fk

= −fk−2τ‖m−‖∞
≤ τmup1 in (α, x1).

(3.7)

Furthermore, since f is increasing we get that ‖u1‖∞ = [f(x1)]k and therefore
using the first inequality in (3.5) and the fact that x1 − α ≤ γ one can verify that
‖u1‖∞ ≤ 1.

In a similar way, if for x ∈ [x0, β] we define u3 := gk where g is given by

g(x) :=

√
τ‖m−‖∞
‖c‖∞

sinh
[√‖c‖∞

Cp
(β − x)

]
,

then Lu3 ≤ τmup3 in (x0, β), ‖u3‖∞ ≤ 1, u3(β) = 0 and u3(x) > 0 for x ∈ (x0, β).
We choose now

x0 := sup{x ∈ I : u1(y) > u2(y) for all y ∈ (x0, x]},
y := max{x ∈ I : u2(x) = 1},
y := min{x ∈ I : u2(x) = 1}.

We observe that x0 ∈ I exists because u1(α) = u2(x0) = 0 and u1(x1) ≤ 1 =
‖u2‖∞. Moreover, since u1 and u2 are C1, by the definition of x0 we have that
u1(x0) = u2(x0) and u′1(x0) ≤ u′2(x0) (for the last inequality it is enough to note
that

u1(x)− u1(x0)
x− x0

<
u2(x)− u2(x0)

x− x0
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for every x ∈ (x0, x0)), and also clearly x0 < y. Analogously, there exists x1 ∈
I such that u2(x1) = u3(x1) and u′2(x1) ≤ u′3(x1), and satisfying x1 > y. In
particular, x0 < x1. Hence, defining u by u := u1 in [α, x0], u := u2 in [x0, x1] and
u := u3 in [x1, β], we have that u = 0 on ∂Ω and u fulfills the hypothesis of Lemma
2.1 and as we said before this proves (i) (let us mention that if x0 = α then in order
to build u we only use u2 and u3, and if x1 = β then we do not need u3).

Let us prove (ii). We shall take u2 as above. We now fix τ such that

‖m−‖L∞(Ω)

‖c‖L∞(Ω)
[cosh(γ

√
(1− p)‖c‖L∞(Ω))− 1] ≤ 1

τ
≤ 1
λ1(m, I)

. (3.8)

We set k := 1/(1− p), and for x ∈ [α, x1] we define

f(x) :=
τ‖m−‖∞
‖c‖∞

[
cosh

(√‖c‖∞
k

(x− α)
)
− 1
]
.

Then f(α) = 0, f > 0 in (α, x1) and f ′ ≥ 0. Furthermore, by the first inequality
in (3.8) ‖u1‖∞ ≤ 1, and it can be seen that kf ′′ − ‖c‖∞f = τ‖m−‖∞. Define now
u1 := fk. Observing that kp = k − 1 we derive that

Lu1 = −k[(k − 1)fk−2(f ′)2 + fk−1f ′′] + cfk

≤ −kfk−1f ′′ + ‖c‖∞fk = −fk−1τ‖m−‖∞
≤ τmup1 in (α, x1).

In the same way, if for x ∈ [x0, β] we set u3 := gk where g is given by

g(x) :=
τ‖m−‖∞
‖c‖∞

[
cosh

(√‖c‖∞
k

(β − x)
)
− 1
]
,

then Lu3 ≤ τmup3 in (x0, β), ‖u3‖∞ ≤ 1, u3(β) = 0 and u3 > 0 in (x0, β). Now the
proof of (ii) can be finished as in (i). �

Remark 3.2. Let us mention that the inequalities in (i) and (ii) are not com-
parable. Indeed, we first check that for p ≈ 1 (3.2) is better than (3.3). Let
κ := γ

√
‖c‖∞. Since 1√

Cp
= (1− p)

√
1

2(1+p) , it is sufficient to observe that

0 ≤ lim
p→1−

sinh2[κ(1− p)
√

1
2(1+p) ]

cosh(κ
√

1− p)− 1
≤ lim
p→1−

sinh2(κ(1− p))
cosh(κ

√
1− p)− 1

= 0.

We now show that for 0 < p ≈ 0 (3.3) is better than (3.2). It suffices to prove this
for p = 0 because the dependence on p in both inequalities is continuous. For p = 0
(3.2) and (3.3) become

‖m−‖∞
‖c‖∞

sinh2(κ/
√

2) ≤ 1
λ1(m, I)

‖m−‖∞
‖c‖∞

(coshκ− 1) ≤ 1
λ1(m, I)

and so we only have to check that for every x > 0 it holds that sinh2(x/
√

2) >
coshx− 1 which is easy to verify.
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Remark 3.3. If in (3.2) we take limit as ‖c‖L∞(Ω) → 0 we arrive to the condition

γ2

Cp
‖m−‖L∞(Ω) ≤

1
λ1(m, I)

(3.9)

which is the one that appears for L = −u′′ in [6, Theorem 2.1].

Remark 3.4. In the statement of Theorem 3.1 one can replace the condition (3.2)
by

‖m−‖L∞(Ω)

‖c‖L∞(M−)
sinh2

[
γ

√
‖c‖L∞(M−)

Cp

]
≤ 1
λ1(m, I)

, (3.10)

c ≤ m+ in M+, (3.11)

where M+ and M− are given by (2.5). Indeed, we first observe that if (3.10) holds
then one can reason as in (3.7) and prove that Lu1 ≤ τmup1 in (x0, β) ∩M−. On
the other side, if (3.11) is true then since in the proof of the theorem f is chosen
satisfying f ′′ ≥ 0 and ‖fk‖∞ ≤ 1, then we also have

Lu1 = −k[(k − 1)fk−2(f ′)2 + fk−1f ′′] + cfk

≤ cfk ≤ m+fk

≤ m+fkp = mup1 in (x0, β) ∩M+.

The same reasoning can be done for u3 and hence the proof can be continued as in
the theorem. A similar observation is valid for (3.3).

Theorem 3.5. Let m ∈ L2(Ω) and suppose there exist α ≤ x0 < x1 ≤ β such that
0 6≡ m ≥ 0 in I := (x0, x1). Let Cp be given by (3.1).

(i) If m− ∈ L∞(Ω) and it holds that

0 <
(γb‖Bα‖L∞(Ω))2

Cp − ‖c‖L∞(Ω)(γb‖Bα‖L∞(Ω))2
‖m−‖L∞(Ω) ≤

1
λ1(m, I)

, (3.12)

where
γb := max{‖Bα‖L1(α,x1), ‖Bα‖L1(x0,β)},

then there exists a solution u ∈W 2,2(Ω) of (1.2).
(ii) If c ≡ 0 and it holds that

(1− p)M <
1

λ1(m, I)
(3.13)

where

M := max
{∫ β

x0

Bα(x)‖m−Bα‖L1(x,β)dx,

∫ x1

α

Bα(x)‖m−Bα‖L1(α,x)dx
}
,

then there exists a solution u ∈W 2,2(Ω) of (1.2).

Proof. The proof follows the lines of the proof of Theorem 3.1 and hence we omit
the details. Let us prove (i). We take u2 as in the aforementioned theorem, and we
choose τ such that

(γb‖Bα‖L∞(Ω))2

Cp − ‖c‖L∞(Ω)(γb‖Bα‖L∞(Ω))2
‖m−‖L∞(Ω) ≤

1
τ
≤ 1
λ1(m, I)

.
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Let x ∈ [α, x1] and define

u1(x) :=
(
σ

∫ x

α

Bα(y)dy
)k
,

where

σ :=
[‖Bα‖2L∞(Ω)(τ‖m

−‖L∞(Ω) + ‖c‖L∞(Ω))

Cp

]1/2
, k :=

2
1− p

.

We have that u1(α) = 0, u1 > 0 in (α, x1) and that u1 is increasing. Moreover,
after some computations one can check that ‖u1‖∞ ≤ 1 and

−(Bα(x)u′1(x))′ = −k(k − 1)σ2(σ
∫ x

α

Bα(y)dy)k−2Bα(x)

≤ −‖Bα‖L∞(Ω)(τ‖m−‖L∞(Ω) + ‖c‖L∞(Ω))(σ
∫ x

α

Bα(y)dy)kp

≤ Bα(τm− c)up1 ≤ Bα(τmup1 − cu1);

that is, Lu1 ≤ τmup1 in (α, x1). The existence of u3 follows similarly. Let us prove
(ii). We pick τ satisfying

(1− p)M <
1
τ
<

1
λ1(m, I)

. (3.14)

For x ∈ [α, x1] we define

u1(x) :=
(
σ

∫ x

α

Bα(y)‖m−Bα + ε‖L1(α,y)dy
)k

where

σ := τ(1− p), k :=
1

1− p
, ε > 0.

Taking ε small enough and employing (3.14) one can see that ‖u1‖∞ ≤ 1. Also, a
few computations yield

−(Bα(x)u′1(x))′ ≤ −kσk
(∫ x

α

Bα(y)‖m−Bα + ε‖L1(α,y)dy
)k−1

(m−(x)Bα(x) + ε)

≤ −τm−(x)Bα(x)
(
σ

∫ x

α

Bα(y)‖m−Bα + ε‖L1(α,y)dy
)kp

≤ τBαmu
p
1.

Since u3 can be defined analogously, this concludes the proof of (ii). �

Remark 3.6. Let us note that the inequalities in (i) and (ii) are not comparable
because one involves the L∞-norm of m− and the constant Cp, and the other one
does not.

Remark 3.7. (i) It can be verified that (3.2) is better than (3.12) when b ≡ 0
(noting that in this case Bα = Bα = 1 and γb = γ (γ as in the statement of
Theorem 3.1)). If also c ≡ 0, (3.12) becomes exactly (3.9), that is, the condition
deduced from the aforementioned theorem for the laplacian operator.
(ii) In the case b ≡ 0, (3.13) reads as

(1− p) max
{∫ β

x0

‖m−‖L1(t,β)dt,

∫ x1

α

‖m−‖L1(α,t)dt
}
<

1
λ1(m, I)

(3.15)
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which is substantially better than the condition stated in [6, Theorem 2.1], for
L = −u′′. Also, (3.15) is clearly not comparable (for the same reason as in the
above remark) with the inequalities that can deduced from Theorem 3.1 in the case
c ≡ 0 (i.e., as the one included in Remark 3.3).

Corollary 3.8. Let

Kb :=
∫ β

α

Bα(x)‖Bα‖L2(α,x)dx.

If (3.13) holds with m/(Kb‖m+‖L2(α,β))−c instead of m, then there exists a solution
u ∈W 2,2(Ω) of (1.2).

Proof. Applying Hölder’s inequality in (2.4) we see that ‖u‖1−pL∞(Ω) ≤ ‖m
+‖L2(α,β)Kb

for any nonnegative subsolution of (1.2). Now, let τ := 1/(Kb‖m+‖L2(α,β)), and
let u be the solution of (1.2) with τm − c in place of m provided by Theorem 3.5
(ii). It follows that ‖u‖∞ ≤ 1 and thus

−u′′ + bu′ = (τm− c)up ≤ τmup − cu
and recalling once again Remark 2.2 the corollary follows. �

Remark 3.9. (i) Given any operator L and any m ∈ L2(Ω) with 0 6≡ m ≥ 0 in
some I ⊂ Ω, let us note that the above corollary implies that (1.2) has a solution
if p is sufficiently close to 1.

(ii) Given any operator L and any m ∈ L2(Ω) with m− ∈ L∞(Ω) and 0 6≡ m ≥ 0
in some I ⊂ Ω, let us observe that (3.12) says that (1.2) possesses a solution for
m := mχΩ−I + kmχI if k > 0 is large enough.

The next result provides the structure of the set of p′s such that (1.2) has a
solution.

Corollary 3.10. Let m ∈ C(M+) ∩ L2(Ω) with m+ 6≡ 0 and let P be the set of
p ∈ (0, 1) such that (1.2) admits some solution u ∈ W 2,2(Ω). Then P = (0, 1) or
either P = (p, 1) or P = [p, 1) for some p > 0.

Proof. By Remark 3.9 (i) we have that P 6= ∅. Let p∗ := inf P. If P 6= (0, 1),
Lemma 2.5 implies that p∗ > 0 and that (1.2) has a solution for every p > p∗.
Therefore, either P = (p∗, 1) or P = [p∗, 1). �

We write
IR(x0) := (x0 −R, x0 +R),

I := {IR(x0) ⊂ Ω : m ≤ 0 in IR(x0}.
(3.16)

Theorem 3.11. Let Cp and I be given by (3.1) and (3.16) respectively. Suppose
there exists u ∈W 2,2(Ω) solution of (1.2). Then

sup
IR(x0)∈I

[[ γb,R

‖Bα‖L∞(IR(x0))

]2
inf

IR(x0)
m−
]
≤ Cp

∫ β

α

Bα(x)‖m+Bα‖L1(α,x)dx,

(3.17)
where

γb,R := min
{∫ x0+R

x0

Bα(y)dy,
∫ x0

x0−R
Bα(y)dy

}
.

Let M+ be given by (2.5). If also c > 0 in M+, then (3.17) must also hold with
Cp supx∈M+

m+(x)
c(x) in the right side of the inequality.
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Proof. We proceed by contradiction. Suppose (3.17) is not true and let IR(x0) ∈ I
be such that

Cp

∫ β

α

Bα(x)‖m+Bα‖L1(α,x)dx ≤
[ γb,R

‖Bα‖L∞(IR(x0))

]2
inf

IR(x0)
m−. (3.18)

For x ∈ IR(x0), we define a function w as follows. If x ∈ [x0, x0 +R] we set

w(x) :=
(
σ

∫ x

x0

Bα(y)dy
)k
,

where

σ :=
[ infIR(x0)m

−

Cp‖Bα‖2L∞(IR(x0))

]1/2
, k :=

2
1− p

,

and if x ∈ [x0 −R, x0] we set w(x) := (σ
∫ x0

x
Bα(y)dy)k with σ and k as above. In

(x0, x0 +R) we find that

(Bαw
′)′ −Bαcw ≤ k(k − 1)σ2

(
σ

∫ x

α

Bα(y)dy
)k−2

Bα

≤
infIR(x0)m

−

‖Bα‖L∞(IR(x0))

(
σ

∫ x

α

Bα(y)dy
)kp

≤ Bαm−wp;

i.e., Lw ≥ −m−wp, and the same is also valid in (x0 −R, x0).
Let u be a solution of (1.2). We claim that u ≤ w in IR(x0). Indeed, if not,

let O := {x ∈ IR(x0) : w(x) < u(x)}. Since Lu = −m−up in IR(x0), we have
L(w − u) ≥ m−(up − wp) ≥ 0 in O. Let x ∈ ∂O. Then w(x) = u(x) or either
x = x0 +R or x = x0 −R. If x = x0 +R, by Lemma 2.3 and (3.18) we obtain

u(x)1−p ≤ ‖u‖1−pL∞(Ω)

≤
∫ β

α

Bα(x)‖m+Bα‖L1(α,x)dx

≤
[ ∫ x0+R

x0
Bα(y)dy

‖Bα‖L∞(IR(x0))

]2 infIR(x0)m
−

Cp
= w(x)1−p,

and we arrive to the same inequality if x = x0 − R. Therefore the maximum
principle says that u ≤ w in O which is not possible. Thus, u ≤ w in IR(x0); but
u > 0 in Ω and w(x0) = 0. Contradiction.

To conclude the proof we note that the last statement of the theorem may be
derived as above applying Lemma 2.4 instead of Lemma 2.3. �

Remark 3.12. (i) It follows from the above theorem that given b, m, p fixed, there
exists 0 ≤ c0 ∈ L∞(Ω) such that for all c ∈ L∞(Ω) with c ≥ c0 the problem (1.2)
does not admit a solution. Note that given L, m, p fixed with 0 6≡ m ≤ 0 in some
I ⊂ Ω, neither there is a solution for m := mχΩ−I +kmχI if k > 0 is large enough.

(ii) We observe that (3.17) always is true if p is sufficiently close to 1. Let us
mention that this must indeed occur by Remark 3.9.
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As a consequence of the previous theorems we derive an existence result for
problems of the form

Lu = mf(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(3.19)

for certain continuous functions f : [0,∞)→ [0,∞). Now we state assumption
(H1) There exist k1, k2 > 0 and p ∈ (0, 1) such that

k1ξ
p ≤ f(ξ) ≤ k2ξ

p for all ξ ∈ [0,K],

where

K :=
[
k1

∫ β

α

Bα(x)‖m+Bα‖L1(α,x)dx
]1/(1−p)

,

and f(ξ) ≤ k3ξ
q for all ξ ∈ [K,∞) some K, k3 > 0 and q ∈ (0, 1).

Note that we make no monotonicity nor concavity assumptions on f .

Corollary 3.13. Let f satisfy (H1) and suppose (1.2) has a solution with k1m
+−

k2m
− instead of m. Then there exists a solution u ∈W 2,2(Ω) of (3.19).

Proof. Let u be the solution of (1.2) with k1m
+ − k2m

− in place of m. It follows
from Lemma 2.3 that ‖u‖∞ ≤ K, and so from (H1) we deduce that

Lu = (k1m
+ − k2m

−)up ≤ mf(u) in Ω.

On the other side, let ϕ > 0 be the solution of Lϕ = m+ in Ω, ϕ = 0 on ∂Ω, and
let k ≥ max

{
K, (k3(‖ϕ‖∞+ 1)q)1/(1−q)}. Recalling (H1) and reasoning as in (2.3)

we see that

L(k(ϕ+ 1)) ≥ km+ ≥ k3(k(ϕ+ 1))qm+ ≥ mf(k(ϕ+ 1)) in Ω

and the corollary is proved. �
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