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STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN

GHASEM A. AFROUZI, ARMIN HADJIAN, SHAPOUR HEIDARKHANI

Abstract. Under suitable assumptions on the potential of the nonlinearity,

we study the existence and multiplicity of solutions for a Steklov problem

involving the p(x)-Laplacian. Our approach is based on variational methods.

1. Introduction

The aim of this article is to study the following Steklov problem involving the
p(x)-Laplacian,

∆p(x)u = a(x)|u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u

∂ν
= λf(x, u) on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded smooth domain, λ is a positive parameter, p ∈ C(Ω̄),
∆p(x)u := div(|∇u|p(x)−2∇u) denotes the p(x)-Laplace operator, f : ∂Ω × R → R
is a Carathéodory function, a ∈ L∞(Ω) with ess infΩ a > 0 and ν is the outer unit
normal to ∂Ω.

The study of differential equations and variational problems with nonstandard
p(x)-growth conditions is a new and interesting topic. It varies from nonlinear
elasticity theory, electro-rheological fluids, and so on (see [24, 25]). Many results
have been obtained on this kind of problems, for instance we here cite [1, 5, 6, 7,
9, 10, 11, 13, 14, 16, 18, 19].

The inhomogeneous Steklov problems involving the p-Laplacian has been the
object of study in, for example, [22], in which the authors have studied this class of
inhomogeneous Steklov problems in the cases of p(x) ≡ p = 2 and of p(x) ≡ p > 1,
respectively.

In this paper, motivated by [1], at first, we prove the existence of a non-zero
solution of the problem (1.1), without assuming any asymptotic condition neither
at zero nor at infinity (see Theorem 3.1). Next, we obtain the existence of two so-
lutions, possibly both non-zero, assuming only the classical Ambrosetti-Rabinowitz
condition; that is, without requiring that the potential F satisfies the usual con-
dition at zero (see Theorems 3.2 and 3.3). Finally, we present a three solutions
existence result under appropriate condition on the potential F (see Theorem 3.4).
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Our approach is fully variational method and the main tools are critical point the-
orems contained in [3] and [8] (see Theorems 2.1 and 2.2 in the next section).

A special case of Theorem 3.4 is the following theorem.

Theorem 1.1. Let p(x) = p > N for every x ∈ Ω and let f : R → R be a non-
negative continuous function. Put F (t) :=

∫ t
0
f(ξ)dξ for each t ∈ R. Assume that

F (d) > 0 for some d ≥ 1 and, moreover,

lim inf
ξ→0

F (ξ)
ξp

= lim sup
|ξ|→+∞

F (ξ)
ξp

= 0.

Then, there is λ? > 0 such that for each λ > λ? the problem

∆pu = a(x)|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λf(u) on ∂Ω,

admits at least three non-negative weak solutions.

2. Preliminaries

In this section, we recall definitions and theorems to be used in this paper. Let
(X, ‖ · ‖) be a real Banach space and Φ, Ψ : X → R be two continuously Gâteaux
differentiable functionals; put

I := Φ−Ψ

and fix r1, r2 ∈ [−∞,+∞], with r1 < r2. We say that the functional I satisfies the
Palais-Smale condition cut off lower at r1 and upper at r2 ([r1](PS)[r2]-condition)
if any sequence {un} ∈ X such that

• {I(un)} is bounded,
• limn→+∞ ‖I ′(un)‖X∗ = 0,
• r1 < Φ(un) < r2 ∀n ∈ N,

has a convergent subsequence.
If r1 = −∞ and r2 = +∞, it coincides with the classical (PS)-condition, while

if r1 = −∞ and r2 ∈ R it is denoted by (PS)[r2]-condition.
First we recall a result of local minimum obtained in [3], which is based on [2,

Theorem 5.1].

Theorem 2.1 ([3, Theorem 2.3]). Let X be a real Banach space and let Φ, Ψ :
X → R be two continuously Gâteaux differentiable functionals such that infX Φ =
Φ(0) = Ψ(0) = 0. Assume that there exist r ∈ R and ū ∈ X, with 0 < Φ(ū) < r,
such that

supu∈Φ−1(]−∞,r[) Ψ(u)
r

<
Ψ(ū)
Φ(ū)

(2.1)

and, for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ := Φ − λΨ

satisfies the (PS)[r]-condition. Then, for each λ ∈ Λ, there is uλ ∈ Φ−1(]0, r[)
(hence, uλ 6= 0) such that Iλ(uλ) ≤ Iλ(u) for all u ∈ Φ−1(]0, r[) and I ′λ(uλ) = 0.

Now we point out an other result, which insures the existence of at least three
critical points, that has been obtained in [8] and it is a more precise version of [4,
Theorem 3.2].
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Theorem 2.2 ([8, Theorem 3.6]). Let X be a reflexive real Banach space, Φ : X →
R be a continuously Gâteaux differentiable, coercive and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on
X∗, Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact, moreover

Φ(0) = Ψ(0) = 0.

Assume that there exist r ∈ R and ū ∈ X, with 0 < r < Φ(ū), such that

(i)
supu∈Φ−1(]−∞,r]) Ψ(u)

r < Ψ(ū)
Φ(ū)

(ii) for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū) ,

r
supu∈Φ−1(]−∞,r]) Ψ(u)

[
the functional Iλ = Φ − λΨ

is coercive.
Then, for each λ ∈ Λ, the functional Iλ has at least three distinct critical points in
X.

Here and in the sequel, we suppose that p ∈ C(Ω̄) satisfies the following condi-
tion:

N < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞. (2.2)

Define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) :=
{
u : Ω→ R : u is measurable and

∫
Ω

|u(x)|p(x)dx < +∞
}
.

We define a norm, the so-called Luxemburg norm, on this space by the formula

‖u‖Lp(x)(Ω) = |u|p(x) := inf
{
λ > 0 :

∫
Ω

∣∣u(x)
λ

∣∣p(x)
dx ≤ 1

}
.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
equipped with the norm

‖u‖W 1,p(x)(Ω) := |u|p(x) + |∇u|p(x).

It is well known [17] that, in view of (2.2), both Lp(x)(Ω) and W 1,p(x)(Ω), with the
respective norms, are separable, reflexive and uniformly convex Banach spaces.

When a ∈ L∞(Ω) with ess infΩ a > 0, for any u ∈W 1,p(x)(Ω), define

‖u‖a := inf
{
λ > 0 :

∫
Ω

(
|∇u(x)

λ
|p(x) + a(x)|u(x)

λ
|p(x)

)
dx ≤ 1

}
.

Then, it is easy to see that ‖u‖a is a norm on W 1,p(x)(Ω) equivalent to ‖u‖W 1,p(x)(Ω).
In the following, we will use ‖u‖a instead of ‖u‖W 1,p(x)(Ω) on X = W 1,p(x)(Ω).

As pointed out in [20] and [17], X is continuously embedded in W 1,p−(Ω) and,
since p− > N , W 1,p−(Ω) is compactly embedded in C0(Ω̄). Thus, X is compactly
embedded in C0(Ω̄). So, in particular, there exists a positive constant m > 0 such
that

‖u‖C0(Ω̄) ≤ m‖u‖a (2.3)
for each u ∈ X. When Ω is convex, an explicit upper bound for the constant m is

m ≤ 2
p−−1
p− max

{( 1
‖a‖1

) 1
p− ,

d

N
1
p−

( p− − 1
p− −N

|Ω|
) p−−1

p−
‖a‖∞
‖a‖1

}(
1 + |Ω|

)
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where d := diam(Ω) and |Ω| is the Lebesgue measure of Ω (for details, see [10]),
‖a‖1 :=

∫
Ω
a(x)dx and ‖a‖∞ := supx∈Ω a(x).

Lemma 2.3 ([17]). Let I(u) =
∫

Ω
(|∇u|p(x) + a(x)|u|p(x))dx. For u ∈ X we have

(i) ‖u‖a < 1(= 1;> 1)⇔ I(u) < 1(= 1;> 1);
(ii) If ‖u‖a < 1⇒ ‖u‖p+

a ≤ I(u) ≤ ‖u‖p−a ;
(iii) If ‖u‖a > 1⇒ ‖u‖p−a ≤ I(u) ≤ ‖u‖p+

a .

We refer the reader to [15, 17] for the basic properties of the variable exponent
Lebesgue and Sobolev spaces.

Throughout this article, we assume the following condition on the Carathéodory
function f : ∂Ω× R→ R:

(F0) |f(x, s)| ≤ α(x) + b|s|β(x)−1 for all (x, s) ∈ ∂Ω×R, where α ∈ L
β(x)
β(x)−1 (∂Ω),

b ≥ 0 is a constant and β ∈ C(∂Ω) such that

1 < β− := inf
x∈Ω̄

β(x) ≤ β(x) ≤ β+ := sup
x∈Ω̄

β(x) < p−. (2.4)

We recall that f : ∂Ω × R → R is a Carathéodory function if x 7→ f(x, ξ) is
measurable for all ξ ∈ R and ξ 7→ f(x, ξ) is continuous for a.e. x ∈ ∂Ω. Put

F (x, t) :=
∫ t

0

f(x, ξ)dξ,

for all (x, t) ∈ ∂Ω× R.

Theorem 2.4 ([1, Theorem 2.9]). Let f : ∂Ω×R→ R be a Carathéodory function
satisfying (F0). For each u ∈ X set Ψ(u) =

∫
∂Ω
F (x, u(x))dσ. Then Ψ ∈ C1(X,R)

and
Ψ′(u)(v) =

∫
∂Ω

f(x, u(x))v(x)dσ

for every v ∈ X. Moreover, the operator Ψ′ : X → X∗ is compact.

We say that a function u ∈ X is a weak solution of problem (1.1) if∫
Ω

|∇u|p(x)−2∇u∇v dx+
∫

Ω

a(x)|u|p(x)−2uv dx = λ

∫
∂Ω

f(x, u)v dσ

for all v ∈ X.
We cite the very recent monograph by Kristály et al. [21] as a general reference

for the basic notions used in the paper.

3. Main results

In this section we present our main results. First, we establish the existence of
one non-trivial solution for the problem (1.1).

Theorem 3.1. Let f : ∂Ω × R → R be a Carathéodory function satisfying (F0).
Assume that there exist d ≥ 1 and c ≥ m with dp

+‖a‖1 < p−

p+ ( cm )p
−

, such that∫
∂Ω

max|t|≤c F (x, t)dσ(
c
m

)p− <
p−
∫
∂Ω
F (x, d)dσ

p+dp+‖a‖1
. (3.1)

Then, for each

λ ∈ Λ :=
] dp

+‖a‖1
p−
∫
∂Ω
F (x, d)dσ

,

(
c
m

)p−
p+
∫
∂Ω

max|t|≤c F (x, t)dσ

[
, (3.2)
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problem (1.1) admits at least one non-trivial weak solution ū1 ∈ X such that

max
x∈Ω
|ū1(x)| < c.

Proof. Our aim is to apply Theorem 2.1 to (1.1). To this end, for each u ∈ X, let
the functionals Φ,Ψ : X → R be defined by

Φ(u) :=
∫

Ω

1
p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx,

Ψ(u) :=
∫
∂Ω

F (x, u(x))dσ,

and put
Iλ(u) := Φ(u)− λΨ(u), u ∈ X.

Note that the weak solutions of (1.1) are exactly the critical points of Iλ. The
functionals Φ and Ψ satisfy the regularity assumptions of Theorem 2.1. Indeed,
by standard arguments, we have that Φ is Gâteaux differentiable and its Gâteaux
derivative at the point u ∈ X is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫

Ω

(
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2uv

)
dx

for every v ∈ X. Moreover, Φ is sequentially weakly lower semicontinuous and its
inverse derivative is continuous (since it is a continuous convex functional) and,
thanks to Lemma 2.3, the functional Φ turns out to be coercive. On the other
hand, by Theorem 2.4, the functional Ψ is well defined, continuously Gâteaux
differentiable and with compact derivative, whose Gâteaux derivative at the point
u ∈ X is given by

Ψ′(u)(v) =
∫
∂Ω

f(x, u(x))v(x)dσ

for every v ∈ X. So, owing to [2, Proposition 2.1], the functional Iλ satisfies the
(PS)[r]-condition for all r ∈ R.

We will verify condition (2.1) of Theorem 2.1. Let w be the function defined by
w(x) := d for all x ∈ Ω̄ and put

r :=
1
p+

( c
m

)p−
.

Clearly, w ∈ X and from our assumption one has

0 < Φ(w) =
∫

Ω

1
p(x)

a(x)dp(x)dx ≤ 1
p−
‖a‖1dp

+
< r.

For all u ∈ X with Φ(u) < r, owing to Lemma 2.3, definitively one has

min
{
‖u‖p

+

a , ‖u‖p
−

a

}
< rp+.

Then
‖u‖a < max

{
(p+r)

1
p+ , (p+r)

1
p−
}

=
c

m
,

and so, by (2.3),
max
x∈Ω
|u(x)| ≤ m‖u‖a < c.

Therefore,
supu∈Φ−1(]−∞,r[) Ψ(u)

r
≤
∫
∂Ω

max|t|≤c F (x, t)dσ
1
p+

(
c
m

)p−
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On the other hand, taking into account that

Φ(w) ≤ 1
p−
dp

+
‖a‖1,

we have
Ψ(w)
Φ(w)

≥
∫
∂Ω
F (x, d)dσ

1
p− d

p+‖a‖1
.

Therefore, by the assumption (3.1), condition (2.1) of Theorem 2.1 is verified.
Therefore, all the assumptions of Theorem 2.1 are satisfied. So, for each

λ ∈ Λ ⊆
]Φ(w)

Ψ(w)
,

r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
,

the functional Iλ has at least one non-zero critical point ū1 ∈ X such that
maxx∈Ω |ū1(x)| < c that is the weak solution of the problem (1.1). �

The following result, in which the global Ambrosetti-Rabinowitz condition is also
used, ensures the existence at least two weak solutions.

Theorem 3.2. Assume that all the assumptions of Theorem 3.1 hold. Furthermore,
suppose that f(·, 0) 6= 0 in ∂Ω, and

(AR) there exist two constants µ > p+ and R > 0 such that for all x ∈ ∂Ω and
|s| ≥ R,

0 < µF (x, s) ≤ sf(x, s).
Then, for each λ ∈ Λ, where Λ is given by (3.2), the problem (1.1) has at least two
non-trivial weak solutions ū1, ū2 ∈ X such that

max
x∈Ω
|ū1(x)| < c.

Proof. Fix λ as in the conclusion. So, Theorem 3.1 ensures that the problem (1.1)
admits at least one non-trivial weak solution ū1 which is a local minimum of the
functional Iλ.

Now, we prove the existence of the second local minimum distinct from the first
one. To this end, we must show that the functional Iλ satisfies the hypotheses of
the mountain pass theorem.

Clearly, the functional Iλ is of class C1 and Iλ(0) = 0.
We can assume that ū1 is a strict local minimum for Iλ in X. Therefore, there

is ρ > 0 such that inf‖u−ū1‖=ρ Iλ(u) > Iλ(ū1), so condition [23, (I1), Theorem 2.2]
is verified.

From (AR), by standard computations, there is a positive constant C such that

F (x, s) ≥ C|s|µ (3.3)

for all x ∈ ∂Ω and |s| > R. In fact, setting γ(x) = min|ξ|=R F (x, ξ) and

ϕs(t) = F (x, ts) ∀t > 0, (3.4)

by (AR), for every x ∈ ∂Ω and |s| > R one has

0 < µϕs(t) = µF (x, ts) ≤ tsf(x, ts) = tϕ′s(t) ∀t > 0.

Therefore, ∫ 1

R/|s|

ϕ′s(t)
ϕs(t)

dt ≥
∫ 1

R/|s|

µ

t
dt.
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Then

ϕs(1) ≥ ϕs
( R
|s|

)
|s|µ.

Taking into account (3.4), we obtain

F (x, s) ≥ F
(
x,
R

|s|
s
)
|s|µ ≥ γ(x)|s|µ ≥ C|s|µ,

and (3.3) is proved. Now, by choosing any u ∈ X \ {0} and t > 1, one has

Iλ(tu) = (Φ− λΨ)(tu)

=
∫

Ω

tp(x)

p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx− λ

∫
∂Ω

F (x, tu(x))dσ

≤ tp
+
∫

Ω

1
p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx− Ctµλ

∫
∂Ω

|u(x)|µdσ.

Since µ > p+, the functional Iλ is unbounded from below. So, condition [23, (I2),
Theorem 2.2] is verified. Therefore, Iλ satisfies the geometry of mountain pass.

Now, to verify the (PS)-condition it is sufficient to prove that any (PS)-sequence
is bounded. To this end, suppose that {un} ⊂ X is a (PS)-sequence; i.e., there is
M > 0 such that

sup |Iλ(un)| ≤M, I ′λ(un)→ 0 as n→ +∞.

Let us show that {un} is bounded in X. Using hypothesis (AR), since Iλ(un) is
bounded, we have for n large enough:

M + 1 ≥ Iλ(un)− 1
µ
〈I ′λ(un), un〉+

1
µ
〈I ′λ(un), un〉

=
∫

Ω

1
p(x)

(
|∇un|p(x) + a(x)|un|p(x)

)
dx− λ

∫
∂Ω

F (x, un(x))dσ

− 1
µ

[ ∫
Ω

(
|∇un|p(x) + a(x)|un|p(x)

)
dx− λ

∫
∂Ω

f(x, un(x))un(x)dσ
]

+
1
µ
〈I ′λ(un), un〉

≥
( 1
p+
− 1
µ

)
‖un‖p

−

a −
1
µ
‖I ′λ(un)‖X∗‖un‖a − c1

≥
( 1
p+
− 1
µ

)
‖un‖p

−

a −
c2
µ
‖un‖a − c1,

where c1 and c2 are two positive constants. Since µ > p+, from the above inequality
we know that {un} is bounded in X. Hence, the classical theorem of Ambrosetti
and Rabinowitz ensures a critical point ū2 of Iλ such that Iλ(ū2) > Iλ(ū1). So, ū1

and ū2 are two distinct weak solutions of (1.1) and the proof is complete. �

Here we give the following result as a direct consequence of Theorem 3.2 in the
autonomous case.

Theorem 3.3. Let f : R → R be a continuous function satisfying f(0) 6= 0 and
|f(s)| ≤ α + b|s|β−1 for all s ∈ R, where α > 0, b ≥ 0 and 1 < β < p− are three
constants. Put F (t) :=

∫ t
0
f(ξ)dξ for all t ∈ R. Under the following conditions
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(i) there exist d ≥ 1 and c ≥ m with dp
+‖a‖1 < p−

p+

(
c
m

)p− , such that

max|t|≤c F (t)(
c
m

)p− <
p−F (d)

p+dp+‖a‖1
;

(ii) there exist two constants µ > p+ and R > 0 such that for all |s| ≥ R,

0 < µF (s) ≤ sf(s),

and for each

λ ∈
] dp

+‖a‖1
p−|∂Ω|F (d)

,

(
c
m

)p−
p+|∂Ω|max|t|≤c F (t)

[
,

the problem

∆p(x)u = a(x)|u|p(x)−2u in Ω,

|∇u|p(x)−2 ∂u

∂ν
= λf(u) on ∂Ω,

admits at least two non-trivial weak solutions ū1, ū2 ∈ X such that

max
x∈Ω
|ū1(x)| < c.

Now, we point out the following result of three weak solutions.

Theorem 3.4. Let f : ∂Ω × R → R be a Carathéodory function satisfying (F0).

Assume that there exist d ≥ 1 and c ≥ m with dp
−‖a‖1 >

(
c
m

)p− , such that the
assumption (3.1) in Theorem 3.1 holds. Then, for each λ ∈ Λ, where Λ is given by
(3.2), the problem (1.1) has at least three weak solutions.

Proof. Our goal is to apply Theorem 2.2. The functionals Φ and Ψ defined in the
proof of Theorem 3.1 satisfy all regularity assumptions requested in Theorem 2.2.
So, our aim is to verify (i) and (ii). Arguing as in the proof of Theorem 3.1, put

r := 1
p+

(
c
m

)p− and w(x) := d for all x ∈ Ω̄, bearing in mind that dp
−‖a‖1 > ( cm )p

−
,

we have

Φ(w) =
∫

Ω

1
p(x)

a(x)dp(x)dx ≥ 1
p+
dp
−
‖a‖1 > r > 0.

Therefore, the assumption (i) of Theorem 2.2 is satisfied.
We prove that the functional Iλ is coercive for all λ > 0. If u ∈ X, then

by condition (2.4) and the embedding theorem (see [12, Theorem 2.1]) we have
u ∈ Lβ(x)(∂Ω). Then there is some constant C > 0 such that

‖u‖Lβ(x)(∂Ω) ≤ C‖u‖a, ∀u ∈ X.

Now, by using Hölder inequality (see [17]) and condition (F0), for all u ∈ X such
that ‖u‖a ≥ 1, we have

Ψ(u) =
∫
∂Ω

F (x, u(x))dσ =
∫
∂Ω

(∫ u(x)

0

f(x, t)dt
)
dσ

≤
∫
∂Ω

(
α(x)|u(x)|+ b

β(x)
|u(x)|β(x)

)
dσ

≤ 2‖α‖
L

β(x)
β(x)−1 (∂Ω)

‖u‖Lβ(x)(∂Ω) +
b

β−

∫
∂Ω

|u(x)|β(x)dσ
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≤ 2C‖α‖
L

β(x)
β(x)−1 (∂Ω)

‖u‖a +
b

β−

∫
∂Ω

|u(x)|β(x)dσ.

On the other hand, there is a constant C ′ > 0 such that∫
∂Ω

|u(x)|β(x)dσ ≤ max
{
‖u‖β

+

Lβ(x)(∂Ω)
, ‖u‖β

−

Lβ(x)(∂Ω)

}
≤ C ′‖u‖β

+

a .

Then,

Ψ(u) ≤ 2C‖α‖
L

β(x)
β(x)−1 (∂Ω)

‖u‖a +
b

β−
C ′‖u‖β

+

a .

Since
Φ(u) =

∫
Ω

1
p(x)

(
|∇u|p(x) + a(x)|u|p(x)

)
dx ≥ 1

p+
‖u‖p

−

a ,

for every λ > 0 we have

Iλ(u) ≥ 1
p+
‖u‖p

−

a − 2λC‖α‖
L

β(x)
β(x)−1 (∂Ω)

‖u‖a −
λbC ′

β−
‖u‖β

+

a .

Since p− > β+, the functional Iλ is coercive. Then also condition (ii) holds. So,
for each λ ∈ Λ, the functional Iλ admits at least three distinct critical points that
are weak solutions of problem (1.1). �

Remark 3.5. If we assume that f : ∂Ω× R→ R is a non-negative Carathéodory
function satisfying (F0), then the previous theorems guarantee the existence of
non-negative weak solutions. In fact, let ū be a weak solution of the problem
(1.1). We claim that it is non-negative. Arguing by contradiction and setting
A := {x ∈ Ω̄ : ū(x) < 0}, one has A 6= ∅. Put v̄ := min{ū, 0}, one has v̄ ∈ X. So,
taking into account that ū is a weak solution and by choosing v = v̄, one has∫

A

|∇ū|p(x)dx+
∫
A

a(x)|ū|p(x)dx = λ

∫
∂Ω

f(x, ū(x))ū(x)dσ ≤ 0,

that is, ‖ū‖W 1,p(x)(A) = 0 which is absurd. Hence, our claim is proved.
Also, when f is a non-negative function, condition (3.1) becomes∫

∂Ω
F (x, c)dσ(
c
m

)p− <
p−
∫
∂Ω
F (x, d)dσ

p+dp+‖a‖1
.

In this case, the previous theorems ensure the existence of non-negative solutions
to the problem (1.1) for each

λ ∈
] dp

+‖a‖1
p−
∫
∂Ω
F (x, d)dσ

,

(
c
m

)p−
p+
∫
∂Ω
F (x, c)dσ

[
.

Remark 3.6. Theorems 3.1 and 3.4 ensure more precise conclusions rather than [1,
Theorems 1.1 and 1.3]. In fact, Theorem 1.1 of [1] proves that for any λ ∈]0,+∞[,
the problem (1.1), when a ≡ 1, has at least a non-trivial weak solution. Also,
Theorem 3.1 of [1] establishes that there exists an open interval Λ ⊂]0,+∞[ such
that, for every λ ∈ Λ, the problem (1.1), when a ≡ 1, admits at least three solutions.
Hence, a location of the interval Λ in ]0,+∞[ is not established.

Proof of Theorem 1.1. Fix λ > λ? := dp‖a‖1
p|∂Ω|F (d) for some d ≥ 1 such that F (d) > 0.

Since

lim inf
ξ→0

F (ξ)
ξp

= 0,
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there is a sequence {cn} ⊂]0,+∞[ such that limn→+∞ cn = 0 and

lim
n→+∞

F (cn)
cpn

= 0.

Therefore, there exists c ≥ m such that

F (c)
cp

< min
{ F (d)

(md)p‖a‖1
,

1
p|∂Ω|mpλ

}
and c < md‖a‖1/p1 . Also, by the assumption

lim sup
|ξ|→+∞

F (ξ)
ξp

= 0,

the functional Iλ is coercive. Hence, by taking Remark 3.5 into account, the con-
clusion follows from Theorem 3.4. �
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