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EXISTENCE OF POSITIVE SOLUTIONS TO A SINGULAR
BOUNDARY-VALUE PROBLEM USING VARIATIONAL

METHODS

JIAN LIU, ZENGQIN ZHAO

Abstract. In this article, we study a class of nonlinear singular boundary-
value problems. We show the existence of positive weak solutions by using

variational methods.

1. Introduction

Variational methods are a powerful tool in the resolution of specific nonlinear
boundary-value problems appearing in many areas. During the last decade, they
are intensively applied to boundary-value problems for differential equations. They
are motivated by the modeling of certain nonlinear problems from biological neural
networks, elastic mechanics, to anisotropic problems, and so forth. Recently, many
differential equations have been studied via variational methods in many classical
works, see [11, 13, 14, 15, 16, 18, 19, 20]. The study of singular differential equation
via variational methods was initiated by Agarwal, Perera and O’Regan [1, 2]. Since
then there is a trend to study differential equation via variational methods which
leads to many meaningful results, see [3, 8, 10] and the references therein.

Agarwal et al [1] studied the singular boundary-value problem via variational
methods

−y′′(t) = f(t, y), t ∈ (0, 1),

y(0) = y(1) = 0,
(1.1)

where f ∈ C((0, 1)× (0,∞), [0,∞)) satisfies

2ε ≤ f(t, y) ≤ Cy−γ , (t, y) ∈ (0, 1)× (0, ε). (1.2)

for some ε, C > 0 and γ ∈ (0, 1), the authors introduced a variational formulation
for singular Dirichlet boundary-value problem.

Motivated by the above mentioned work, in this paper we consider the singular
boundary-value problem

−u′′(t) = f(t, u) + e(t), t ∈ (0, 1),

u(0) = u(1) = 0,
(1.3)
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where f ∈ C((0, 1)× (0,∞), [0,∞)), e(t) ∈ L1(0, 1) satisfy

2ε− e(t) ≤ f(t, u) ≤ Cu−γ , (t, u) ∈ (0, 1)× (0, ε). (1.4)

for some ε, C > 0 and γ ∈ (0, 1).
Singular boundary-value problems have been discussed extensively by the method

of upper and lower solutions, index theorems, fixed point theorems, nonlinear al-
ternative principle, etc. See [5, 6, 7, 9, 12] and the references therein. In this paper,
we consider the existence of weak solutions for (1.3) and obtain some new existence
theorems of solutions by using variational methods. It is worth noting that there
are some works concerning on the results of positive solutions for singular problems
up to now. For example, Cid et al [8] obtained the existence of infinitely many solu-
tions for a second-order singular problem with initial value condition. Agarwal et al
[4] studied the existence and multiplicity of positive solutions of a singular by using
the direct method of the calculus of variations, Ekeland’s Variational Principle and
an idea of Tarantello. However, their results cannot cover our results obtained in
this paper, and our results are different from those obtained by classical methods
such as fixed point theorems, nonlinear Leary-Schauder alternative principle, the
method of upper and lower solutions and so on.

The rest of this article is organized as follows: In Section 2, we give several
important definitions and lemmas. The main theorems are formulated and proved
in Section 3. In Section 4, some examples are presented to illustrate our results.

2. Preliminaries and Lemmas

We denote by H be the Hilbert space of absolutely continuous functions u :
(0, 1)→ R such that u′ ∈ L2(0, 1) and u(0) = u(1) = 0. Consider the Hilbert space
H with the inner product and norm

(u, v) =
∫ 1

0

u′(t)v′(t)dt, ‖u‖ =
(∫ 1

0

(u′(t))2dt
)1/2

. (2.1)

Define fε ∈ C((0, 1)× R, [0,∞)) by

fε(t, u) = f(t, (u− φε(t))+ + φε(t)), (2.2)

where u± = max{±u, 0} and φε(t) = εt(1− t) is the solution of

−u′′(t) = 2ε, t ∈ (0, 1),

u(0) = u(1) = 0.
(2.3)

Consider
−u′′(t) = fε(t, u) + e(t), t ∈ (0, 1),

u(0) = u(1) = 0.
(2.4)

By (2.2) and (1.4), one has

2ε− e(t) ≤ fε(t, u) ≤ Cφ−γε , (t, u) ∈ (0, 1)× (−∞, ε), (2.5)

fε(t, u) = f(t, u), (t, u) ∈ (0, 1)× [ε,∞). (2.6)

We observe that if u is a solution of (2.4), then u ≥ φε(t) and hence also a solution
of (1.3). To see this suppose there exists some t ∈ (0, 1) such that

u(t) ≤ φε(t). (2.7)

By [6, Lemma 2.8.1],
u(t) ≥ t(1− t)‖u‖∞, t ∈ (0, 1),
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where ‖u‖∞ = maxt∈[0,1] |u(t)|, so (2.7) implies ‖u‖∞ < ε. But one has −u′′ ≥
2ε = −φ′′ε by (2.5), so u ≥ φε(t), contradicting (2.7).

Multiply the first equation of (2.4) by v ∈ H at both sides, and integrate the
equality on the interval (0,1) and combine the boundary condition u(0) = u(1) = 0
to obtain ∫ 1

0

u′(t)v′(t)dt =
∫ 1

0

fε(t, u)v(t)dt+
∫ 1

0

e(t)v(t)dt; (2.8)

thus, a weak solution of the singular boundary-value problem (2.4) is a function
u ∈ H such that (2.8) holds for any v ∈ H. Let

Fε(t, u) =
∫ u

ε

fε(t, s)ds.

For all u ∈ H, noting that u(0) = u(1) = 0 < ε, one has∫ 1

0

|Fε(t, u)|dt =
∫
u≥ε
|
∫ u

ε

fε(t, s)ds|dt+
∫
u<ε

|
∫ u

ε

fε(t, s)ds|dt

≤
∫
u≥ε
|
∫ u

ε

fε(t, s)ds|dt+ C max
t∈[0,1]

(ε− u(t))
∫ 1

0

|φ−γε (t)|dt

≤
∫
u≥ε
|
∫ u

ε

fε(t, s)ds|dt+ C(ε+ ‖u‖∞)
∫ 1

0

|φ−γε (t)|dt.

It is clear that there exists a constant C1 > 0 such that
∫
u≥ε |

∫ u
ε
fε(t, s)ds|dt ≤ C1,

and furthermore, |φ−γε | = φ−γε ∈ L1(0, 1), thus we get
∫ 1

0
|Fε(t, u)|dt < +∞.

We see that the weak solutions of boundary-value problem (2.4) are the critical
points of the C1 functional defined by

ϕ(u) =
1
2

∫ 1

0

|u′(t)|2dt−
∫ 1

0

Fε(t, u)dt−
∫ 1

0

e(t)u(t)dt. (2.9)

In the following we introduce some necessary definitions and lemmas.

Definition 2.1. Let E be a Banach space and ϕ : E → R, is said to be sequentially
weakly lower semi-continuous if limk→+∞ inf ϕ(xk) ≥ ϕ(x) as xk ⇀ x in E.

Definition 2.2 ([13, p. 81]). Let E be a real reflexive Banach space. For any
sequence uk ⊂ E, if ϕ(uk) is bounded and ϕ′(uk) → 0, as k → +∞ possesses a
convergent subsequence, then we say ϕ satisfies the Palais-Smale condition.

Lemma 2.3 ([17, Theorem 38]). For the functional F : M ⊆ X → [−∞,+∞] with
M 6= ∅, minu∈M F (u) = α has a solution when the following conditions hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed; i.e., by definition, for each

sequence un in M such that un ⇀ u as n→∞, we always have u ∈M ;
(iii) F is weak sequentially lower semi-continuous on M .

Next we have the Mountain pass theorem; [13, Theorem 4.10].

Lemma 2.4. Let E be a Banach space and ϕ ∈ C1(E,R) satisfy Palais-Smale
condition. Assume there exist x0, x1 ∈ E, and a bounded open neighborhood Ω of
x0 such that x1 6∈ Ω and

max{ϕ(x0), ϕ(x1)} < inf
x∈∂Ω

ϕ(x).
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Then there exists a critical value of ϕ; that is, there exists u ∈ E such that ϕ′(u) = 0
and ϕ(u) > max{ϕ(x0), ϕ(x1)}.

Lemma 2.5. If u ∈ H, then ‖u‖∞ ≤ ‖u‖, where ‖u‖∞ = maxt∈[0,1] |u(t)|.

Proof. It follows from Hölder’s inequality,

|u(t)| = |
∫ t

0

u′(s)ds| ≤
∫ t

0

|u′(s)|ds ≤
∫ 1

0

|u′(t)|dt ≤ (
∫ 1

0

|u′(t)|2dt)1/2 = ‖u‖.

�

Lemma 2.6. The functional ϕ is continuous, continuously differentiable, and weakly
lower semi-continuous.

Proof. By the continuity of f and it is easy to check that functional ϕ is continuous,
continuously differentiable, and ϕ′(u) is defined by

〈ϕ′(u), v〉 =
∫ 1

0

u′(t)v′(t)dt−
∫ 1

0

fε(t, u)v(t)dt−
∫ 1

0

e(t)v(t)dt. (2.10)

To show that ϕ is weakly lower semi-continuous, let {un} be a weakly convergent
sequence to u in H, then ‖u‖ ≤ lim infn→∞ ‖un‖, and {un} converges uniformly to
u in C[0, 1], so when n→∞, we have

lim inf
n→∞

ϕ(un) =
1
2

∫ 1

0

|u′n(t)|2dt−
∫ 1

0

Fε(t, un)dt−
∫ 1

0

e(t)un(t)dt

≥ 1
2

∫ 1

0

|u′(t)|2dt−
∫ 1

0

Fε(t, u)dt−
∫ 1

0

e(t)u(t)dt

= ϕ(u).

Thus, by Definition 2.1, ϕ is weakly lower semi-continuous. �

We state the well-known Ambrosetti-Rabinowitz condition as follows: There
exist µ > 2 and r > ε such that

0 < µFε(t, u) ≤ fε(t, u)u, u > r, ∀t ∈ (0, 1), (2.11)

It is well known that the Ambrosetti-Rabinowitz condition is quite natural and
convenient not only to ensure the Palais-Smale sequence of the functional ϕ is
bounded but also to guarantee the functional ϕ has a mountain pass geometry.

Lemma 2.7. Suppose that Ambrosetti-Rabinowitz condition holds, then the func-
tional ϕ satisfies Palais-Smale condition.

Proof. Let {uk} be a sequence in H such that {ϕ(uk)} is bounded and ϕ′(uk)→ 0,
as k → +∞, then we will prove {uk} possesses a convergent subsequence.

We first prove that {uk} is bounded. By the Ambrosetti-Rabinowitz condition,
one has

µϕ(uk)− 〈ϕ′(uk), uk〉

=
µ

2

∫ 1

0

|u′k|2dt− µ
∫ 1

0

Fε(t, uk)dt− µ
∫ 1

0

e(t)ukdt

−
∫ 1

0

u′ku
′
kdt+

∫ 1

0

fε(t, uk)ukdt+
∫ 1

0

e(t)ukdt
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≥ (
µ

2
− 1)‖uk‖2 −

∫ 1

0

(µFε(t, uk)− fε(t, uk)uk)dt+ (1− µ)‖uk‖∞‖e‖L1

≥ (
µ

2
− 1)‖uk‖2 −

∫
uk<ε

(µFε(t, uk)− fε(t, uk)uk)dt

−
∫
ε≤uk≤r

(µFε(t, uk)− fε(t, uk)uk)dt

−
∫
uk>r

(µFε(t, uk)− fε(t, uk)uk)dt+ (1− µ)‖uk‖∞‖e‖L1

≥ (
µ

2
− 1)‖uk‖2 − C

∫
uk<ε

ϕε(t)−γ |uk|dt− µ
∫
ε≤uk≤r

Fε(t, uk)dt

+ (1− µ)‖uk‖‖e‖L1

≥ (
µ

2
− 1)‖uk‖2 − C‖u−k ‖∞

∫ 1

0

ϕε(t)−γdt+ (1− µ)‖uk‖‖e‖L1 − C2,

where C2 = µ
∫
ε≤uk≤r Fε(t, uk)dt.

It suffices to show that ‖u−k ‖∞ is bounded. In fact, by (2.10), one has

〈ϕ′(uk), u−k 〉

=
∫ 1

0

u′k(u−k )′dt−
∫ 1

0

fε(t, uk)u−k dt−
∫ 1

0

e(t)u−k dt

=
∫
uk<0

u′k(u−k )′dt+
∫
uk≥0

u′k(u−k )′dt−
∫ 1

0

fε(t, uk)u−k dt−
∫ 1

0

e(t)u−k dt

=
∫
uk<0

u′k(u−k )′dt−
∫ 1

0

fε(t, uk)u−k dt−
∫ 1

0

e(t)u−k dt

= −
∫ 1

0

(u−k )′(u−k )′dt−
∫ 1

0

fε(t, uk)u−k dt−
∫ 1

0

e(t)u−k dt.

Then

‖u−k ‖
2 = −〈ϕ′(uk), u−k 〉 −

∫ 1

0

fε(t, uk)u−k dt−
∫ 1

0

e(t)u−k dt

≤ −〈ϕ′(uk), u−k 〉+
∫ 1

0

fε(t, uk)u−k dt+
∫ 1

0

e(t)u−k dt

≤ ‖ϕ′(uk)‖‖u−k ‖+ C‖u−k ‖∞
∫
uk<0

fε(t, uk)dt+ ‖u−k ‖∞‖e‖L1

≤ ‖ϕ′(uk)‖‖u−k ‖+ C‖u−k ‖
∫ 1

0

ϕε(t)−γdt+ ‖u−k ‖‖e‖L1 .

Therefore,

‖u−k ‖ ≤ o(1) + C

∫ 1

0

ϕε(t)−γdt+ ‖e‖L1 ,

which implies that ‖u−k ‖ is bounded. By Lemma 2.5, one has ‖u−k ‖∞ is also
bounded. Thus we proved that {uk} is bounded.

Since H is a reflexive Banach space, there exists a subsequence of {uk} (for
simplicity denoted again by {uk}) such that {uk} weakly converges to some u in
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H. Then the sequence {uk} converges uniformly to u in [0, 1]. Hence,

(ϕ′(uk)− ϕ′(u))(uk − u)→ 0,∫ 1

0

(fε(t, u)− fε(t, uk))(uk − u)dt→ 0,

as k → +∞. Thus, we have

(ϕ′(uk)− ϕ′(u))(uk − u) = ϕ′(uk)(uk − u)− ϕ′(u)(uk − u)

=
∫ 1

0

(u′k − u′)2dt+
∫ 1

0

(fε(t, u)− fε(t, uk))(uk − u)dt

= ‖uk − u‖2 +
∫ 1

0

(fε(t, u)− fε(t, uk))(uk − u)dt,

which means ‖uk − u‖ → 0, as k → +∞. That is, {uk} converges strongly to u in
H. �

3. Main results

Our main results are the following three theorems.

Theorem 3.1. Suppose there exists L > 0 such that

f(t, u) ≤ L, (t, u) ∈ (0, 1)× [ε,∞). (3.1)

Then (1.3) has at least one positive weak solution.

Proof. By (2.5) and (3.1), one has

Fε(t, u) ≤

{
0, u < ε,

L(u− ε), u ≥ ε.

For any u ∈ H, one has

ϕ(u) =
1
2

∫ 1

0

|u′(t)|2dt−
∫ 1

0

Fε(t, u)dt−
∫ 1

0

e(t)u(t)dt

≥ 1
2
‖u‖2 −

∫
u≥ε

Fε(t, u)dt− ‖u‖∞‖e‖L2

≥ 1
2
‖u‖2 − L‖u‖ − ‖u‖‖e‖L2 ,

which implies that lim inf‖u‖→∞ ϕ(u) = +∞, thus, ϕ is coercive. Hence, by [13,
Lemma 2.4 and Theorem 1.1], ϕ has a minimum, which is a critical point of ϕ, then
(1.3) has at least one positive weak solution. �

Analogously we have the following result.

Theorem 3.2. Suppose there exists a, b > 0 and θ ∈ (0, 1) such that

f(t, u) ≤ auθ + b, (t, u) ∈ (0, 1)× [ε,∞). (3.2)

Then (1.3) has at least one positive weak solution.

Proof. By using the same methods of the above proof of Theorem 3.1 there exists
η > 0 such that

ϕ(u) ≥ 1
2
‖u‖2 − a‖u‖θ+1 − η‖u‖,
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which implies that lim inf‖u‖→∞ ϕ(u) = +∞, thus, ϕ is coercive. Hence, by [13,
Lemma 2.4 and Theorem 1.1], ϕ has a minimum, which is a critical point of ϕ, then
(1.3) has at least one positive weak solution. �

Theorem 3.3. Suppose (2.11) holds, and there exist δ > 0, α > 2 such that
Fε(t, u) ≤ δuα, (t, u) ∈ (0, 1) × [ε,∞). Then (1.3) has at least two positive weak
solutions.

Proof. Firstly, we will show that there exists ρ > 0, which will be determined later,
such that the functional ϕ has a local minimum u0 ∈ Bρ = {u ∈ H : ‖u‖ < ρ}. By
the same methods used in [20] show that Bρ is a bounded and weak sequentially
closed. Noting that ϕ is weak sequentially lower semi-continuous on Bρ and H is
a reflexive Banach space. Then by Lemma 2.3 we can know that ϕ has a local
minimum u0 ∈ Bρ; that is, ϕ(u0) = minu∈Bρ ϕ(u).

Next, we show that ϕ(u0) < infu∈∂Bρ ϕ(u). Choose ρ > 0 such that

1
2
ρ2 − δρα − ρ‖e‖L1 > −2ε2. (3.3)

For all u = ρω, ω ∈ H with ‖ω‖ = 1, then ‖u‖ = ‖ρω‖ = ρ‖ω‖ = ρ, thus u ∈ ∂Bρ.
By Lemma 2.5 and Fε(t, u) ≤ δuα and (t, u) ∈ (0, 1)× [ε,∞), one has

ϕ(u) = ϕ(ρω)

=
1
2
ρ2 −

∫ 1

0

Fε(t, ρω)dt−
∫ 1

0

e(t)ρω(t)dt

≥ 1
2
ρ2 −

∫
u≥ε

Fε(t, ρω)dt− ρ‖ω‖∞‖e‖L1

≥ 1
2
ρ2 −

∫
u≥ε

Fε(t, ρω)dt− ρ‖ω‖‖e‖L1

≥ 1
2
ρ2 − δ

∫ 1

0

|ρω|αdt− ρ‖ω‖‖e‖L1

≥ 1
2
ρ2 − δρα − ρ‖e‖L1

> −2ε2.

By (2.5), one has

Fε(t, u) =
∫ u

ε

f(t, s)ds ≥
∫ u

ε

(2ε− e(t))ds = (2ε− e(t))(u− ε).

Thus, Fε(t, 0) ≥ −ε(2ε − e(t)) ≥ −2ε2, and we get ϕ(u) > −2ε2 ≥ ϕ(0) =
−Fε(t, 0) ≥ ϕ(u0) for u ∈ ∂Bρ, which implies ϕ(u0) < infu∈∂Bρ ϕ(u).

Secondly, we will show that there exists u1 with ‖u1‖ > ρ such that ϕ(u1) <
infu∈∂Bρ ϕ(u). By (2.5) and noting that the function (0,∞) 3 ξ → Fε(t, uξ )ξµ is
nonincreasing when u 6= 0, see the references [18], one has

Fε(t, u) ≥ Fε(t, r)(
u

r
)µ, u ≥ r.

Therefore, we can choose u1 with ‖u1‖ sufficiently large such that ϕ(u1) < −2ε2.
Thus we have

max{ϕ(u0), ϕ(u1)} < inf
x∈∂Bρ

ϕ(x).
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Lemma 2.7 shows that ϕ satisfies Palais-Smale condition. Hence, by Lemma 2.4
there exists a critical point û. Therefore, u0 and û are two critical points of ϕ, and
they are also two positive weak solutions of (1.3). �

4. Examples

Example 4.1. Take ε = 1, e(t) = 2 sin t, f(t, u) = 2(1 + | sin 1
t(1−t) |)u

−1/3, and
consider the equation

−u′′(t) = f(t, u) + e(t), t ∈ (0, 1),

u(0) = u(1) = 0 .

The equation is solvable according to Theorems 3.1 or 3.2.

Example 4.2. Take ε = 1, e(t) = 2 sin t,

f(t, u) =

{
2(1 + | sin 1

t(1−t) |)u
−1/3, 0 < u < 1,

2(1 + | sin 1
t(1−t) |)u

2, u ≥ 1,

and consider the equation

−u′′(t) = f(t, u) + e(t), t ∈ (0, 1),

u(0) = u(1) = 0.

It is easy to verify the conditions of Theorem 3.3 hold, thus this equation has at
least two positive weak solutions.

Acknowledgments. This research was supported by Shandong Provincial Natural
Science Foundation, China (ZR2012AQ024). Supported by The Doctoral Program
Foundation of Education Ministry of China (20133705110003) and Program for Sci-
entific research innovation team in Colleges and universities of Shandong Province.

References

[1] R. P. Agarwal, K. Perera, D. O’Regan; Multiple positive solutions of singular problems by

variational methods, Proceedings of The American Mathematical Society, 134 (2006), no. 3,

817-824.
[2] R. P. Agarwal, K. Perera, D. O’Regan; Multiple positive solutions of singular and nonsin-

gular discrete problems via variational methods, Nonlinear Analysis: Theory, Methods and
Applications, 58 (2004), no. 1-2, 69-73.

[3] R. P. Agarwal, V. Otero-Espinar, K. Perer, D. R. Vivero; Multiple positive solutions of sin-

gular Dirichlet problems on time scales via variational methodsNonlinear Analysis: Theory,
Methods and Applications, 67 (2007), no. 2, 368-381.

[4] R. P. Agarwal, H. S. Lu, D. O’Regan; Positive solutions for Dirichlet problems of singular
quasilinear elliptic equations via variational methods, Mathematika, 51 (2004), no. 101-102,
187-202.

[5] R. P. Agarwal, D. O’Regan; Existence criteria for singular boundary-value problems with

sign changing nonlinearities, J. Differential Equations, 183 (2002), 409-433.
[6] R. P. Agarwal, D. O’Regan; Singular differential and integral equations with applications.

Kluwer Academic Publishers, Dordrecht, 2003. MR2011127 (2004h:34002).
[7] J. Chu, D. O’Regan; Multiplicity results for second order non-autonomous singular Dirichlet

systems, Acta Appl. Math. 105 (2009), 323-338.
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