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MINIMIZATION OF ENERGY INTEGRALS ASSOCIATED WITH
THE p-LAPLACIAN IN RN FOR REARRANGEMENTS

SHANMING JI, JINGXUE YIN, RUI HUANG

Abstract. In this article, we establish the existence of minimizers for energy

integrals associated with the p-Laplacian in RN with the admissible set being
a rearrangement class of a given function. Some representation formulae of

the minimizers are also stated.

1. Introduction

In this article, we study the optimization problems of minimizing the energy
integrals associated with the p-Laplacian equation

−∆pu = f − h, x ∈ RN , (1.1)

lim
|x|→+∞

u(x) = 0. (1.2)

Here 1 < p < N , ∆p stands for the usual p-Laplacian; i.e., ∆pu = div(|∇u|p−2∇u).
Let f0, h ∈ L∞(RN ) be fixed nonnegative functions with compact supports, and let
R be the class of rearrangements of f0 with compact support; that is, R = {f ∈
L∞(RN ); |{x; f(x) ≥ α}| = |{x; f0(x) ≥ α}|,∀α ∈ R, supp f is bounded}, where
| · | is the Lebesgue measure. For λ ≥ 0 and f varying in R, we define the energy
functional with (λ > 0) or without (λ = 0) penalty as

Ψλ(f) =
∫

RN
|∇uf |p dx+ λ

∫
RN

gf dx, (1.3)

where uf is the solution of problem (1.1)–(1.2), g ∈ C2(RN ) is the penalty function,
lim|x|→+∞ g(x) = +∞ and ∆pg ≥ σp−1 for some constant σ > 0. The optimization
problem (1.4) is to find the minimizer for energy integral Ψλ(f), namely,

min
f∈R

Ψλ(f). (1.4)

The optimization problems of maximizing or minimizing convex functionals over
the set of rearrangements of a given function have been investigated by many au-
thors. In such problems, the theory of rearrangements and functionals on rear-
rangements established by Burton [2, 3] has proved to be a crucial tool in addressing
questions such as existence, uniqueness and symmetry of optimal solutions. This
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theory has already been applied to shape optimization problems of membranes,
solid and fluid mechanics, eigenvalue optimization problems of some differential
operators and so on, see [7] and references therein.

In recent years, a great deal of attention has been devoted to optimization prob-
lems where the cost functionals are the energy integrals associated with elliptic
equations. For problems in bounded domains, numerous elliptic operators have
been studied, including the Laplacian [2, 5, 6], p-Laplacian [4, 10] and some semi-
linear operators [8]. For example, Marras [10] studied the minimization problem of
energy integral Ψ0(f) associated with the p-Laplacian on bounded domain

−∆pu = f, x ∈ Ω,
u = 0, x ∈ ∂Ω,

where p > 1, f ∈ R. There are also some works dealing with elliptic operators in
unbounded domains. Bahrami and Fazli [1] considered the minimization problem
of energy integral

Φλ(f) =
1
2

∫
R3
fuf dx+ λ

∫
R3
gf dx,

where uf is the solution of Poisson’s equation

−∆u = f − 2h, x ∈ R3,

lim
|x|→+∞

u(x) = 0, (1.5)

where f ∈ R, h ∈ L∞(R3), g ∈ C2(R3), lim|x|→+∞ g(x) = +∞, ∆g ≥ c > 0 and
λ ≥ 0.

We mention here some details of the previous works. The weakly sequentially
continuity of the functional Ψλ(f) on space Lq(Ω) for q ≥ 1 and bounded domain
Ω, is essential in the proof of [10] and other works when applying Burton’s theory
of rearrangements. However, the continuity is generally not true on unbounded
domains due to the general loss of compact imbedding of Sobolev spaces on un-
bounded domains, especially on the whole space. Thus the authors in [1] investigate
the problem on bounded domains to solve the optimization problem on unbounded
domains.

We are interested in the extension of the work of Bahrami and Fazli [1] to the
nonlinear diffusion case. As a matter of fact, the p-Laplacian arises in various
physical contexts: non-Newtonian fluids, reaction diffusion problems, nonlinear
elasticity, electrochemical machining, elastic-plastic torsional creep, etc., see [4]
and references therein.

We state here our main results of existence and representation formulae of min-
imizers for problem (1.4) in the case λ > 0 and λ = 0 respectively.

Theorem 1.1. The optimization problem (1.4) has a solution for

λ > λ0 ≡
p′

σ
‖f0‖

1
p−1
∞ .

Moreover, if fλ ∈ R is a solution of (1.4) and ufλ is the solution of problem (1.1)–
(1.2) corresponding to fλ, then there exists a decreasing function ϕλ such that

fλ = ϕλ ◦ (p′ufλ + λg),

almost everywhere in RN .
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Theorem 1.2. Let f0 and h be as introduced above. There exists a constant κ =
κ(N, p) ∈ (0, 1

2 ] depending only on N and p, such that if ‖f0‖∞ < ‖h‖−∞;supph,
supph ⊂ Brh with rh > 0 appropriately large, and

| supp f0| ≤ κ
(‖h‖−∞;supph

‖h‖∞

) p
p−1
( | supph|
|Brh |

) N−p
N(p−1) | supph|, (1.6)

then the optimization problem (1.4) with λ = 0 has a solution. Moreover, if f̂ ∈ R
is a solution of (1.4) with λ = 0 and uf̂ is the solution of problem (1.1)–(1.2)
corresponding to f̂ , then there exists a decreasing function ϕ̂ such that

f̂ = ϕ̂ ◦ uf̂ ,

almost everywhere in RN .

The crucial point of the proofs, compared with the linear diffusion case, lies in
the estimates on the different contributions of the two opposed-signed functions
f and −h to the solution. In the previous work [1], the classical theory of linear
elliptic equations was applied, namely, the explicit expression of solutions based
on the superposition principle is feasible and effective in deriving the estimates on
solutions of linear elliptic equations. However, such a method is inapplicable in the
current problem due to the nonlinearity of the p-Laplacian. It turns out to be more
difficult as we attempt to estimate the different contributions of the two opposed-
signed functions. To overcome those difficulties, we use the De Giorgi and Moser
iteration techniques to derive estimates in quasilinear case and we take advantage of
the representation formulas of the problem on bounded domains since they provide
additional correlation between the solution and the free term.

The organization of this paper is as follows. Section 2 is devoted to the basic
notations and some preliminary results, especially some fundamental estimates.
Then we will discuss the case with (λ > 0) and without (λ = 0) penalty in Section
3 and Section 4 respectively.

2. Definitions and preliminary results

Throughout this paper, we assume that 1 < p < N , where N is the spatial
dimension, p′ = p

p−1 the conjugate exponent of p, p∗ = Np
N−p the Sobolev conjugate

exponent of p and p′∗ = p∗
p∗−1 . The measure of a Lebesgue measurable set A ⊂ RN

is denoted by |A|. By Br(x) we denote the ball centered at x ∈ RN with radius r;
if the center is the origin, we write Br for simplicity. Constant ωN stands for the
measure of the unit ball in RN .

Let us begin with the usual concept of rearrangement. Denote by Lα(f) the
level set of a measurable function f at height α; that is Lα(f) = {x ∈ RN ; f(x) =
α}. The strong support of a nonnegative function f is defined as supp f = {x ∈
RN ; f(x) > 0}. Furthermore, we define

‖f‖−∞;supp f = sup{M ≥ 0; f(x) ≥M, a.e. in suppf}.

When f and g are nonnegative measurable functions that vanish outside sets of
finite measure in RN , we say f is a rearrangement of g whenever

|{x ∈ RN ; f(x) ≥ α}| = |{x ∈ RN ; g(x) ≥ α}|, ∀α ≥ 0.
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Now fix f0 ∈ L∞(RN ) being a measurable nonnegative function vanishing outside
a set of finite measure. As defined in Section 1, R denotes the set of all rearrange-
ments on RN of f0 with bounded support. The subset of R containing functions
vanishing outside the ball Br is denoted by R(r); here we assume ωNrN ≥ | supp f0|
in order that R(r) is nonempty. The weak closure in Lp

′
∗(Br) of R(r) is denoted

by R(r)w.
Henceforth we may regard a function f ∈ Lq(RN ) as a function in Lq(Br) by

restricting its domain; we can also regard a function f ∈ Lq(Br) as its zero extension
in Lq(RN ) when necessary for 1 ≤ q ≤ +∞.

To solve the optimization problems (1.4), we first need to consider the similar
problems whose admissible sets are nested subsets of R. We define minimizing
problems (2.1) as follows:

min
f∈R(r)

Ψλ(f). (2.1)

The sets of solutions of (1.4) and (2.1) are denoted by Sλ and Sλ(r) respectively.
In the following part of this section we state and prove some lemmas which are

essential in our analysis. We begin with some results about properties of rearrange-
ment classes and the relative variational problems proved by Burton in [3].

Lemma 2.1. For r > 0 satisfying ωNrN ≥ | supp f0| and q ≥ 1, we have
(i) ‖f‖q = ‖f0‖q, for f ∈ R(r);
(ii) R(r)w is weakly sequentially compact in Lq(Br);

(iii) R(r)w = {f ∈ L1(Br);
∫ s
0
f4dt ≤

∫ s
0
f40 dt, 0 < s ≤ ωNr

N ,
∫
Br
fdx =∫

Br
f0dx}, where f4 is a decreasing function on the interval (0, ωNrN )

satisfying

|{s ∈ (0, ωNrN ); f4(s) ≥ α}| = |{x ∈ Br; f(x) ≥ α}|, ∀α > 0.

Remark From the representation of R(r)w in (iii), we find that the weak closure of
R(r) in Lp

′
∗(Br) is actually the weak closure in Lq(Br) for 1 ≤ q < +∞. Combining

(i) and the property of weak closure we have

‖f‖q ≤ ‖f0‖q, ∀f ∈ R(r)w, 1 ≤ q ≤ +∞. (2.2)

The following two lemmas are simple variations of [3, Lemma 2.15 and Theorem
3.3].

Lemma 2.2 ([3, Lemma 2.15]). Let T : Lp
′
(Br) → R be the linear functional

defined as T (f) =
∫
Br
fvdx for r > 0, ωNrN ≥ | supp f0| and v ∈ Lp(Br). If f̂ is

a minimizer of T relative to R(r)w and

|Lα(v) ∩ supp f̂ | = 0, ∀α ∈ R,

we have f̂ ∈ R(r) and f̂ = ϕ ◦ v a.e. i Br, for a decreasing function ϕ.

Lemma 2.3 ([3, Theorem 3.3]). Let Ψ : Lp
′
(Br) → R be a weakly sequentially

continuous and Gâteaux differentiable functional.
(i) There exists a minimizer for Ψ relative to R(r)w.

(ii) If f∗ is a minimizer for Ψ relative to R(r)w and the Gâteaux differential of
Ψ at f∗ is Ψ′(f∗) ∈ Lp(Br), f∗ is a minimizer for the functional 〈·,Ψ′(f∗)〉
relative to R(r)w.
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The following Sobolev’s inequality plays an important role in our estimates. For
more details, see [9].

Lemma 2.4 ([9, Theorem 7.10]). For 1 < p < N and p∗ = Np
N−p , we have

‖u‖p∗ ≤ C0‖∇u‖p, ∀u ∈W 1,p(RN ), (2.3)

where C0 = C0(N, p) is a constant depending only on N and p.

Remark Invoking usual approximations, we see that this estimate is also valid
provided u ∈ Lp∗(RN ), ∇u ∈ Lp(RN ; RN ).

Henceforth, we assume r > 0, ωNrN ≥ | supp f0| and λ ≥ 0. For f ∈ Lp′∗(RN ),
we consider the problem (1.1)–(1.2). It is a classical result of variational the-
ory that such a problem has a unique solution u ∈ W ≡ {w ∈ W 1,p

loc (RN );w ∈
Lp∗(RN ),∇w ∈ Lp(RN ; RN )} satisfying

sup
v∈W

∫
RN

(
p(f − h)v − |∇v|p

)
dx =

∫
RN

(
p(f − h)u− |∇u|p

)
dx

= (p− 1)
∫

RN
|∇u|pdx,

(2.4)

∫
RN

(f − h)vdx =
∫

RN
|∇u|p−2∇u · ∇vdx, ∀v ∈W. (2.5)

Lemma 2.5. Let u be the solution of problem (1.1)–(1.2) corresponding to f ∈
Lp
′
∗(RN ). We have

‖∇u‖p ≤ C
1
p−1
0 (‖f0‖p′∗ + ‖h‖p′∗)

1
p−1 , (2.6)

‖u‖p∗ ≤ C
p
p−1
0 (‖f0‖p′∗ + ‖h‖p′∗)

1
p−1 , (2.7)

where C0 is the constant in (2.3).

Proof. From (2.5), we apply Hölder’s inequality to find∫
RN
|∇u|pdx =

∫
RN

(f − h)udx ≤ ‖f − h‖p′∗‖u‖p∗ .

Combining this inequality with Sobolev’s inequality (2.3), we get the results. �

Lemma 2.6. The functional Ψλ defined in (1.3) is weakly sequentially continuous
and Gâteaux differentiable in Lp

′
(Br) with derivative p′uf + λg ∈ Lp(Br) at f ∈

Lp
′
(Br), where uf is the solution of problem (1.1)–(1.2) corresponding to f .

Proof. It suffices to prove that the functional I(f) ≡
∫

RN |∇uf |
pdx is weakly se-

quentially continuous and Gâteaux differentiable in Lp
′
(Br) with derivative p′uf ∈

Lp(Br) at f ∈ Lp′(Br). Let fn ⇀ f in Lp
′
(Br) and ufn , uf be the solutions of the

problem (1.1)–(1.2) corresponding to fn, f respectively. Using (2.4), we have

(p− 1)I(f) +
∫

RN
p(fn − f)ufdx

=
∫

RN

(
p(fn − h)uf − |∇uf |p

)
dx ≤ (p− 1)I(fn)

=
∫

RN

(
p(f − h)ufn − |∇ufn |p

)
dx+

∫
RN

p(fn − f)ufndx

≤ (p− 1)I(f) +
∫

RN
p(fn − f)ufndx.

(2.8)
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By assumption, we have

lim
n→∞

∫
RN

(fn − f)ufdx = lim
n→∞

∫
Br

(fn − f)ufdx = 0. (2.9)

Let us prove that

lim
n→∞

∫
RN

(fn − f)ufndx = lim
n→∞

∫
Br

(fn − f)ufndx = 0. (2.10)

From (2.6), (2.7) and ‖f‖p′∗;RN = ‖f‖p′∗;Br ≤ |Br|
1
N ‖f‖p′;Br for f ∈ Lp′(Br), we see

that the norms ‖∇ufn‖p;RN , ‖ufn‖p∗;RN and ‖ufn‖1,p;Br are bounded by constants
independent of n. Therefore, we can choose a subsequence of {ufn} denoted by
{ufnk } and a function w ∈W , such that {ufnk } converges weakly in Lp∗(RN ) and
strongly in Lp(Br) to w, {∇ufnk } converges weakly in Lp(RN ; RN ) to ∇w. From∫

RN
(fnk − f)ufnk dx =

∫
RN

(fnk − f)wdx+
∫

RN
(fnk − f)(ufnk − w)dx,

and ∣∣ ∫
RN

(fnk − f)(ufnk − w)dx
∣∣ ≤ ‖fnk − f‖p′;Br‖ufnk − w‖p;Br ,

the limit (2.10) is valid for a subsequence {nk}. Combining this with (2.8)–(2.9),
we deduce

lim
k→∞

I(fnk) = I(f). (2.11)

We claim that the function w is actually uf , which is a fixed function independent
of the choice of subsequence {nk}, to show that the sequence {ufn} itself converges
and equality (2.10) is valid. Indeed, from

(p− 1)I(fnk) =
∫

RN

(
p(fnk − h)ufnk − |∇ufnk |

p
)
dx,

lim
k→∞

∫
RN

(fnk − h)ufnk dx =
∫

RN
(f − h)w dx,

and the classical result

lim inf
k→∞

∫
RN
|∇ufnk |

pdx ≥
∫

RN
|∇w|pdx, (2.12)

using (2.11) and (2.4), we get

(p− 1)I(f) ≤
∫

RN

(
p(f − h)w − |∇w|p

)
dx ≤ (p− 1)I(f). (2.13)

By the uniqueness of the maximizer of
∫

RN
(
p(f − h)v − |∇v|p

)
dx in W , we have

w = uf . Thus (2.8)–(2.10) yield the weak continuity.
Let z ∈ Lp

′
(Br) and {tn} be a positive sequence such that limn→∞ tn = 0.

Taking fn = f + tnz in the inequality (2.8), we find∫
RN

p′ufzdx ≤
I(f + tnz)− I(f)

tn
≤
∫

RN
p′ufnz dx.

As already observed, {ufn} converges to uf strongly in Lp(Br). Therefore,

lim
n→∞

I(f + tnz)− I(f)
tn

=
∫

RN
p′ufz dx.
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Since the sequence {tn} and the function z are arbitrary, it follows that I(f) is
Gâteaux differentiable with derivative p′uf . �

Note that the functional Ψλ is not weakly sequentially continuous in Lp
′
(RN ).

Lemma 2.7. Let u be the solution of the problem (1.1)–(1.2) corresponding to
f ∈ R(r)w. We have

‖u‖∞;RN ≤ C1(N, p)‖f − h‖
N−p

Np−N+p
∞ ‖f − h‖

p2

(p−1)(Np−N+p)

p′∗
, (2.14)

where C1(N, p) is a constant depending only on N and p.

Proof. For any k > 0, take v = (u− k)+ ∈W in (2.5). We deduce∫
RN
|∇v|pdx ≤

∫
RN
|f − h||v|dx.

By Sobolev’s inequality and Hölder’s inequality, we have

‖v‖pp∗;A(k) ≤ C
p
0

∫
A(k)

|f − h||v| dx ≤ Cp0‖v‖p∗;A(k)‖f − h‖p′∗;A(k),

where A(k) = {x ∈ RN ;u(x) > k}. Therefore,

‖v‖p−1
p∗;A(k) ≤ C

p
0‖f − h‖p′∗;A(k) ≤ Cp0‖f − h‖∞|A(k)|1/p

′
∗ .

Combining this with

‖v‖p∗;A(k) ≥ ‖v‖p∗;A(h) ≥ (h− k)|A(h)|1/p∗ , ∀h > k > 0,

we have

|A(h)| ≤
(Cp′0 ‖f − h‖ 1

p−1
∞

h− k

)p∗
|A(k)|

p∗−1
p−1 , ∀h > k > 0. (2.15)

By iteration, we see that |A(k0 + d)| = 0 for k0 > 0,

d = Cp
′

0 ‖f − h‖
1
p−1
∞ 2

(p∗−1)(N−p)
p2 |A(k0)|

p′
N .

From estimate (2.7), we see that

k0|A(k0)|
1
p∗ ≤ ‖u‖p∗ ≤ C

p′

0 ‖f − h‖
1
p−1
p′∗

.

Hence

u ≤ k0 + d ≤ k0 + 2NCp
′+ p′2p∗

N
0 ‖f − h‖

1
p−1
∞
‖f − h‖

p′p∗
N(p−1)

p′∗

k
p′p∗
N

0

.

Let α = p′p∗
N = p2

(N−p)(p−1) , A = 2NCp
′2p∗

0 ‖f − h‖
1
p−1
∞ ‖f − h‖

p′p∗
N(p−1)

p′∗
and k0 =

(αA)
1

α+1 . We get u ≤ (α
1

α+1 + α−
α
α+1 )A

1
α+1 . By considering −u instead of u, we

complete the proof. �

In Section 4, the case λ = 0, more precise estimates are required to demonstrate
our result. We begin with an estimate on the lower bound of the energy functional∫

RN |∇u|
pdx.
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Lemma 2.8. Let u be the solution of the problem (1.1)–(1.2) corresponding to
f ∈ R(r)w and supph ⊂ Brh , ‖f0‖1 ≤ ‖h‖1. We have

‖∇u‖p ≥ C2(N, p)r
− N−p
p(p−1)

h (‖h‖1 − ‖f0‖1)
1
p−1 , (2.16)

where C2(N, p) is a constant depending only on N and p.

Proof. From (2.4), it suffices to prove that there exists v ∈W such that∫
RN

(
p(f − h)v − |∇v|p

)
dx ≥ C(N, p)r

−N−pp−1
h (‖h‖1 − ‖f0‖1)

p
p−1 ,

for a constant C(N, p) depending only on N and p. We verify that the function
v(x) ≡ −kmin{( rh+a−|x|

a )+, 1} ∈ W fulfills the conditions for some specially se-
lected positive constants k and a. Indeed, noticing the signs of f , h and v, we
have∫

RN

(
p(f − h)v − |∇v|p

)
dx ≥ kp(‖h‖1 − ‖f0‖1)− ωN

(k
a

)p(rh + a)N

= kp(‖h‖1 − ‖f0‖1)− ωNkp
NNrN−ph

pp(N − p)N−p

=
(p− 1)pp

′
(N − p)

N−p
p−1

ω
1
p−1
N N

N
p−1

r
−N−pp−1
h (‖h‖1 − ‖f0‖1)

p
p−1 ,

for a = p
N−prh and kp−1 = pp(N−p)N−p(‖h‖1−‖f0‖1)

ωNNNr
N−p
h

. �

Next we deduce the local boundedness of solutions by the Moser iteration tech-
nique.

Lemma 2.9. Let u be the solution of the problem (1.1)–(1.2) corresponding to
nonnegative function f ∈ Lp′∗(Br), v = (−u)+ and supph ⊂ Brh . There holds

‖v‖∞;BR/2(x0) ≤ C3(N, p)
( 1
RN

∫
BR(x0)

|v|p∗dx
)1/p∗

, (2.17)

for any x0 ∈ RN and R > 0 provided BR(x0) ∩ Brh = ∅, where C3(N, p) is a
constant depending only on N and p.

Proof. For 0 < ρ < ρ′ ≤ R, let η(x) be a cut-off function η ∈ C∞0 (Bρ′(x0)),
satisfying 0 ≤ η ≤ 1, η(x) = 1 on Bρ(x0), η(x) = 0 on RN\Bρ′(x0) and |∇η(x)| ≤

2
ρ′−ρ . We write BR = BR(x0) in this proof for the sake of convenience.

Choose ηpvs as a test function in (2.5) for s ≥ 1 and set q = s+ p− 1. We have∫
RN
|∇u|p−2∇u · ∇(ηpvs)dx =

∫
RN

(f − h)ηpvsdx =
∫
BR

fηpvsdx ≥ 0,

or
−
∫
BR

ηp|∇v|p−2∇v · ∇(vs)dx−
∫
BR

vs|∇v|p−2∇v · ∇(ηp)dx ≥ 0.

Therefore, using Young’s inequality, we deduce∫
BR

ηp|∇(v
q
p )|pdx

=
qp

spp

∫
BR

ηp|∇v|p−2∇v · ∇(vs)dx ≤ qp

spp

∫
BR

|∇v|p−1|∇(ηp)|vsdx
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≤ qp

spp−1

∫
BR

ηp−1|∇η||∇v|p−1vsdx =
q

s

∫
BR

ηp−1|∇(v
q
p )|p−1|∇η|v

q
p dx

≤ p− 1
p

∫
BR

ηp|∇(v
q
p )|pdx+

qp

psp

∫
BR

|∇η|pvqdx.

Hence we obtain∫
BR

ηp|∇(v
q
p )|pdx ≤ qp

sp

∫
BR

|∇η|pvqdx ≤ pp
∫
BR

|∇η|pvqdx, ∀q ≥ p.

Combining this with Sobolev’s inequality (2.3), we have(∫
BR

η
Np
N−p v

Nq
N−p dx

)N−p
N ≤ Cp0

∫
BR

|∇(ηv
q
p )|pdx ≤ (4pC0)p

∫
BR

|∇η|pvqdx.

It follows that( 1
RN

∫
Bρ

v
Nq
N−p dx

)N−p
N ≤ (8pC0)p

( 1
RN−p(ρ′ − ρ)p

∫
Bρ′

vqdx
)
.

Denote ρk = R
2 (1 + 1

2k
), k = 0, 1, . . . and choose q = p∗( N

N−p )k, ρ = ρk+1, ρ′ = ρk.
Since N

N−p > 1, invoking iterations we see that (2.17) is valid. �

There are difficulties in carrying out an estimate independent of r on the corre-
sponding solution of (1.1)–(1.2) due to the fact that f varies in R(r)w. Hence we
introduce the following comparison principle.

Lemma 2.10. Let uf and u0 be the solutions of the problem (1.1)–(1.2) corre-
sponding to f ∈ R(r)w and f = 0 respectively. There holds

uf (x) ≥ u0(x), a.e. in RN .

Proof. From (2.5), we see that∫
RN

(|∇uf |p−2∇uf − |∇u0|p−2∇u0) · ∇ϕdx =
∫

RN
fϕdx, ∀ϕ ∈W.

Choosing ϕ = (u0 − uf )+ ∈W , we obtain∫
A

(|∇uf |p−2∇uf − |∇u0|p−2∇u0) · (∇uf −∇u0)dx = −
∫
A

fϕdx ≤ 0,

where A = {x ∈ RN ;uf (x) ≤ u0(x)}. Thus ∇ϕ ≡ 0 and ϕ ≡ 0 from Sobolev’s
inequality. �

Now we could give a locally lower bound of the solution independent of f and r.

Lemma 2.11. Let u be the solution of the problem (1.1)–(1.2) corresponding to
f ∈ R(r)w. For any ε > 0, there exists rε > 0 depending only on N , p, h and ε,
such that

u(x) ≥ −ε, ∀x ∈ RN\Brε .

Proof. Let u0 be as defined in Lemma 2.10, which is independent of f and r. Using
the similar method in the proof of Lemma 2.10, we demonstrate u0 ≤ 0 in RN .
Utilizing Lemma 2.9, we find

‖u0‖∞;B1/2(x0) ≤ C3(N, p)‖u0‖p∗;B1(x0),

provided B1(x0) ∩ supph = ∅. Let r ≥ rh + 1 and |x0| ≥ r, where rh > 0

satisfies supph ⊂ Brh . From (2.7), we see that ‖u0‖p∗;RN ≤ Cp
′

0 ‖h‖
1
p−1
p′∗

. It follows
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‖u0‖∞;B1/2(x0) ≤ ε provided |x0| is large enough. By applying Lemma 2.11, we
complete the proof. �

3. The case λ > 0

First we are concerned with the existence of minimizers for the energy functional
in bounded domains, then we will show that a solution valid in a sufficiently large
bounded domain is in fact valid in the whole space.

Lemma 3.1. Let λ ≥ 0, r > 0 and ωNrN ≥ | supp f0|.
(i) The functional Ψλ attains its minimum relative to R(r)w.

(ii) If fr,λ is a minimizer for Ψλ relative to R(r)w, fr,λ is a solution of the
variational problem

min
f∈R(r)w

∫
RN

f(p′ufr,λ + λg)dx,

where ufr,λ is the solution of (1.1)–(1.2) corresponding to fr,λ.

The above lemma is a simple consequence of Lemma 2.3 and Lemma 2.6.

Lemma 3.2. Let λ > λ0 ≡ p′

σ ‖f0‖
1
p−1
∞ . If fr,λ is a minimizer of Ψλ relative to

R(r)w and ψr,λ = p′ufr,λ + λg, we have

|Lα(ψr,λ) ∩ supp fr,λ| = 0, ∀α ∈ R.

Proof. We argue by contradiction. Suppose there exists α̂ ∈ R such that |Sα̂| > 0,
Sα̂ = Lα̂(ψr,λ) ∩ supp fr,λ ⊂ Br. We have ψr,λ = p′ufr,λ + λg = α̂, a.e. in Sα̂.
Therefore,

‖f‖∞ ≥ f − h = −∆pufr,λ = ∆p

( λ
p′
g
)
≥
( λ
p′
)p−1

σp−1 > ‖f0‖∞, a.e. in Sα̂,

in the sense of distribution, which contradicts to (2.2). This completes the proof.
�

Lemma 3.3. Let λ0 be as defined in the lemma above and λ > λ0, ωNrN ≥
| supp f0|. The set of solutions of the variational problem (2.1) denoted by Sλ(r) is
nonempty. If fr,λ ∈ Sλ(r), we have

fr,λ = ϕr,λ ◦ (p′ufr,λ + λg), (3.1)

almost everywhere in Br for a decreasing function ϕr,λ.

Proof. From Lemma 3.1, there exists fr,λ ∈ R(r)w, which is a minimizer of Ψλ

relative to R(r)w. By Lemma 3.2, the level sets of ψr,λ = p′ufr,λ + λg on supp fr,λ
have zero measure. Utilizing Lemma 3.1 (ii) and Lemma 2.2, we see that fr,λ ∈ R(r)
solves the variational problem (2.1) and has the representation (3.1). As already
shown in the proof, the minimum for Ψλ relative to R(r)w actually equals the
minimum relative to R(r) under the assumption of this lemma. Thus for any
fr,λ ∈ Sλ(r), fr,λ has a representation as (3.1) for some ϕr,λ. �

We have proved that the variational problem (2.1) has a solution for λ > λ0 and
ωNr

N ≥ | supp f0|. Now we will show that if r is chosen large enough, it ceases to
have any influence on the variational problem (2.1).
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Lemma 3.4. Let λ > λ0. There exists rλ > 0 satisfying ωNrNλ ≥ | supp f0| such
that for any r ≥ rλ and fr,λ ∈ Sλ(r), we have supp fr,λ ⊂ Brλ .

Proof. Let ra > 0, ωNrNa > | supp f0| = | supp fr,λ|. From estimates (2.2) and
(2.14), we see that ‖ufr,λ‖∞;RN is bounded by a constant depending on N , p, ‖f0‖∞,
‖h‖∞, | supp f0|, | supph| and independent of r, λ. Since λ > λ0, g ∈ C2(RN ) and
lim|x|→+∞ g(x) = +∞, we can find a constant rλ ≥ ra such that

p′ufr,λ(x) + λg(x) ≥ p′ufr,λ(z) + λg(z), ∀x ∈ RN\Brλ , z ∈ Bra . (3.2)

Using the representation (3.1) of fr,λ in Br, the decreasing property of ϕr,λ and
the fact supp fr,λ ⊂ Br, we deduce

0 ≤ fr,λ(x) ≤ inf
|z|≤ra

fr,λ(z), ∀x ∈ RN\Brλ .

By the assumption of ra, we get inf |z|≤ra fr,λ(z) = 0 since |Bra\ supp fr,λ| > 0. It
follows supp fr,λ ⊂ Brλ . �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let λ > λ0, r ≥ rλ and fr,λ ∈ Sλ(r). From Lemma 3.4, we
have supp fr,λ ⊂ Brλ . Therefore, fr,λ ∈ R(rλ) ⊂ R(r). It shows that the minimum
of Ψλ relative to R(r) is attained at and only at some points in subset R(rλ) for
r ≥ rλ. Since R =

⋃
r≥rλ R(r), we obtain Sλ = Sλ(rλ) = Sλ(r) for r ≥ rλ. It

follows (1.4) has a solution. To prove the last part of this theorem, for any r ≥ rλ
and fλ ∈ Sλ = Sλ(r), we have by applying Lemma 3.3

fλ = ϕr,λ ◦ (p′ufλ + λg), a.e. in Br,

for a decreasing function ϕr,λ. We can use the similar method in the proof of (3.2)
to choose r ≥ rλ and Cλ ∈ R such that

p′ufλ(x) + λg(x) ≥ Cλ = sup
z∈Brλ

(p′ufλ(z) + λg(z)), ∀x ∈ RN\Br.

Noticing that supp fλ ⊂ Brλ , we have that ϕr,λ(t) = 0 for t ∈ [Cλ, C ′λ], and
C ′λ = supz∈Br (p

′ufλ(z) + λg(z)) ≥ Cλ. Now define

ϕλ(t) =

{
ϕr,λ(t), t ≤ Cλ,
0, t > Cλ.

Clearly ϕλ is a decreasing function and fλ = ϕλ ◦ (p′ufλ + λg) a.e. in RN . �

4. The case λ = 0

To derive the existence result in this case, we need some additional conditions
on f and h. Similarly, we first deduce the following lemma in bounded domains.

Lemma 4.1. Suppose ‖f0‖∞ < ‖h‖−∞;supph, r > 0 and ωNr
N ≥ | supp f0|. Let

fr be a minimizer of Ψ0 relative to R(r)w and ufr be the solution of the problem
(1.1)–(1.2) corresponding to fr. We have

|Lα(ufr ) ∩ supp fr| = 0, ∀α ∈ R.
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Proof. We argue by contradiction. Suppose there exists α̂ ∈ R such that |Aα̂| > 0,
Aα̂ = Lα̂(ufr ) ∩ supp fr ⊂ Br. We have ufr = α̂ a.e. in Aα̂. Hence −∆pufr =
f − h = 0 a.e. in Aα̂, in the sense of distributions. Since Aα̂ ⊂ supp fr, we find
f > 0 in Aα̂, which follows h > 0 a.e. in Aα̂ and Aα̂ ⊂ supph. Thus ‖h‖−∞;supph ≤
‖f‖∞ ≤ ‖f0‖∞ from (2.2), which is a contradiction to our assumption. �

Lemma 4.2. The set of solutions of the variational problem (2.1) with λ = 0
denoted by S0(r) is nonempty under the assumption of the lemma above. Moreover,
if fr ∈ S0(r), we have

fr = ϕr ◦ ufr , a.e. in Br, (4.1)
for a decreasing function ϕr.

Proof. Utilizing Lemma 3.1, Lemma 4.1 and Lemma 2.2, we obtain the required
results by using the similar method in the proof of Lemma 3.3. �

Lemma 4.3. There exists a constant κ = κ(N, p) ∈ (0, 1
2 ] depending only on N

and p, such that if ‖f0‖∞ < ‖h‖−∞;supph, supph ⊂ Brh and

| supp f0| ≤ κ
(‖h‖−∞;supph

‖h‖∞

) p
p−1
( | supph|
|Brh |

) N−p
N(p−1) | supph|, (4.2)

we have supp fr ⊂ Br0 for any r ≥ r0 and fr ∈ S0(r), where r0 ≥ rh is a constant
independent of r and fr.

Proof. From the representation of fr in (4.1) and the decreasing property of ϕr, we
see that

sup
x∈supp fr

ufr (x) = s0 ≤ inf
z∈Br\ supp fr

ufr (z). (4.3)

Using (2.5), we calculate∫
RN
|∇ufr |pdx

=
∫

RN
(fr − h)ufrdx

=
∫

supp fr\ supph

frufrdx−
∫

supph\ supp fr

hufrdx+
∫

supp fr∩supph

(fr − h)ufrdx

≤ s0‖fr‖1;supp fr\ supph − s0‖h‖1;supph\ supp fr + ‖ufr‖∞‖fr − h‖∞| supp fr|.
(4.4)

By assumption, for any κ ≤ 1
2 , utilizing (2.2) and (2.14), we have

‖fr‖1;supp fr\ supph ≤ ‖fr‖1 ≤ ‖f0‖1 ≤ ‖f0‖∞| supp f0|
< ‖h‖−∞;supph(| supph| − | supp fr|) ≤ ‖h‖1;supph\ supp fr ,

(4.5)

‖f0‖1 ≤ ‖f0‖∞| supp f0| <
1
2
‖h‖−∞;supph| supph| ≤ 1

2
‖h‖1, (4.6)

‖ufr‖∞‖fr − h‖∞| supp fr|

≤ C1‖fr − h‖
Np

Np−N+p
∞ ‖fr − h‖

p2

(p−1)(Np−N+p)

p′∗
| supp fr|

≤ C12
p2

(p−1)(Np−N+p) ‖h‖
Np

Np−N+p
∞ ‖h‖

p2

(p−1)(Np−N+p)

p′∗
| supp f0|

≤ C12
p2

(p−1)(Np−N+p) ‖h‖
p
p−1
∞ | supph|

p
N(p−1) | supp f0|,

(4.7)
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where C1 = C1(N, p) is the constant in (2.14). From the assumption and the
estimates (2.16), (4.6), we deduce∫

RN
|∇ufr |pdx ≥ C

p
2r
−N−pp−1
h (‖h‖1 − ‖f0‖1)

p
p−1 ≥ Cp2r

−N−pp−1
h

(1
2
‖h‖1

) p
p−1

≥ 2−p
′
Cp2r

−N−pp−1
h (‖h‖−∞;supph| supph|)

p
p−1 ,

(4.8)

where C2 = C2(N, p) is the constant in (2.16). Let

κ = min{1
2
,

Cp2ω
N−p
N(p−1)

N

2 · 2p′ · 2
p2

(p−1)(Np−N+p)C1

}.

Combining (4.2), (4.4)–(4.5), (4.7)–(4.8), we obtain

s0 ≤ −
Cp2‖h‖

p′

1 r
−N−pp−1
h

2 · 2p′(‖h‖1;supph\ supp fr − ‖fr‖1;supp fr\ supph)

≤ − Cp2
2 · 2p′

‖h‖
1
p−1
1 r

−N−pp−1
h ≡ −δ,

where δ > 0 is a constant independent of r and fr.
For ε = 1

2δ, applying Lemma 2.14, we find that there exists r0 ≥ rh independent
of r and fr such that

ufr (x) ≥ −1
2
δ > −δ ≥ s0 = sup

x∈supp fr

ufr (x), ∀x ∈ RN\Br0 .

It follows supp fr ⊂ Br0 . �

Proof of Theorem 1.2. The first part of this theorem can be proved by using the
similar method in the proof of Theorem 1.1. It follows S0 = S0(r0) = S0(r) for
r ≥ r0. To prove the last part of this theorem, for any f̂ ∈ S0 = S0(r0), we have
from (4.1)

f̂ = ϕr0 ◦ uf̂ , a.e. in Br0 ,

for a decreasing function ϕr0 . Combining this with (4.3), we obtain ϕr0(t) ≥ 0 for
t ≤ s0 and ϕr0(t) = 0 for t ∈ [s0, s′0], s′0 = supx∈Br0 uf̂ (x). Now define

ϕ̂(t) =

{
ϕr0(t), t ≤ s0,
0, t > s0.

Clearly, ϕ̂ is a decreasing function and f̂ = ϕ̂ ◦ uf̂ a.e. in RN . �
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