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NECESSARY AND SUFFICIENT CONDITIONS FOR
OSCILLATION OF NEUTRAL DELAY DIFFERENTIAL

EQUATIONS

SONGBAI GUO, WANBIAO MA, B. G. SAMPATH ARUNA PRADEEP

Abstract. In this article, we concerned with oscillation of the neutral delay

differential equation [x(t) − px(t − τ)]′ + qx(t − σ) = 0 with constant coeffi-

cients. By constructing several suitable auxiliary functions, we obtained some
necessary and sufficient conditions for oscillation of all the solutions of the

aforementioned equation for the cases 0 < p < 1 and p > 1.

1. Introduction

Delay differential equations (DDEs) have been applied widely in many fields, such
as oscillation theory [1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 19, 21, 28, 32], stability theory
[23, 26, 30, 34], periodic solutions [24, 25, 27, 29], population dynamics [10, 18],
dynamical behavior of delayed network systems [17, 36] and so on. Theoretical
studies on oscillation of solutions of DDEs have fundamental significance [15, 16].
For this reason, many mathematicians have paid a great deal of attention on DDEs
in the last few decades.

In this article, we consider the neutral delay differential equation

[x(t)− px(t− τ)]′ + qx(t− σ) = 0, t > t0, (1.1)

where t0 is a positive number and p, q, τ , σ are positive constants. Generally, a
solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually
negative. It can be seen in the literature that the oscillation theory regarding
solutions of (1.1) has been extensively developed in the recent years.

In the research article [33] was derived that if p ∈ (0, 1) and qσe > 1−p, then all
the solutions of (1.1) are oscillatory. The result improves the corresponding result
in [20]. Afterward, for p ∈ (0, 1), many authors have involved to study this problem
and have obtained various kinds of better results, see [11, 22, 31, 35, 37]. However,
the negative side of all the conclusions reported in literature [11, 20, 22, 31, 33, 35,
37] are limited to sufficient conditions when 0 < p < 1. Therefore, the main aim of
this paper is to establish a set of necessary and sufficient conditions for oscillation
of all the solutions of (1.1) for the cases 0 < p < 1 and p > 1. Furthermore, we
study deeply on oscillation of solutions under three cases τ < σ, τ = σ and τ > σ
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when p > 1. Besides that, we give some auxiliary criterions of main results (see
Remarks 2.6, 2.15, 2.19, 2.24), and obtain several simple sufficient conditions for
oscillation of all the solutions of (1.1).

2. Main results

It is well-known from [12] that all the solutions of (1.1) are oscillatory if and
only if the characteristic equation (2.1) of (1.1),

f(λ) ≡ λ− pλe−λτ + qe−λσ = 0 (2.1)

has no real roots. It is not difficult to show that if p = 1, then all the solutions of
(1.1) are oscillatory.

Lemma 2.1. Let p ∈ (0, 1). Then all the solutions of (1.1) are oscillatory if and
only if the equation

g(µ) =
q

µ
eµσ + peµτ − 1 = 0 (2.2)

has no real roots on (0, 1/σ).

Proof. For λ > 0, we have that

f(λ) = λ(1− pe−λτ ) + qe−λσ > qe−λσ > 0.

Thus, any real root of (2.1) must be negative.
Next, we consider the monotonicity of the function g(µ) := f(−µ)

µ . By direct
calculation, it has that

g′(µ) =
eµσϕ(µ)
µ2

, (2.3)

where
ϕ(µ) := q(σµ− 1) + pτµ2e(τ−σ)µ. (2.4)

Here, the function ϕ(µ) satisfies the following properties:
(1) ϕ(µ) > 0 for µ ∈ ( 1

σ ,+∞);
(2) ϕ(µ) is strictly increasing on (0, 1/σ) as the function µ2e(τ−σ)µ is strictly

increasing on (0, 1/σ).
Further,

ϕ(0) = −q < 0 and ϕ(
1
σ

) = pτ
1
σ2
e
τ−σ
σ > 0.

Thus, we derive that the function ϕ(µ) has a unique zero θ on (0, 1/σ). Hence,
g′(µ) < 0 for µ ∈ (0, θ) and g′(µ) > 0 for µ ∈ (θ,+∞), which imply that g(µ) is
decreasing on (0, θ) and increasing on (θ,+∞). Therefore, g(µ) > 0 for µ ∈ (0,+∞)
if and only if (2.2) has no real roots on (0, 1/σ). �

By the above proof, it is not difficult to recognize that g(θ) is the minimum value
of g(µ) on (0, 1/σ).

Lemma 2.2. Let p ∈ (0, 1) and

h(µ) := qeµσ[(τ − σ)µ+ 1]− τµ2. (2.5)

Then all the solutions of (1.1) are oscillatory if and only if

h(θ) = qeθσ[(τ − σ)θ + 1]− τθ2 > 0, (2.6)

where θ is a unique zero of the function ϕ(µ) that is defined by (2.4) on (0, 1/σ).
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Proof. From the proof of Lemma 2.1, we have that g(µ) = 0 has no real roots on
(0, 1/σ) if and only if g(θ) > 0. Since

g(θ) =
q

θ
eθσ + peθτ − 1 =

h(θ)
τθ2

, (2.7)

we obtain Lemma 2.2 immediately. �

Lemma 2.3. Let p ∈ (0, 1). Then all the solutions of (1.1) are oscillatory if and
only if one of the following conditions holds.

(H1) qσe > 1;
(H2) θ̄ > θ, where θ and θ̄ are the unique zeros of ϕ(µ) and h(µ)(see (2.4) and

(2.5)) on (0, 1/σ), respectively.

Proof. Let

y(µ) =
h(µ)
µ2

= qeµσ(
τ − σ
µ

+
1
µ2

)− τ,

then

y′(µ) =
qeµσz(µ)

µ3
, (2.8)

where z(µ) = (τ − σ)σµ2 + (2σ − τ)µ− 2 which satisfies

z(0) = −2 < 0 and z(
1
σ

) = −1 < 0.

If τ > σ, we get obviously that z(µ) < 0 for all µ ∈ (0, 1/σ]; If τ < σ, we also get
z(µ) < 0 for all µ ∈ (0, 1/σ] since z′( 1

σ ) = τ > 0. Thus, z(µ) < 0 for all µ ∈ (0, 1/σ]
and from which and (2.8) mean that y′(µ) < 0 for all µ ∈ (0, 1/σ]. Consequently,
y(µ) is strictly decreasing on (0, 1/σ]. Further,

lim
µ→0+

y(µ) = +∞ and y(
1
σ

) = (qeσ − 1)τ.

Therefore, if qσe > 1, then we have y(θ) > 0. Hence, h(θ) > 0. If qσe < 1, then we
have y( 1

σ ) < 0. Hence, it is easy to find that both functions y(µ) and h(µ) have an
equal and unique zero θ̄ on (0, 1/σ). Consequently, h(θ) > 0 is equivalent to θ̄ > θ.

From Lemma 2.2, all the solutions of (1.1) are oscillatory if and only if one of
(H1) or (H2) holds. �

Corollary 2.4. If p = 0, then all the solutions of (1.1) are oscillatory if and only
if qσe > 1.

Theorem 2.5. Assume that p ∈ (0, 1). Then all the solutions of (1.1) are oscilla-
tory if and only if there exists a real number α ∈ (0, 1/σ) such that

ϕ(α) = pτα2e(τ−σ)α + q(σα− 1) > 0,

h(α) = qeσα[(τ − σ)α+ 1]− τα2 > 0.

Proof. From the proof of Lemma 2.1, the function ϕ(µ) has a unique zero θ on
(0, 1/σ) and is strictly increasing on (0, 1/σ). If qσe > 1, then from Lemma 2.3,
all the solutions of (1.1) are oscillatory. Now, by the proof of Lemma 2.3, we know
that h(µ) > 0, µ ∈ (0, 1/σ). So that, conditions of the theorem hold.

If qσe < 1, then again from the proof of Lemma 2.3, the function y(µ) has a
unique zero θ̄ on (0, 1/σ) and is strictly decreasing on (0, 1/σ). It can be seen that
both functions h(µ) and y(µ) have the same sign in the interval (0, 1/σ). Hence,
we obtain Theorem 2.5 from Lemma 2.3. The proof is complete. �
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Remark 2.6. The function ϕ(µ) has a unique zero θ on (0, 1/σ), and

ϕ(µ) < 0 for µ ∈ (0, θ);

ϕ(µ) > 0 for µ ∈ (θ, 1/σ).

Further, we have that qσe > 1 is equivalent to h(µ) > 0, µ ∈ (0, 1/σ) and qσe < 1
is equivalent to the fact that h(µ) has a unique zero θ̄ on (0, 1/σ). Here,

h(µ) > 0 for µ ∈ (0, θ̄);

h(µ) < 0 for µ ∈ (θ̄, 1/σ).

Thus, (1.1) has a non-oscillatory solution if and only if there exists a real number
β ∈ (0, 1/σ) such that

ϕ(β) = pτβ2e(τ−σ)β + q(σβ − 1) 6 0,

h(β) = qeσβ [(τ − σ)β + 1]− τβ2 6 0.

Corollary 2.7. If there exists a real number α ∈ [θ, 1/σ) such that qeσα > σα2

where θ = −qσe+
√

(qσe)2+4eqpτ

2pτ for p ∈ (0, 1) and τ < σ hold, then all the solutions
of (1.1) are oscillatory.

Proof. Clearly, we have that pτα2 + eq(σα − 1) > 0 for α ∈ [θ, 1/σ) where θ =
−qσe+

√
(qσe)2+4eqpτ

2pτ . Therefore, it follows that

ϕ(α) = pτα2e(τ−σ)α + q(σα− 1) > pτα2e−1 + q(σα− 1) > 0,

h(α) = qeσα[(τ − σ)α+ 1]− τα2 >
τqeσα

σ
− τα2 > 0.

Therefore, the conditions of Theorem 2.5 hold. �

Corollary 2.8. If p ∈ (0, 1) and τ = σ, then all the solutions of (1.1) are oscilla-
tory if and only if there exists a real number α ∈ [θ, 1/σ) such that

h(α) = qeατ − τα2 > 0,

where θ = −qτ+
√
qτ(qτ+4p)

2pτ .

Corollary 2.9. If p ∈ (0, 1), τ > σ and there exists a real number α ∈ [θ, 1/σ)

where θ = −qσ+
√

(qσ)2+4qpτ

2pτ such that qeσα > τα2, then all the solutions of (1.1)
are oscillatory.

Proof. Clearly, we have that pτα2 + q(σα − 1) > 0 for α ∈ [θ, 1/σ) where θ =
−qσ+

√
(qσ)2+4qpτ

2pτ . So that it follows that

ϕ(α) = pτα2e(τ−σ)α + q(σα− 1) > pτα2 + q(σα− 1) > 0,

h(α) = qeσα[(τ − σ)α+ 1]− τα2 > qeσα − τα2 > 0.

Therefore, the conditions of Theorem 2.5 hold. �

So far, we have discussed and have obtained necessary and sufficient conditions
for oscillation of all the solutions of (1.1) for p ∈ (0, 1). Next, we will discuss the
behavior of oscillation of solutions of (1.1) for p > 1 under three subcases, namely,
τ < σ, τ = σ and τ > σ.
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Lemma 2.10. Let p > 1. Then all the solutions of (1.1) are oscillatory if and
only if the equation

g(µ) =
q

µ
eµσ + peµτ − 1 = 0 (2.9)

has no real roots on (− ln p
τ , 0).

Proof. Since

g(µ) =
q

µ
eσµ + peµτ − 1 >

q

µ
(1 + µσ) + p− 1 =

q

µ
+ qσ + p− 1,

we know that g(µ) > 0 for µ ∈ (0,∞). It is not difficult to see that eσµ

µ is strictly
decreasing on (−∞, 0) while eµτ is strictly increasing on (−∞, 0). Note that peµτ −
1 = 0 at µ = − ln p

τ , we find that

g(µ) < 0 for u ∈ (−∞, − ln p
τ

]. (2.10)

Clearly, f(0) = q > 0. Thus, f(λ) has no real roots which is equivalent to g(µ) has
no real roots on (− ln p

τ , 0). �

Proposition 2.11. Suppose that p > 1. Then all the solutions of (1.1) are oscil-
latory if and only if

g(µ) < 0 for µ ∈ (−∞, 0). (2.11)

Lemma 2.12. Let p > 1 and τ < σ. Then all solutions of (1.1) are oscillatory if
and only if

h(θ) = qeθσ[(τ − σ)θ + 1]− τθ2 < 0, (2.12)

where θ is a unique zero of (2.4) on (−∞, 0).

Proof. Firstly, we prove that ϕ(µ) has a unique zero θ on (−∞, 0). In fact,

ϕ′(µ) = pτe(τ−σ)µ[(τ − σ)µ2 + 2µ] + qσ. (2.13)

It is easy to verify that ϕ′(µ) is strictly increasing on (−∞, 0). In addition,

ϕ′(µ)→ −∞(µ→ −∞) and ϕ′(0) = qσ > 0.

Therefore, ϕ′(µ) has a unique zero ω0 on (−∞, 0). Hence, ϕ(µ) is strictly decreasing
on (−∞, ω0) and strictly increasing on (ω0, 0). So that, ϕ(µ) has a unique zero θ
on (−∞, 0) as ϕ(µ)→ +∞(µ→ −∞) and ϕ(0) = −q < 0.

Now, from (2.3), it follows that g(θ) is the maximum value of g(µ) on (−∞, 0).
By (2.7), we know that (2.12) is equivalent to g(µ) < 0 for µ ∈ (−∞, 0). �

Proposition 2.13. Suppose that p > 1 and τ < σ. Then all the solutions of (1.1)
are oscillatory if and only if θ < θ̄, where θ and θ̄ are the unique zeros of ϕ(µ) and
h(µ) on (−∞, 0), respectively.

Proof. Let y(µ) = h(µ)
µ2 = qeσµ( τ−σµ + 1

µ2 )− τ , then

y′(µ) =
qeσµz(µ)
−µ3

, (2.14)

where z(µ) = σ(σ − τ)µ2 − (2σ − τ)µ+ 2. Further,

z′(µ) = 2σ(σ − τ)µ− 2σ + τ.
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It is easy to see that z′(µ) is strictly increasing on (−∞, 0) and z′(0) = τ − 2σ < 0.
So that, z(µ) is strictly decreasing on (−∞, 0) and z(µ) > 0 on (−∞, 0) since
z(0) = 2 > 0. Consequently, y(µ) is strictly increasing on (−∞, 0). In addition,

y(µ)→ −τ (µ→ −∞) and y(µ)→ +∞ (µ→ 0−).

Therefore, y(µ) and h(µ) have an equal and unique zero θ̄ on (−∞, 0). From Lemma
2.12, it is clear that (2.12) holds if and only if θ < θ̄. �

Theorem 2.14. Assume that p > 1 and τ < σ. Then all the solutions of (1.1) are
oscillatory if and only if there exists a real number α ∈ (−∞, 0) such that

ϕ(α) = pτα2e(τ−σ)α + q(σα− 1) < 0,

h(α) = qeσα[(τ − σ)α+ 1]− τα2 < 0.

Proof. From the proof of Lemma 2.12, ϕ′(µ) has a unique zero ω0 on (−∞, 0), and
ϕ(µ) is strictly decreasing on (−∞, ω0) and strictly increasing on (ω0, 0). Further,

ϕ(µ)→ +∞(µ→ −∞) and ϕ(0) = −q < 0.

Hence, ϕ(µ) has a unique zero θ on (−∞, 0).
Now, from the proof of Proposition 2.13, y(µ) has a unique zero θ̄ on (−∞, 0)

and is strictly increasing on (−∞, 0). Note that both functions h(µ) and y(µ) have
the same sign in the interval (−∞, 0). Therefore, from Proposition 2.13, we obtain
Theorem 2.14. The proof is complete. �

Remark 2.15. The equation (1.1) has a non-oscillatory solution if and only if
there exists a real number β ∈ (−∞, 0) such that

ϕ(β) = pτβ2e(τ−σ)β + q(σβ − 1) > 0,

h(β) = qeσβ [(τ − σ)β + 1]− τβ2 > 0.

Furthermore, the function ϕ(µ) has a unique zero θ on (−∞, 0) and

ϕ(µ) > 0 for µ ∈ (−∞, θ);
ϕ(µ) < 0 for µ ∈ (θ, 0).

The function h(µ) has a unique zero θ̄ on (−∞, 0) and

h(µ) < 0 for µ ∈ (−∞, θ̄);
h(µ) > 0 for µ ∈ (θ̄, 0).

Lemma 2.16. Let p > 1 and τ = σ. Then all the solutions of (1.1) are oscillatory
if and only if

qeθτ < τθ2, (2.15)

where θ = −qτ−
√
qτ(qτ+4p)

2pτ .

By using similar procedure which used to prove Lemma 2.2, we can obtain the
result. Therefore, we omit the proof.

Proposition 2.17. Suppose that p > 1 and τ = σ. Then all the solutions of (1.1)

are oscillatory if and only if θ < θ̄, where θ = −qτ−
√
qτ(qτ+4p)

2pτ and θ̄ is a unique
zero of h(µ) = qeτµ − τµ2 on (−∞, 0).
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Proof. From (2.5), we have that h(µ) = qeτµ − τµ2. Let y(µ) = h(µ)
µ2 = qeτµ

µ2 − τ ,
then

y′(µ) =
qeτµ

−µ3
z(µ),

where z(µ) = −τµ+ 2. Since z(0) = 2 > 0, we have that z(µ) > 0 for µ ∈ (−∞, 0).
This means that y′(µ) > 0 for µ ∈ (−∞, 0). Hence, y(µ) is strictly increasing on
(−∞, 0). In addition,

y(µ)→ −τ (µ→ −∞) and y(µ)→ +∞ (µ→ 0−).

In consequence, the function y(µ) has a unique zero θ̄ on (−∞, 0), which implies
together with Lemma 2.16 that qeτθ < τθ2 if and only if θ < θ̄. �

Theorem 2.18. Assume that p > 1 and τ = σ. Then all the solutions of (1.1) are
oscillatory if and only if there exists a real number α ∈ [θ, 0) such that

h(α) = qeτα − τα2 < 0,

where θ = −qτ−
√
qτ(qτ+4p)

2pτ .

Proof. From the proof of Proposition 2.17, the function y(µ) has a unique zero θ̄ on
(−∞, 0) and is strictly increasing on (−∞, 0). Now, it is easy to find that the signs
of the functions h(µ) and y(µ) are the same in the interval (−∞, 0). So that, from
Proposition 2.17, we obtain Theorem 2.18 immediately. The proof is complete. �

Remark 2.19. The function h(µ) has a unique zero θ̄ on (−∞, 0) and

h(µ) < 0 for µ ∈ (−∞, θ̄);
h(µ) > 0 for µ ∈ (θ̄, 0).

Corollary 2.20. If p > 1, τ = σ and qe
q
p τ > p2

τ , then all the solutions of (1.1)
are oscillatory.

Proof. Let α = −q
p , then θ = −qτ−

√
qτ(qτ+4p)

2pτ < α < 0. It follows that

h(α) = qeτα − τα2 =
q(p2e−

q
p τ − qτ)
p2

6 0.

From Theorem 2.18, it can be concluded that all the solutions of (1.1) are oscillatory.
�

Proposition 2.21. Suppose that p > 1, τ > σ and ξ = τ−2σ−
√

(2σ−τ)2+8σ(τ−σ)

2σ(τ−σ) .
Then all the solutions of (1.1) are oscillatory if and only if one of the following
conditions holds.

(H1) q > pτξ2e(τ−σ)ξ

1−σξ ;
(H2) h(θ) = qeσθ[(τ − σ)θ + 1] − τθ2 < 0, where θ is a unique zero of (2.4) on

(ξ, 0).

Proof. Let φ(µ) = ϕ(µ)
1−σµ = pτµ2e(τ−σ)µ

1−σµ − q, then by (2.3) and (2.4), we have that

ϕ(µ) = (1− σµ)φ(µ),

g′(µ) =
eσµ(1− σµ)φ(µ)

µ2
.
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Differentiation yields that

φ′(µ) =
−pτµe(τ−σ)µ

(1− σµ)2
y(µ),

where y(µ) = σ(τ − σ)µ2 + (2σ − τ)µ− 2 and y(µ) satisfies that

lim
µ→−∞

y(µ) = +∞ and y(0) = −2 < 0.

Thus, y(µ) has a unique zero ξ = τ−2σ−
√

(2σ−τ)2+8σ(τ−σ)

2σ(τ−σ) on (−∞, 0). Conse-
quently, φ′(µ) > 0 and φ′(µ) < 0 for µ ∈ (−∞, ξ) and µ ∈ (ξ, 0), respectively. As
a result, the function φ(µ) is strictly increasing on (−∞, ξ) and strictly decreasing
on (ξ, 0). This implies that φ(ξ) is the maximum value of φ(µ) for µ ∈ (−∞, 0). In
addition,

lim
µ→−∞

φ(µ) = φ(0) = −q.

So that, if q > pτξ2e(τ−σ)ξ

1−σξ and φ(ξ) 6 0, then we have that g′(µ) 6 0, µ ∈
(−∞, 0). Now, it easy to find that limµ→−∞ g(µ) = −1. Hence, (2.11) holds.

If q < pτξ2e(τ−σ)ξ

1−σξ , i.e. φ(ξ) > 0, Consequently, φ(µ) has a unique zero ω on
(−∞, ξ) and a unique zero θ on (ξ, 0). In consequence, we have that g′(µ) < 0 on
(−∞, ω), g′(µ) > 0 on (ω, θ) and g′(µ) < 0 on (θ, 0), which means that the function
g(µ) is strictly decreasing, strictly increasing and strictly decreasing on (−∞, ω),
(ω, θ) and (θ, 0), respectively. Further,

lim
µ→−∞

g(µ) = −1 and lim
µ→0−

g(µ) = −∞,

and φ(θ) = 0, i.e. ϕ(θ) = 0. Therefore, (2.11) holds if and only if g(θ) < 0 (the
condition (H2) holds). �

Proposition 2.22. Suppose that p > 1, τ > σ and q < pτξ2e(τ−σ)ξ

1−σξ . Then all the
solutions of (1.1) are oscillatory if and only if θ < θ̄, where θ and θ̄ are the unique
zeros of (2.4) and (2.5) on (ξ, 0), respectively and

ξ =
τ − 2σ −

√
(2σ − τ)2 + 8σ(τ − σ)
2σ(τ − σ)

.

Proof. Let y(µ) = h(µ)
µ2 = qeσµ( τ−σµ + 1

µ2 )− τ , then

y′(µ) =
qeσµ

−µ3
z(µ),

where z(µ) = −σ(τ − σ)µ2 − (2σ − τ)µ+ 2 and z(µ) satisfies that

lim
µ→−∞

z(µ) = −∞ and z(0) = 2 > 0.

Therefore, z(µ) has a unique zero ω = τ−2σ−
√

(2σ−τ)2+8σ(τ−σ)

2σ(τ−σ) (ω < 0) on (−∞, 0).
This means that z(µ) < 0 for µ ∈ (−∞, ω) and z(µ) > 0 for µ ∈ (ω, 0). Conse-
quently, y′(µ) < 0 and y′(µ) > 0 for µ ∈ (−∞, ω) and µ ∈ (ω, 0), respectively.
In consequence, y(µ) is strictly decreasing on (−∞, ω) and strictly increasing on
(ω, 0). In addition,

lim
µ→−∞

y(µ) = −τ and lim
µ→0−

y(µ) = +∞.
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Thus, y(µ) has a unique zero θ̄ on (ω, 0). It is easy to find that ω = ξ. This,
together with Proposition 2.21 imply that h(θ) < 0 if and only if θ < θ̄. �

Theorem 2.23. Assume that p > 1, τ > σ and ξ = τ−2σ−
√

(2σ−τ)2+8σ(τ−σ)

2σ(τ−σ) . Then
all the solutions of (1.1) are oscillatory if and only if there exists a real number
α ∈ (ξ, 0) such that

ϕ(α) = pτα2e(τ−σ)α + q(σα− 1) < 0,

h(α) = qeσα[(τ − σ)α+ 1]− τα2 < 0.

Proof. From the proof of Proposition 2.22, y(µ) has a unique zero θ̄ on (ξ, 0) and
y(µ) is strictly increasing on (ξ, 0). If q > pτξ2e(τ−σ)ξ

1−σξ , then by Proposition 2.21,
all the solutions of (1.1) are oscillatory. Now, again from the proof of Proposition
2.21, it follows that ϕ(µ) < 0, µ ∈ (0, ξ). As a result, the conditions of Theorem
2.23 hold.

If q < pτξ2e(τ−σ)ξ

1−σξ , then from the proof of Proposition 2.21, the function φ(µ) has
a unique zero θ on (ξ, 0) and is strictly decreasing on (ξ, 0). Moreover, the function
values of ϕ(µ) and φ(µ) have the same sign in the interval (ξ, 0). And also both
functions h(µ) and y(µ) have the same sign in the interval (ξ, 0). Therefore, from
Proposition 2.22, it can be seen that θ < θ̄ if and only if the conditions of Theorem
2.23 hold. The proof is complete. �

Remark 2.24. The function h(µ) has a unique zero θ̄ on (ξ, 0) and

h(µ) < 0 for µ ∈ (ξ, θ̄);

h(µ) > 0 for µ ∈ (θ̄, 0).

Further, we have that q > pτξ2e(τ−σ)ξ

1−σξ is equivalent to ϕ(µ) < 0 for µ ∈ (ξ, 0),

q < pτξ2e(τ−σ)ξ

1−σξ is equivalent to the fact that ϕ(µ) has a unique zero θ on (ξ, 0).
Here,

ϕ(µ) > 0 for µ ∈ (ξ, θ);

ϕ(µ) < 0 for µ ∈ (θ, 0).

Thus, (1.1) has a non-oscillatory solution if and only if there exists a real number
β ∈ (ξ, 0) such that

ϕ(β) = pτβ2e(τ−σ)β + q(σβ − 1) > 0,

h(β) = qeσβ [(τ − σ)β + 1]− τβ2 > 0.

For τ > σ, it easy to verify that −2
τ−σ < ξ = τ−2σ−

√
(2σ−τ)2+8σ(τ−σ)

2σ(τ−σ) < −1
τ−σ .

From the condition (H1) of Proposition 2.21, we obtain the following corollary at
once.

Corollary 2.25. If p > 1, τ > σ and q > 4p
τ−σ , then all the solutions of (1.1) are

oscillatory.

In fact, Corollary 2.25 can be still improved and extended, we have given the
following corollary to Corollary 2.25 with some improvements.

Corollary 2.26. If p > 1, τ > σ and q > p
e(τ−σ) , then all the solutions of (1.1)

are oscillatory.
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Proof. It is easy to see that

ξ =
τ − 2σ −

√
(2σ − τ)2 + 8σ(τ − σ)
2σ(τ − σ)

< α < 0,

where α = −1
τ−σ . In consequence,

ϕ(α) = pτα2e(τ−σ)α + q(σα− 1) =
τ [pe−1 − q(τ − σ)]

(τ − σ)2
6 0,

h(α) = qeσα[(τ − σ)α+ 1]− τα2 =
−τ

(τ − σ)2
< 0.

From Theorem 2.23, all the solutions of (1.1) are oscillatory. �

3. Examples with numerical simulation

In this section, we enumerate some specific examples together with numerical
simulation to verify the results that we obtained and to show the simplicity of
results.

Example 3.1. Consider the neutral delay differential equation

[x(t)− 3x(t− 9)]′ + 10x(t− 9) = 0. (3.1)

Then, it is easy to see that p = 3, q = 10, τ = 9 and σ = 9. Consequently, τ = σ
and q > p2/τ . Corollary 2.20 shows that all the solutions of (3.1) are oscillatory.

Example 3.2. Again, consider the neutral delay differential equation

[x(t)− 8x(t− 15)]′ + 10x(t− 14) = 0. (3.2)

It is not difficult to find the values p = 8, q = 10, τ = 15 and σ = 14. Consequently,
τ > σ and q > p

τ−σ . One can see from Corollary 2.26 that all the solutions of (3.2)
are oscillatory.

0 50 100 150 200 250 300 350 400 450 500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 1. Time evolution of (3.3) with initial value 2

Example 3.3. Consider the neutral delay differential equation

[x(t)− 1
2
x(t− 6)]′ +

1
5
x(t− 5) = 0. (3.3)
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Then, it is easy to see that p = 1/2, q = 1/5, τ = 6 and σ = 5. If we take α = 3/16,
then α ∈ (0, 1/σ). Consequently, τ > σ and

θ =
−qσ +

√
(qσ)2 + 4qpτ
2pτ

=
−1 +

√
3.4

6
<

3
16
,

qeσα − τα2 =
1
5

(5α+ 1)− 6α2 >
1
5

+ α− 6α
3

=
1
80

> 0.

From Corollary 2.9, it is easy to conclude that all the solutions of (3.3) are oscilla-
tory (see Figure 1).
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