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EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS

YAN-HSIOU CHENG

Abstract. In this article, we study eigenvalue problems with the p-Laplacian
operator:

−(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp),

where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is single-
well with transition point a = πp/2, then the second Neumann eigenvalue is

greater than or equal to the first Dirichlet eigenvalue; the equality holds if and
only if q is constant. The same result also holds for p-Laplacian problem with

single-barrier ρ and q ≡ 0. Applying these results, we extend and improve a

result by [24] by using finitely many eigenvalues and by generalizing the string
equation to p-Laplacian problem. Moreover, our results also extend a result

of Huang [14] on the estimate of the first instability interval for Hill equation

to single-well function q.

1. Introduction

Recently there are many studies on the p-Laplacian operator:

− (|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), (1.1)

where p > 1 and πp ≡ 2π/(p sin(π/p)). An application for (1.1), the most cited
nowadays, is that of a highly viscid fluid flow (cf. Ladyzhenskaya [16], and Lions
[19]). This involves partial differential equations, but for symmetric flows, only the
ordinary differential operator (perhaps in radial form) is involved (see, e.g., Binding
and Drábek [1], del Pino, Elgueta and Manasevich [21], del Pino and Manasevich
[22], Rabinowitz [23], and Walter [25]).

In 1979, Elbert [11] showed that the inverse function Sp(x) ≡ w of the integral

x =
∫ w

0

dt

(1− tp)1/p
for 0 ≤ w ≤ 1 ,

satisfies the initial valued problem

−(|u′|p−2u′)′ = (p− 1)|u|p−2u, u(0) = 0, u′(0) = 1.
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The function Sp(x) is called a generalized sine function and the value πp ≡ 2
∫ 1

0
(1−

tp)−1/pdt = 2π/(p sin(π/p)) is the first zero of Sp(x). Continuing Sp(x) symmetri-
cally over x ∈ [πp/2, πp] and antisymmetrically outside [0, πp] by defining

Sp(x) =

{
Sp(πp − x), if πp

2 ≤ x ≤ πp ,
−Sp(x− πp), if πp ≤ x ≤ 2πp ,

and Sp(x) = Sp(x − 2nπp) for n = ±1,±2, . . . , he obtained a sine-like function
defined on R. Furthermore, he found the Pythagorean trigonometric identity for
p-version:

|Sp(x)|p + |S′p(x)|p = 1 .

Similarly, it may be defined an analogue of the hyperbolic sine function (see
[18]) Shp(x) ≡ v by the inverse function of the integral x =

∫ v
0

(1 + |t|p)−1/pdt. It
is clearly that Shp(x) = (−1)−1/pSp((−1)1/px) and Sh′p(x) = S′p((−1)1/px) where

(−1)1/p = eπi/p. Furthermore, we have Sh′′p(x) = |Shp(x)|p−2Shp(x)

Sh′p−2
p (x)

and

Sh′pp (x)− |Shp(x)|p = 1.

Denote by σ2k (σ2k−1) the set of periodic (anti-periodic) eigenvalues of (1.1)
which admit the corresponding eigenfunctions with exactly 2k zeros in [0, πp). In
2001, Zhang [26] used a rotation number function to show the existence of the mini-
mal eigenvalue λn = minσn and the maximal eigenvalue λn = maxσn, respectively.
In particular, Binding and Rynne in a series of papers [2, 3, 4] showed that (1.1) has
an infinite sequence of variational and non-variational periodic eigenvalues and the
multiplicity of the periodic eigenvalue can be arbitrary. They also showed that the
Dirichlet eigenvalues {µn}n≥1 and Neumann eigenvalues {νn}n≥0 for (1.1) acting
on (0, πp) satisfy

· · · ≤ λ2n−2 < λ2n−1 ≤ µ2n−1,

ν2n−1 ≤ λ2n−1 < λ2n ≤ µ2n, ν2n ≤ λ2n < λ2n+1 ≤ . . . .

Note that, for q ≡ 0 and ρ ≡ 1, we find ν0 = 0 and µn = νn = np for n ≥ 1.
Recently, the eigenvalue gap/ratio are concerned. We say a function f is single-

well with transition point a if f is decreasing on (0, a) and increasing on (a, πp); f
is single-barrier if −f is single-well. In 2010, Bognár and Dosly [6] used the Prüfer
transformation derived by generalized sine function to show that the Dirichlet eigen-
values for (1.1) with ρ ≡ 1 and nonnegative single-well q(x) satisfy µn/µm ≤ np/mp.
Furthermore, Chen, Law, Lian and Wang [8] also used the generalized Prüfer trans-
formation to show that µn/µ1 ≤ np for (1.1) with ρ ≡ 1 and nonnegative continuous
q(x). On the other hand, the authors in [9] studied the first two Dirichlet eigenval-
ues for (1.1) and showed that (i) µ2 − µ1 ≥ 2p − 1 if ρ ≡ 1 and q(x) is single-well
with transition point at πp/2; (ii) µ2/µ1 ≥ 2p if q(x) ≡ 0 and ρ(x) is single-barrier
with transition point at πp/2.

In this article, we study the gap between the Dirichlet eigenvalues and Neumann
eigenvalues. In [24, Theorem 2.5], Shen considered the spectra σD = {µ1, µ2, . . . },
σDN = {τ1, τ2, . . . }, σND = {γ1, γ2, . . . }, and σN = {ν0, ν1, ν2, . . . } for the follow-
ing string equations

y′′(x) + µρ(x)y(x) = 0, y(0) = y(π) = 0,

u′′(x) + τρ(x)u(x) = 0, u(0) = u′(π) = 0,
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z′′(x) + γρ(x)z(x) = 0, z′(0) = z(π) = 0,

v′′(x) + νρ(x)v(x) = 0, v′(0) = v′(π) = 0,

respectively, where ρ is a positive piecewisely continuous function defined on [0, π].
He showed that if σDN = σND and σN = σD∪{0}, then ρ(x) is a constant function
at its points of continuity.

Consider (1.1) and assume q and ρ satisfy (i) ρ ≡ 1 and q is single-well with
transition point a = πp/2, or (ii) q ≡ 0 and ρ is single-barrier with transition point
a = πp/2. In this paper, we show that µ1 = ν1 if and only if (i) q is constant, or
(ii) ρ is constant, respectively. Our results extend and improve the result of Shen
[24, Theorem 2.5] by using finitely many eigenvalues and by generalizing the string
equation to p-Laplacian eigenvalue problem.

Theorem 1.1. Consider (1.1) with q(x) ∈ L1(0, πp) and ρ ≡ 1. If q(x) is single-
well on (0, πp) with transition point a = πp/2, then ν1 ≥ µ1. Equality holds if and
only if q is constant. If a 6= πp/2, then there exist some functions q giving ν1 < µ1.

Theorem 1.2. Consider (1.1) with a positive piecewisely continuous function ρ
and q ≡ 0. If ρ(x) is single-barrier on (0, πp) with transition point a = πp/2, then
ν1 ≥ µ1. Equality holds if and only if ρ is constant. If a 6= πp/2, then there exist
some functions ρ giving ν1 < µ1.

The proof of Theorem 1.1 follows the method developed by Horváth [13]. We first
perturb the extremal function q and study the identity for d

dt (ν1(t)− µ1(t)) where
t is a parameter. We will show that the optimal function q is a step function with
a jump at πp/2 and then compel it to be constant. Furthermore, by the principle
of duality, the same method also works for (1.1) with q ≡ 0 and single-barrier ρ.

We shall remark that Theorems 1.1 and 1.2 can be used to solve inverse problems
of the instability interval for p = 2:

− y′′ = (λρ(x)− q(x))y . (1.2)

Denote by {λn}n≥0 and {λ′n}n≥1 the eigenvalues of (1.2) with q(x) = q(x +
π), ρ(x) = ρ(x + π) under the periodic (y(0) = y(π), y′(0) = y′(π)), and anti-
periodic (y(0) = −y(π), y′(0) = −y′(π)) boundary conditions, respectively. It is
known [10] (see also [7, 20]) that ν0 ≤ λ0 and

· · · ≤ λ2n−2 < λ′2n−1 ≤ ν2n−1,

µ2n−1 ≤ λ′2n < λ2n−1 ≤ ν2n,
µ2n ≤ λ2n < λ′2n+1 ≤ . . .

(1.3)

The intervals (λ′2n−1, λ
′
2n) and (λ2n−1, λ2n) are called the (2n − 1)-th and 2n-th

instability intervals. The interval (−∞, λ0) is called the zero-th instability interval.
In 1946, Borg [7] studied an inverse problem for Hill’s equation. He showed that

the potential q(x) is constant if and only if all instability intervals, except the zero-
th, are absent. Later, Hochstadt [12] generalized Borg’s result and showed that if q
is C1, then q has period 1/n if and only if all those finite instability intervals whose
index is not a multiple of n vanish. In 1997, Huang [14] proved that if q is symmetric
single-well (or symmetric single-barrier), then q is constant if and only if the first
instability interval is absent, i.e. λ′1 = λ′2. Thus, for all instability intervals, the
first instability gives the most information about the potential q. Using Theorems
1.1 and 1.2, and (1.3), we may eliminate the assumption on the symmetric of q and
obtain the following results immediately.
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Corollary 1.3. Consider (1.2) with π-periodic functions ρ and q. Then the first
instability interval is absent if and only if one of the following conditions holds:

(i) ρ ≡ 1 and q is single-well with transition point a = π/2.
(ii) q ≡ 0 and ρ is single-barrier with transition point a = π/2.

The paper is organized as follows. In section 2, we use a modified Prüfer substi-
tution and comparison theorem to derive properties of eigenfunctions. In section
3, we study two generalized trigonometric equations. The Dirichlet and Neumann
eigenvalues are corresponding to the roots of two generalized trigonometric equa-
tions, respectively. Finally, in section 4, we give proofs of our main theorems 1.1
and 1.2.

2. Preliminaries

At the beginning of this section, we give two formulas of generalized trigonomet-
ric functions. The proof is similar to the classical trigonometric functions, so we
omit it here.

Lemma 2.1. Define the generalized tangent function by Tp(x) ≡ Sp(x)/S′p(x)
for x 6= (k + 1/2)πp and the generalized reciprocal tangent function by RTp(x) ≡
S′p(x)/Sp(x) for x 6= kπp. Then we have

(i) T ′p(x) = 1 + |Tp(x)|p.
(ii) RT ′p(x) = −(RTp(x))2(1 + |Tp(x)|p).

Denote by (µi, φi)i≥1 the normalized Dirichlet eigenpair and (νi, ψi)i≥0 the nor-
malized Neumann eigenpair of (1.1) with φi(x) > 0, ψi(x) > 0 for x near 0+. The
normalized condition means

∫ πp

0
ρ(x)|φi(x)|pdx =

∫ πp

0
ρ(x)|ψi(x)|pdx = 1 for all i.

Definition 2.2. def1 Let f and g be continuous functions and g(x) 6= 0. Define
h(x) ≡ f(x)/g(x). We say α0 is a crossing point of f and g if h(α0) = 1 and h
satisfies one of the following conditions

(i) h(α+
0 ) > 1 and h(α−0 ) < 1.

(ii) h(α+
0 ) < 1 and h(α−0 ) > 1.

Lemma 2.3. There are exactly two crossing points of |φ1(x)| and |ψ1(x)| in (0, πp).

Proof. First, we introduce a generalized Prüfer substitution derived by Sp and S′p:

φ1(x) = r(x)Sp(θD(x)) , φ′1(x) = r(x)S′p(θD(x)) ,

ψ1(x) = R(x)Sp(θN (x)) , ψ′1(x) = R(x)S′p(θN (x)) ,

where θD(0) = 0 and θN (0) = πp/2. Here, θD(x) and θN (x) are called the Prüfer
angles of φ1(x) and ψ1(x), respectively. By direct calculation, we find that

θ′D(x) = |S′p(θD(x))|p + (µ1ρ(x)− q(x))|Sp(θD(x))|p, (2.1)

θ′N (x) = |S′p(θN (x))|p + (ν1ρ(x)− q(x))|Sp(θN (x))|p. (2.2)

Let x0 be the unique zero of ψ1(x) in (0, πp). Since φ1(x) > 0 on (0, x0),
0 = φ1(0) < ψ1(0) and φ1(x0) > ψ1(x0) = 0, we find the number of the crossing
points of φ1(x) and ψ1(x) in (0, x0) must be odd. Assume 0 < x1 < x2 < x3 < x0

are crossing points of φ1(x) and ψ1(x). Define v(x) ≡ ψ1(x)
φ1(x)

. Then v(xi) = 1
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for i = 1, 2, 3. By Rolle’s Theorem, there are zi ∈ (xi, xi+1), i = 1, 2, such that
v′(zi) = 0. Note that

v′(x) =
ψ1(x)φ1(x)
ψ2

1(x)
[
φ′1(x)
φ1(x)

− ψ′1(x)
ψ1(x)

] =
φ1(x)
ψ1(x)

[RTp(θD(x))−RTp(θN (x))].

Hence, we find θD(zi) = θN (zi) for i = 1, 2. By applying Comparison theorem [5]
on (2.1) and (2.2), we obtain µ1 = ν1. This implies that θD(x) = θN (x) for all
x ∈ (0, x0). But this is a contradiction to θD(0) = 0 and θN (0) = πp/2. Hence
there is exactly one crossing point of φ1(x) and ψ1(x) in (0, x0).

Similarly, there is also exactly one crossing point of |φ1(x)| and |ψ1(x)| in (x0, πp).
The proof is complete. �

According to Lemma 2.1, we denote the points 0 < x− < x0 < x+ < πp such
that ψ1(x0) = 0 and

|ψ1(x)| − |φ1(x)|{

{
≥ 0 on (0, x−) ∪ (x+, πp),
≤ 0 on (x−, x+).

(2.3)

The following lemma is a p-version formula while the similar formulas were de-
rived in [17] and [15] for the Schrödinger equation and string equation, respectively.
The argument is similar so we omit here.

Lemma 2.4. Consider (1.1) coupled with Dirichlet or Neumann boundary con-
ditions on (0, πp). Let q(·, t) be a one-parameter family of continuous functions
and ρ(·, t) be a one-parameter family of continuous functions such that ∂q

∂t (x, t) and
∂ρ
∂t (x, t) exist. Then

d

dt
λ(t) = −λ(t)

∫ πp

0

∂ρ

∂t
(x, t)|y(x, t)|pdx+

∫ πp

0

∂q

∂t
(x, t)|y(x, t)|pdx . (2.4)

The following lemma will be used in the proofs of Theorems 1.1 and 1.2. This
lemma makes those proofs simpler.

Lemma 2.5. Consider (1.1). If q(x) is increasing and ρ(x) satisfies ρ(x) ≥ ρ(πp−
x) for x ∈ (0, πp/2), then x0 ≤ πp/2.

Proof. Denote Q1(x) ≡ (p−1)(ν1ρ(x)−q(x)), Q2(x) ≡ Q1(πp−x), z1(x) ≡ ψ1(x),
and z2(x) ≡ −ψ1(πp − x). Then Q2(x) ≤ Q1(x) on (0,min{x0, πp − x0}] and we
have the following two problems

(|z′1|p−2z′1)′ +Q1(x)|z1|p−2z1 = 0 on [0, x0] ,

z′1(0) = 0, z1(x0) = 0 ,

and

(|z′2|p−2z2)′ +Q2(x)|z2|p−2z2 = 0 on [0, πp − x0] ,

z′2(0) = 0, z2(πp − x0) = 0 .

Let θ1(x) and θ2(x) be the Prüfer angles of z1(x) and z2(x) respectively. Then
θ1(x) and θ2(x) satisfy

θ′1(x) = |S′p(θ1(x))|p +Q1(x)|Sp(θ1(x))|p on [0, x0] ,

θ′2(x) = |S′p(θ2(x))|p +Q2(x)|Sp(θ2(x))|p on [0, πp − x0] ,

θ1(0) = θ2(0) =
πp
2
,
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θ1(x0) = θ2(πp − x0) = πp .

By comparison theorem, we find πp − x0 ≥ x0 and hence x0 ≤ πp/2. �

3. Two generalized triangular equations

In this section, we will study the order of the roots of two generalized triangular
equations which are obtained from the proofs of Theorems 1.1 and 1.2 in section 4.
Define

f(t) = t1/pRTp(t1/p
πp
2

), g(t) = t1/pRTp(t1/p
πp
2

+
πp
2

).

We have the following results.

Lemma 3.1. Let m > 0. Let t1 be the first root of f(t) = −f(t−m) and t2 be the
second root of g(t) = −g(t−m). Then t2 > t1.

Proof. First, note that t1 ∈ (1,min{1 +m, 2p}) and t2 ∈ (1, 3p) for m > 0.
(i) Assume t ≥ 0. Then, by Lemma 2.1, we find

g′(t) =
1
p
t

1−p
p RTp(t1/p

πp
2

+
πp
2

)− t1/p
(
1 + |Tp(t1/p

πp
2

+
πp
2

)|p
)

×RT 2
p (t1/p

πp
2

+
πp
2

) · 1
p
t

1−p
p
πp
2

=
t

1−p
p

2p|Sp(t1/p πp

2 + πp

2 )|2
{

2Sp(t1/p
πp
2

+
πp
2

)S′p(t
1/pπp

2
+
πp
2

)

− t1/pπp|S′p(t1/p
πp
2

+
πp
2

)|2−p
}

≡ t
1−p

p

2p|Sp(t1/p πp

2 + πp

2 )|2
g̃(t).

If S′p(t
1/p πp

2 + πp

2 ) > 0, in this case t1/p ∈ (2 + 4n, 4 + 4n) for n ≥ 0, then

g̃(t) = S′p(t
1/pπp

2
+
πp
2

)[2Sp(t1/p
πp
2

+
πp
2

)− t1/pπp|S′p(t1/p
πp
2

+
πp
2

)|1−p]

≤ S′p(t1/p
πp
2

)[2Sp(t1/p
πp
2

)− t1/pπp]

≡ S′p(t1/p
πp
2

)h(t).

Since h((2 + 4n)p) < 0 for n ≥ 0, and h′(t) = t
1−p

p πp

p (S′p(t
1/p πp

2 + πp

2 )− 1) < 0 for
t1/p ∈ (2 + 4n, 4 + 4n) and n ≥ 1, we have h(t) < 0 for t1/p ∈ (2 + 4n, 4 + 4n) and
n ≥ 0. Hence g′(t) < 0 for t1/p ∈ (2 + 4n, 3 + 4n) ∪ (3 + 4n, 4 + 4n) and n ≥ 0.

Similarly, if S′p(t
1/p πp

2 + πp

2 ) < 0, in this case t1/p ∈ (4n, 4n+ 2) for n ≥ 0, then

g̃(t) = S′p(t
1/pπp

2
+
πp
2

)[2Sp(t1/p
πp
2

+
πp
2

) + t1/pπp|S′p(t1/p
πp
2

+
πp
2

)|1−p]

≤ S′p(t1/p
πp
2

+
πp
2

)[2Sp(t1/p
πp
2

+
πp
2

) + t1/pπp]

≡ S′p(t1/p
πp
2

+
πp
2

)h̃(t) .

Since h̃((4n)p) > 0 for n ≥ 0 and h̃′(t) = t
1−p

p πp

p (S′p(t
1/p πp

2 + πp

2 ) + 1) > 0 for
t1/p ∈ (4n, 4n + 2) and n ≥ 0, we have h̃(t) > 0 for t1/p ∈ (4n, 4n + 2) and n ≥ 0
and hence g′(t) < 0 for t1/p ∈ (4n, 4n+ 1) ∪ (4n+ 1, 4n+ 2) and n ≥ 0.
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(ii) Assume t < 0. Let t̂ = −t and t̃ = t̂1/p
πp

2 + (−1)−1/p πp

2 . Since

g(t) = t1/pRTp(t1/p
πp
2

+
πp
2

) = (−1)1/pt̂1/p
S′p((−1)1/pt̃)
Sp((−1)1/pt̃)

= t̂1/p
Sh′p(t̃)
Shp(t̃)

,

we have

g′(t) = −1
p
t̂

1−p
p
Sh′p(t̃)
Shp(t̃)

+ t̂1/p(−1
p
t̂

1−p
p )

πp
2

(Sh′′p(t̃)
Shp(t̃)

−
Sh′2p (t̃)
Sh2

p(t̃)

)
=
− 1
p t̂

1−p
p

Sh2
p(t̃)

[
Sh′p(t̃)Shp(t̃) +

πp
2
t̂1/p

( |Shp(t̃)|p
Sh′p−2

p (t̃)
− Sh′2p (t̃)

)]
=
− 1
p t̂

1−p
p

Sh2
p(t̃)

[Sh′p(t̃)Shp(t̃)−
πp
2
t̂1/pSh′2−pp (t̃)]

≡
− 1
p t̂

1−p
p

Sh2
p(t̃)

ĝ(t) .

Using similar argument as step (i), we can show ĝ(t) > 0 and hence g′(t) < 0 for
all t < 0.

(iii) Let t = t(m). If g(t) = −g(t−m), then g′(t) dtdm = −g′(t−m)( dtdm − 1) and
hence

0 <
dt

dm
=

g′(t−m)
g′(t) + g′(t−m)

< 1 .

This implies t2(m) is strictly increasing for m > 0. On the other hand, when
m = 2p, we have t2 = 2p and

t2 − t1 > 0 for m ≥ 2p .

Theqrefore, we only need to consider 0 < m < 2p. In this case, t1 ∈ (1,min{1 +
m, 2p}) and t2 ∈ (max{1,m},min{2p, 1 +m}).

(iv) Assume t1 ≥ t2 for some 0 < m < 2p. By similar arguments as steps (i) and
(ii), it can be shown that f(t) is decreasing on (−∞, 2p) and ((2n)p, (2n+ 2)p) for
n ≥ 1, and f(1) = 0. Then

−f(t2 −m) ≤ −f(t1 −m) = f(t1) ≤ f(t2) ≤ f(t2 −m) .

This implies f(t2 −m) = 0 and then t2 −m = 1. But t2 < 1 + m. Hence t1 < t2
for m > 0. �

Lemma 3.2. Let m > 1. Let s1 be the first root of f(s) = −f(sm) and s2 be the
second root of g(s) = −g(sm). Then s2 > s1.

Proof. Note that s1, s2 ∈ ( 1
m ,min{1, 2p

m }). If s1 ≥ s2 for some m > 1, then 1
m ≤

s2 < s2m < 2p and

f(s2) ≥ f(s1) = −f(s1m) ≥ −f(s2m) > −f(s2) .

This implies s2 = 1. Hence s1 ≤ s2 for m > 1. �
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4. Proof of Main Theorems

Proof of Theorem 1.1. For M > 0, denote

AM =
{

0 ≤ q(x) ≤M : q is single-well with transition point
πp
2
}
.

Then AM is closed and E(q) ≡ (ν1 − µ1)(q) is bounded on AM . Hence there exists
an optimal function q0 giving the minimal eigenvalue gap ν1 − µ1.

Recall the definitions of x− and x+ in (2.3). We shall define q(x, t) = (1 −
t)q0(x) + tq1(x) for t ∈ [0, πp] for some appropriated function q1.

First, assume x− ≤ πp/2 ≤ x+. Let

q1(x) =

{
q0(x−) on (0, πp

2 ),
q0(x+) on (πp

2 , πp).

By the optimality of q0 and Lemma 2.4, we have

0 ≤ fracddt(ν1(t)− µ1(t))|t=0

=
∫ πp

0

(q1(x)− q0(x))(|ψ1(x, 0)|p − |φ1(x, 0)|p)dt ,

which is nonpositive. Hence, q0(x) = q1(x) a.e. on [0, πp].
If x− > πp/2, we let

q1(x) = {

{
0 on (0, x−),
M on (x−, πp).

By the normality of φ1 and ψ1, we have∫ x−

0

(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx > 0 >
∫ πp

x−

(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx.

Hence, by the optimality of q0, we have

0 ≤ d

dt
(ν1(t)− µ1(t))|t=0

=
∫ πp

0

(q1(x)− q0(x))(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx

=
∫ x−

0

(−q0(x))(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx

+
∫ πp

x−

(M − q0(x))(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx

≤ −q0(
πp
2

)
∫ x−

0

(|ψ1(x, 0)|p − |φ1(x, 0)|p)dt

+ (M − q0(x+))
∫ πp

x−

(|ψ1(x, 0)|p − |φ1(x, 0)|p)dt ,

which is non-positive. This implies that q0 = 0 on (0, x−) and = M on (x−, πp).
But this makes a contradiction to Lemma 2.5. Hence this case is refuted. The case
x+ ≤ πp/2 is similar.
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After simplification, the optimal function q0 is a 1-step function. Without loss
of generality, let

q0(x) =

{
0 on (0, πp

2 ),
m on (πp

2 , πp).

By equating the corresponding ratio by y′/y at πp/2, ν1 is the second root of the
functional equation λ1/pRTp(

πp

2 λ
1/p + πp

2 ) = −(λ−m)1/pRTp(
πp

2 (λ−m)1/p + πp

2 ),
and, similarly, µ1 is the first root of λ1/pRTp(

πp

2 λ
1/p) = −(λ −m)1/pRTp(

πp

2 (λ −
m)1/p). Using Lemma 3.1, we obtain ν1 − µ1 > 0.

Finally, if the transition point a is not πp/2, we let

q(x, t) =

{
t on [0, a],
0 on [a, πp].

Since φ1(x, 0) = (p/πp)1/pSp(x), ψ1(x, 0) = (p/πp)1/pSp(x+ πp/2), and∫ πp/2

0

(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx = 0,

we have
d

dt
(ν1(t)− µ1(t))|t=0 =

∫ a

0

(|ψ1(x, 0)|p − |φ1(x, 0)|p)dx < 0 ,

when 0 < a − πp

2 << 1. Hence for small t > 0, ν1(t) − µ1(t) < 0 when 0 <
a− πp/2 << 1. �

Proof of Theorem 1.2. For M > 1, denote

AM =
{ 1
M
≤ ρ(x) ≤M : ρ is single-barrier with transition point

πp
2
}
.

Then there exists an optimal function ρ0 giving the minimal eigenvalue ratio ν1/µ1.
Similar to the proof of Theorem 1.1 and by Lemma 2.5, the cases x+ < πp/2

and x− > πp/2 are refuted by using suitable ρ0’s. Hence we have x− ≤ πp/2 ≤ x+

and

ρ0(x) =

{
ρ0(x−) on (0, πp

2 ),
ρ0(x+) on (πp

2 , πp).

That is the optimal function ρ0 is a 1-step function. Without loss of generality, let

ρ0(x) =

{
1 on (0, πp

2 ),
m on (πp

2 , πp),

for some m > 1. Then ν1 is the second root of

RTp(
πp
2
λ1/p +

πp
2

) = −m1/pRTp(
πp
2

(mλ)1/p +
πp
2

),

and µ1 is the first root of

RTp(
πp
2
λ1/p) = −m1/pRTp(

πp
2

(mλ)1/p).

Hence, by Lemma 3.2, ν1/µ1 > 1.
Finally, we let

ρ(x, t) =

{
t on [0, a],
1 on [a, πp].
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Then it can be shown that, if 0 < πp/2−a << 1, the function ρ(x, t) gives ν1/µ1 < 1
for small t > 1. �
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[11] Á. Elbert; A half-linear second order differential equation, Qualitative theory of differential
equations Vol. I, II (1979), 153-180; Colloq. Math. Soc. János Bolyai 30 (1981), North-

Holland Amsterdam-New York.

[12] H. Hochstadt; A generalization of Borg’s inverse theorem for Hill’s equation J. Math. Anal.
Appl. 102 (1984) 599-605.
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