
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 140, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC BOUNDARY
VALUE PROBLEMS

YIWEI YE, CHUN-LEI TANG

Abstract. In this article, we study the existence of infinitely many solutions

for the semilinear elliptic equation −∆u+a(x)u = f(x, u) in a bounded domain
of RN (N ≥ 3) with the Dirichlet boundary conditions, where the primitive of

the nonlinearity f is either superquadratic at infinity or subquadratic at zero.

1. Introduction and main results

Consider the Dirichlet boundary-value problem

−∆u+ a(x)u = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain of RN (N ≥ 3) with smooth boundary ∂Ω, a ∈ Ls(Ω),
s > N/2. We assume that f ∈ C(Ω× R,R) satisfies:

(F1) There exist a1 > 0 and p ∈ (2, 2∗) such that

|f(x, t)| ≤ a1(1 + |t|p−1), ∀(x, t) ∈ Ω× R,

where 2∗ = 2N/(N − 2).
The existence of infinitely many solutions of problem (1.1) was first proved in

Ambrosetti and Rabinowitz [1] under the superquadratic condition
(AR) There exist µ > 2 and r > 0 such that

0 < µF (x, t) ≤ f(x, t)t, ∀x ∈ Ω, |t| ≥ r,

where F (x, t) :=
∫ t

0
f(x, s)ds be the primitive of f .

Since then, this condition has appeared in most of the studies for superlinear
problems, e.g., elliptic equations, Hamiltonian systems and wave equations, see
[2, 4, 13, 15, 16, 20, 21] and references therein. Indeed, condition (AR) implies that
there exists C > 0 such that F (x, t) ≥ C|t|µ for |t| ≥ 1 and all x ∈ Ω. A more
natural superquadratic condition is that:

(F2) F (x, t)/t2 → +∞ uniformly in x as |t| → ∞.
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Although the condition (AR) is quite natural and important not only to ensure
the Euler-Lagrange functional ϕ of problem (1.1) has a mountain pass geometry,
but also to guarantee every Palais-Smale sequence of ϕ is bounded, it is somewhat
restrictive and eliminates many functionals. For example, the function

F (x, t) = t2 ln(1 + t2), ∀(x, t) ∈ Ω× R,

is superquadratic at infinity, but it does not satisfy condition (AR) for any µ > 2.
For this reason, in recent years, some authors studied the superquadratic problem

(1.1) trying to remove the (AR) condition, we refer the readers to [3, 5, 6, 8, 10, 11,
12, 14, 18, 19, 23, 24]. [3, 6, 8, 23] studied problem (1.1) replacing (AR), among
other conditions, by

lim
|t|→∞

tf(x, t)− 2F (x, t)
|t|µ

≥ c > 0 uniformly for a.e. x ∈ Ω,

where µ > 0. In [18], to get an existence of nontrivial solution result, Schechter
and Zou assumed

either lim
t→−∞

F (x, t)
t2

= +∞ or lim
t→+∞

F (x, t)
t2

= +∞

instead of (AR). While in [3, 5, 6, 8, 10, 12, 14], the authors adapted the mono-
tonicity trick. In particular, under the strictly increasing assumption; i.e.,

(F3’) t 7→ f(x, t)/|t| is strictly increasing on (−∞, 0) and on (0,+∞).
Szulkin and Weth [19] proved the following theorem.

Theorem 1.1 ([19, Theorem 3.2]). Suppose that (F1), (F2), (F3’) are satisfied and
(F4) f(x,−t) = −f(x, t) for all (x, t) ∈ Ω× R.
(F5) f(x, t) = o(t) uniformly in x as t→ 0.

Then problem (1.1), where a(x) ≡ λ, has infinitely many solutions.

Zou [24] considered the global monotonicity condition, i.e.,
(F3”) t 7→ f(x, t)/|t| is increasing on (−∞, 0) and on (0,+∞).

By using the special version of fountain theorem established there (see [24, Theorem
2.1]), he obtained the next theorem.

Theorem 1.2 ([24, Theorem 3.2]). . Suppose that (F1), (F3”), (F4) are satisfied
and

(F2’) lim inf |t|→∞
f(x,t)t
|t|µ ≥ c > 0 uniformly for x ∈ RN , where µ > 2.

Then problem (1.1), where a(x) ≡ 0, has infinitely many solutions.

In the present paper, base on an approach different to that of the results men-
tioned above, i.e., the classical Fountain Theorem of Bartsch, we can prove the
same result of problem (1.1), where a(x) does not necessarily equal to constant,
under more general assumptions, unifying and improving Theorems 1.1 and 1.2.

Theorem 1.3. Assume that (F1), (F2), (F4) hold and
(F3) There exist θ ≥ 1 and C∗ ≥ 0 such that

θF(x, t) ≥ F(x, st)− C∗, ∀(x, t) ∈ Ω× R, s ∈ [0, 1],

where F(x, t) = f(x, t)t− 2F (x, t).
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Then problem (1.1) possesses infinitely many solutions (uk) such that

1
2

∫
Ω

(
|∇uk|2 + a(x)u2

k

)
dx−

∫
Ω

F (x, uk)dx→ +∞ as k →∞.

Remark 1.4. (i) Condition (F3) with C∗ = 0 is originally due to Jeanjean [7] for a
semilinear problem on RN . For p-Laplacian equations setting on a bounded domain,
it was used in [10] to obtain infinitely many solutions and in [5] to compute the
critical groups of the energy functional ϕ at infinity and obtain nontrivial solutions
via Morse theory.

(ii) It turns out that if for fixed x ∈ Ω and some r > 0,

f(x, t)/|t| is increasing on (−∞,−r) and on (r,+∞),

then (F3) holds with θ = 1 and

C∗ = 1 + sup
(x,t)∈Ω×[−r,r]

F(x, t)− inf
(x,t)∈Ω×[−r,r]

F(x, t),

see [11] for a proof. Thus, (F3) is much weaker than the globally condition (F3’)
and (F3”).

(iii) There are functions f(x, t) satisfying (F3) and not satisfying (F3’) and (F3”).
For example, let

f(x, t) =

{
t(2 ln |t|+ 1), |t| ≥ 1,
−|t|t+ 2t, |t| ≤ 1.

(1.2)

Simple computation shows that

F (x, t) =

{
t2 ln |t|+ 2

3 , |t| ≥ 1,
− 1

3 |t|
3 + t2, |t| ≤ 1.

Thus it is easy to check that f satisfies (F3) with θ = 1 and C∗ = 1. But it does
not satisfy (F3’), (F3”), since f(x, t)/t is increasing on (−1, 0) and decreasing on
(0, 1).

Remark 1.5. Theorem 1.3 unifies and generalizes Theorems 1.1 and 1.2. First,
the globally monotonicity conditions (F3’) and (F3”) respectively in Theorems 1.1
and 1.2 are replaced by the more generic assumption (F3). In addition, condition
(F2’) in Theorem 1.2 is stronger than (F2) and the condition (F5) in Theorem 1.1
is completely removed. Therefore, our result applies to more general situations.
For example, the function listed in (1.2) satisfies our Theorem 1.3. But it does not
satisfy Theorems 1.1 and 1.2, and the results in [3, 6, 8, 12, 13, 23].

Remark 1.6. Comparing with Theorems 1.1 and 1.2, our approach is much sim-
pler.
• In [19], the difficulty that without (AR) the Palais-Smale sequences of ϕ may

be unbounded is solved by minimizing ϕ over the set M . Since it is not assumed
that f is differentiable, M need not be a C1-submanifold of E. Hence, to show that
minimizers of ϕ over M are critical points of ϕ is not easy.
• In [24], Zou constructed a variant fountain theorem, and as an application,

studied the boundary value problem (1.1) with symmetry. He dealt with a family
of perturbed functional. Nevertheless, this approach is not very satisfactory, be-
cause working with a family of perturbed functionals makes things unnecessarily
complicated.
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We shall prove Theorem 1.3 by directly applying the usual variational method to
ϕ. The main ingredient in our argument is based on the observation that: although
there may exist unbounded Palais-Smale sequences, we can prove that all Cerami
sequences of ϕ are bounded (see Lemma 2.1 below). Then Theorem 1.3 follows
from the Fountain Theorem of Bartsch.

Furthermore, He and Zou [6, Theorem 1.3] considered the asymptotically linear
case. They obtained the following theorem via the variant fountain theorem due to
Zou [24, Theorem 2.2].

Theorem 1.7 ([6, Theorem 1.3]). Suppose that F (x, t) satisfies the following con-
ditions:

(F6) F (x, t) = 1
2λt

2 + H(x, t), where λ 6∈ σ(−∆ + a) a constant; σ denotes the
spectrum.

(F7’) There exist δi ∈ (1, 2), i = 1, 2, and b1, b2 > 0 such that

b1|t|δ1 ≤ H(x, t), H(x, 0) ≡ 0, |Ht(x, t)| ≤ b2|t|δ2−1 (1.3)

for all (x, t) ∈ Ω× R.
(F8) H(x,−t) = H(x, t) for all (x, t) ∈ Ω× R.
(F9) 0 is an eigenvalue of −∆ + a with the Dirichlet boundary condition.

Then problem (1.1) has infinitely many nontrivial solutions.

In this article, with the aid of the new version of the symmetric mountain pass
lemma developed in Kajikiya [9], we obtain the following theorem, which sharply
improves Theorem 1.7.

Theorem 1.8. Assume that (F1), (F4) are satisfied and

(F7) limt→0
F (x,t)
t2 = +∞ uniformly for x ∈ Ω.

Then problem (1.1) possesses infinitely many nontrivial solutions (uk) such that

1
2

∫
Ω

(
|∇uk|2 + a(x)u2

k

)
dx−

∫
Ω

F (x, uk)dx→ 0− as k →∞.

Remark 1.9. Theorem 1.8 extends Theorem 1.7 in three aspects. First, noting
p > 2 > δ2, (F6) and the third inequality of (1.3) imply that

|f(x, t)| ≤ λ|t|+ |Ht(x, t)|

≤ λ|t|+ b2|t|δ2−1

≤ (λ+ b2)(1 + |t|p−1), ∀(x, t) ∈ Ω× R,

which is just (F1) with a1 = λ + b2. Secondly, it follows from (F6) and the first
inequality of (1.3) that

F (x, t)
t2

≥ λ

2
+

b1
|t|2−δ1

, ∀(x, t) ∈ Ω× R,

which implies that

lim
t→0

F (x, t)
t2

= +∞ uniformly for x ∈ Ω.

And finally, the condition (F9) in Theorem 1.7 is completely dropped. There are
functionals F satisfying Theorem 1.8 and not satisfying the results in [6]. For
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example, let

H(x, t) = −|t|3/2 ln
(1 + t2

4
)
, ∀(x, t) ∈ Ω× R,

F (x, t) =
1
2
λt2 +H(x, t), ∀(x, t) ∈ Ω× R,

where λ ∈ σ(−∆ + a). A straightforward computation shows that F (x, t) satisfies
all the assumptions of Theorem 1.8. But it does not satisfy Theorem 1.7, since
λ ∈ σ(−∆ + a) and H(x, t) ≤ 0 for all x ∈ Ω and |t| ≥

√
3.

The paper is organized as follows. In Section 2 we investigate the superquadratic
case and give the proof of Theorem 1.1. In Section 3 we deal with the subquadratic
case and prove Theorem 1.8.

2. Proof of Theorem 1.1

Let X := H1
0 (Ω) be the Sobolev space equipped with the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

.

Noting s > N/2, one has 2s/(s − 1) < 2∗, and then, using the fact that the
embedding of H1

0 (Ω) ↪→ Lr(Ω) (1 ≤ r < 2∗) is compact, we obtain

|u|r ≤ C‖u‖, ∀u ∈ X, (2.1)

for some C > 0, where r = 1, 2s/(s−1), and | · |r denotes the usual norm of Lr(Ω).
Denote by λ1 ≤ λ2 ≤ λ3 ≤ . . . (counted in their multiplicities) the eigenvalues
of −∆ + a on H1

0 (Ω) and by (en)∞n=1 the corresponding system of eigenfunctions,
which forms an orthonormal basis of H1

0 (Ω). Assume λ1, . . . , λn− < 0, λn−+1 =
· · · = λn∗ = 0 and let X− :=span{e1, . . . , en−}, X0 :=span{en−+1, . . . , en∗} and
X+ := span{en∗+1, . . . }. Then we have the following decomposition

X = X− ⊕X0 ⊕X+,

and there exists δ > 0 such that∫
Ω

(|∇u|2 + a(x)u2)dx ≥ δ‖u‖2, ∀u ∈ X+, (2.2)∫
Ω

(|∇u|2 + a(x)u2)dx ≤ −δ‖u‖2, ∀u ∈ X−. (2.3)

Under assumption (F1), the functional associated to problem (1.1) given by

ϕ(u) =
1
2

∫
Ω

(
|∇u|2 + a(x)u2

)
dx−

∫
Ω

F (x, u)dx

is continuously differentiable on X, and

〈ϕ′(u), v〉 =
∫

Ω

(∇u · ∇v + a(x)uv)dx−
∫

Ω

f(x, u)vdx

for all u, v ∈ X. It is well known that the weak solutions of problem (1.1) correspond
to the critical points of ϕ.

To find critical points of ϕ, we shall show that ϕ satisfies the Cerami condition,
that is, (un) has a convergent subsequence in X whenever {ϕ(un)} is bounded and
(1 + ‖un‖)‖ϕ′(un)‖ → 0 as n→∞.
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Lemma 2.1. Assume that assumptions (F1), (F2), (F3) hold. Then ϕ satisfies the
(C) condition.

Proof. We adapt an argument in [10, Lemma 2.2], see also [11, Lemma 2.5]. Let
(un) be a Cerami sequence of ϕ. We claim that (un) is bounded. Otherwise, up to
a subsequence, we can assume that, for some c1 > 0,

ϕ(un)→ c1, (1 + ‖un‖)‖ϕ′(un)‖ → 0 and ‖un‖ → ∞ (2.4)

as n→∞. Particularly,

lim
n→∞

∫
Ω

(1
2
f(x, un)un − F (x, un)

)
dx = lim

n→∞

(
ϕ(un)− 1

2
〈ϕ′(un), un〉

)
= c1.

(2.5)

Setting wn = un/‖un‖, then ‖wn‖ = 1. Going if necessary to a subsequence, we
may assume that

wn ⇀ w in H1
0 (Ω),

wn → w in Lr(Ω) (1 ≤ r < 2∗),

wn(x)→ w(x) a.e. x ∈ Ω.

(2.6)

If w = 0, we choose a sequence (sn) ⊂ R such that

ϕ(snun) = max
s∈[0,1]

ϕ(sun).

For any m > 0, letting vn =
√

2mwn, one has

vn → 0 in Lr(Ω) (1 ≤ r < 2∗) (2.7)

by (2.6). From (F1), we have

|F (x, t)| ≤
∫ 1

0

|f(x, st)t|ds ≤ a1(|t|+ |t|p), ∀(x, t) ∈ Ω× R, (2.8)

which, together with (2.7), shows that∫
Ω

F (x, vn)dx ≤ a1

∫
Ω

(|vn|+ |vn|p)dx = a1

(
|vn|1 + |vn|pp

)
→ 0 (2.9)

as n→∞. Taking s′ = 2s/(s− 1), since s > N/2, we have

1 ≤ s′ < 2∗ and
1
s

+
2
s′

= 1,

so that, using Hölder’s inequality and (2.7),∫
Ω

a(x)v2
ndx ≤

(∫
Ω

|a(x)|sdx
)1/s(∫

Ω

|vn|s
′
dx
)2/s′

= |a|s|vn|2s′ → 0.
(2.10)

Now, for n large enough,
√

2m‖un‖−1 ∈ (0, 1), we obtain

ϕ(snun) ≥ ϕ(vn) =
1
2
‖vn‖2 +

1
2

∫
Ω

a(x)v2
ndx−

∫
Ω

F (x, vn)dx

for all n. Combining (2.10) and (2.9), we deduce

lim inf
n→∞

ϕ(snun) ≥ m,

which implies that
lim
n→∞

ϕ(snun) = +∞ (2.11)
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by the arbitrariness of m. Noticing ϕ(0) = 0 and ϕ(un) → c1 (n → ∞), we see
that, for n sufficiently large, sn ∈ (0, 1) and∫

Ω

|∇(snun)|2dx+
∫

Ω

a(x)|snun|2dx−
∫

Ω

f(x, snun)snun dx

= 〈ϕ′(snun), snun〉

= sn
d

ds

∣∣∣∣
s=sn

ϕ(sun) = 0.

Therefore, using (2.11) and (F3),∫
Ω

(1
2
f(x, un)un − F (x, un)

)
dx

≥ 1
θ

∫
Ω

(1
2
f(x, snun)snun − F (x, snun)

)
dx− C∗

2θ
|Ω|

=
1
θ

∫
Ω

(1
2
|∇(snun)|2 +

1
2
a(x)|snun|2 − F (x, snun)

)
dx− C∗

2θ
|Ω|

=
1
θ
ϕ(snun)− C∗

2θ
|Ω| → +∞,

a contradiction with (2.5).
If w 6= 0, then the set Ω1 = {x ∈ Ω : w(x) 6= 0} has positive Lebesgue measure.

For x ∈ Ω1, we have |un(x)| → ∞ as n→∞, so that, using (F2),

F (x, un(x))
|un(x)|2

|wn(x)|2 → +∞ as n→∞.

Hence, via Fatou’s lemma (see [22]),∫
w 6=0

F (x, un)
u2
n

w2
ndx→ +∞ as n→∞. (2.12)

On the other hand, (F2) implies that there exists r1 > 0 such that

F (x, t) ≥ 0, ∀x ∈ Ω, |t| ≥ r1.

From (2.8), one has
|F (x, t)| ≤ c2, ∀x ∈ Ω, |t| ≤ r1,

where c2 = a1(r1 + rp1). It follows that F (x, t) ≥ −c2 for all (x, t) ∈ Ω× R. Hence
we have ∫

w=0

F (x, un)
‖un‖2

dx ≥ −
∫
w=0

c2dx

‖un‖2
≥ − c2|Ω|
‖un‖2

, ∀n ∈ N,

which implies that

lim inf
n→∞

∫
w=0

F (x, un)
‖un‖2

dx ≥ 0. (2.13)

Notice that∫
Ω

F (x, un)dx =
1
2
‖un‖2 +

1
2

∫
Ω

a(x)u2
ndx− ϕ(un), ∀n ∈ N.

Dividing both sides by ‖un‖2 and letting n→∞, we obtain via (2.13), (2.12) and
the first limit of (2.4) that

1
2

+
1
2

∫
Ω

a(x)w2dx ≥ lim sup
n→∞

∫
Ω

F (x, un)
‖un‖2

dx
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= lim sup
n→∞

(∫
w=0

+
∫
w 6=0

)F (x, un)
u2
n

w2
ndx = +∞.

This is impossible.
In any case, we deduce a contradiction. Hence (un) is bounded in X. Next we

verify that (un) has a convergent subsequence. Without loss of generality, one can
suppose that

un ⇀ u in X,

un → u in Lr(Ω) (1 ≤ r < 2∗).
(2.14)

By (2.14) and the Hölder inequality, we have∫
Ω

a(x)(un − u)2dx ≤
(∫

Ω

|a(x)|sdx
)1/s(∫

Ω

|un − u|s
′
dx
)2/s′

= |a|s|un − u|2s′ → 0,
(2.15)

where s′ = 2s/(s− 1). It follows from (f1), (2.14) and Hölder’s inequality that∣∣ ∫
Ω

(
f(x, un)− f(x, u)

)
(un − u)dx|

≤
∫

Ω

(|f(x, un)|+ |f(x, u)|) |un − u|dx

≤ a1

∫
Ω

(2 + |un|p−1 + |u|p−1)|un − u|dx

≤ 2a1|un − u|1 + a1

(∫
Ω

|un|pdx
)(p−1)/p(∫

Ω

|un − u|pdx
)1/p

+ a1

(∫
Ω

|u|pdx
)(p−1)/p(∫

Ω

|un − u|pdx
)1/p

≤ 2a1|un − u|1 + a1|un|p−1
p |un − u|p + a1|u|p−1

p |un − u|p → 0.

(2.16)

Moreover, the boundedness of (un) and the second limit of (2.4) imply that

|〈ϕ′(un), un − u〉| ≤ ‖ϕ′(un)‖(‖un‖+ ‖u‖)→ 0 as n→∞.

Combining this with (2.16) and (2.15), we obtain

‖un − u‖2 = 〈ϕ′(un)− ϕ′(u), un − u〉 −
∫

Ω

a(x)(un − u)2dx

+
∫

Ω

(f(x, un)− f(x, u))(un − u)dx→ 0.

Thus un → u in X and the proof is complete. �

For convenience to quote, we state the Fountain Theorem of Bartsch (see [2,
Theorem 2.5]), which will be used to prove Theorem 1.1.

Let X be a reflexive and separable Banach space, then there are (en)n∈N ⊂ X
and (e∗n)n∈N ⊂ X∗ (the dual space of X) such that

X = span{en : n ∈ N}, X∗ = span{e∗n : n ∈ N}

and

〈en, em〉 =

{
1, n = m,

0, n 6= m.
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Let Xj = span{ej}, then X = ⊕j≥1Xj . Now we define

Yk = ⊕kj=1Xj and Zk = ⊕j≥kXj . (2.17)

Then we have the following Fountain Theorem.

Theorem 2.2 (Fountain Theorem). Assume that ϕ ∈ C1(X,R) satisfies the Ce-
rami condition, ϕ(−u) = ϕ(u). For almost every k ∈ N , there exist ρk > rk > 0
such that

(i) bk := infu∈Zk,‖u‖=rkϕ(u)→ +∞ as k →∞;
(ii) ak := maxu∈Yk,‖u‖=ρkϕ(u) ≤ 0.

Then ϕ has a sequence of critical points (uk) such that ϕ(uk)→ +∞.

Remark 2.3. In [2, 21], the Fountain Theorem is established under the Palais-
Smale (PS) condition. Since the Deformation Theorem is still valid under the
Cerami condition, we see that like many critical point theorems, the Fountain
Theorem holds true under the Cerami condition.

Proof of Theorem 1.3. For the Hilbert space X = H1
0 (Ω), define Yk and Zk as in

(2.17). According to Lemma 2.1 and assumption (F4), we know that ϕ satisfies the
Cerami condition and ϕ(−u) = ϕ(u). It remains to verify the conditions (i) and
(ii) of Proposition 2.2.

Verification of (i). For 1 ≤ r < 2∗, taking

βk := sup
u∈Zk,‖u‖=1

|u|r,

one has βk → 0 as k →∞ (see [21, Lemma 3.8]). Set

rk :=
( δ

8a1β
p
k

) 1
p−2 .

Since p > 2, we get rk → +∞ as k → ∞. So choosing k large enough such that
Zk ⊂ X+ and rk > 8a1C/δ, we obtain, for u ∈ Zk with ‖u‖ = rk,

ϕ(u) =
1
2

∫
Ω

(|∇u|2 + a(x)u2)dx−
∫

Ω

F (x, u)dx

≥ δ

2
‖u‖2 − a1

∫
Ω

|u|dx− a1

∫
Ω

|u|pdx

≥ δ

2
‖u‖2 − a1C‖u‖ − a1β

p
k‖u‖

p

≥ δr2
k

4
by (2.8) and (2.1), which implies that

inf
u∈Zk,‖u‖=rk

ϕ(u) ≥ δr2
k

4
→ +∞ as k →∞.

Verification of (ii). Since Yk is finite-dimensional, there exists a constant Ck > 0
such that

Ck|u|2 ≥ ‖u‖, ∀u ∈ Yk. (2.18)

By (F2), there exists r2 > 0 such that

F (x, t) ≥ C2
k(1 + |a|sC2)t2, ∀x ∈ Ω, |t| ≥ r2.



10 Y. YE, C.-L. TANG EJDE-2014/140

From (2.8), one has

|F (x, t)| ≤ a1(r2 + rp2), ∀x ∈ Ω, |t| ≤ r2.

Thus we obtain

F (x, t) ≥ C2
k(1 + |a|sC2)t2 −Mk, ∀(x, t) ∈ Ω× R,

where Mk = a1(r2 + rp2) +C2
k(1 + |a|sC2)r2

2. Combining this with (2.18), (2.1) and
the Hölder inequality, we obtain

ϕ(u) =
1
2

∫
Ω

(|∇u|2 + a(x)u2)dx−
∫

Ω

F (x, u)dx

≤ 1
2
‖u‖2 +

1
2
|a|s|u|2s′ − C2

k(1 + |a|sC2)|u|22 +Mk|Ω|

≤ 1
2

(1 + |a|sC2)‖u‖2 − (1 + |a|sC2)‖u‖2 +Mk|Ω|

≤ −1
2

(1 + |a|sC2)‖u‖2 +Mk|Ω|

for all u ∈ Yk, where s′ = 2s/(s− 1). Hence, choosing ρk > max{rk, ( 4Mk|Ω|
1+|a|sC2 )1/2},

we deduce
max

u∈Yk,‖u‖=ρk
ϕ(u) ≤ −1

4
(1 + |a|sC2)ρ2

k < 0.

Consequently, by Proposition 2.2, ϕ possesses a sequence of critical points (uk) such
that ϕ(uk)→ +∞ as k →∞. �

3. Proof of Theorem 1.8

To prove Theorem 1.8, we need the variant symmetric mountain pass lemma
established in [9]. Before stating it, we first recall the definition of genus.

Let X be a Banach space and A a subset of X. A is said to be symmetric if
u ∈ A implies −u ∈ A. Denote by Γ the family of closed symmetric subsets A of
X which does not contain the origin, i.e.,

Γ = {A ⊂ X\{0} : A is closed and symmetric with respect to zero}.
For A ∈ Γ, we define

γ(A) =


0 if A = ∅,
inf{k ∈ N : ∃ an odd ϕ ∈ C(A,Rk\{0})},
+∞ if no such odd map,

and Γk = {A ∈ Γ : γ(A) ≥ k}.
For convenience of the readers, we summarize the property of genus which will

be used in the proof of Theorem 1.8. We refer the readers to [17, Proposition 7.5]
for the proof of the next proposition.

Theorem 3.1. Let A,B ∈ Γ. Then (i)-(iv) below hold.
(i) If there is an odd continuous mapping from A to B, then γ(A) ≤ γ(B).
(ii) If A ⊂ B, then γ(A) ≤ γ(B).

(iii) If A is compact, then γ(A) < +∞ and γ(Nδ(A)) = γ(A) for δ > 0 small
enough, where Nδ(A) = {x ∈ X : ‖x−A‖ ≤ δ}.

(iv) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam
theorem.
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Now we state the variant symmetric mountain pass lemma.

Theorem 3.2 ([9, Theorem 1.1]). Let X be an infinite dimensional Banach space
and I ∈ C1(X,R) satisfies the following conditions:

(1) I(u) is even, bounded from below, I(0) = 0 and I satisfies the Palais-Smale
condition (PS), i.e., (un) ⊂ X has a convergent subsequence whenever
{I(un)} is bounded and I ′(un)→ 0 as n→∞.

(2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak I(u) < 0.
Then I possesses a sequence of critical points (uk) such that I(uk) ≤ 0, uk 6= 0 and
limk→∞ uk = 0.

Proof of Theorem 1.8. We consider the truncated functional

I(u) =
1
2

∫
Ω

|∇u|2dx+ h(‖u‖)
(1

2

∫
Ω

a(x)u2dx−
∫

Ω

F (x, u)dx
)

for all u ∈ X, where h ∈ C1([0,+∞),R) such that 0 ≤ h ≤ 1, h(t) = 1 for 0 ≤ t ≤ 1
and h(t) = 0 for t ≥ 2. Obviously, I ∈ C1(X,R) and I(0) = 0. If we can prove that
I admits a sequence of critical points (uk) such that I(uk) ≤ 0, uk 6= 0 and uk → 0
as k → ∞, then the critical points of I satisfying ‖uk‖ ≤ 1 are just critical points
of ϕ, since I(u) = ϕ(u) when ‖u‖ ≤ 1, and hence Theorem 1.8 follows. Applying
Proposition 3.2, we shall verify that I possesses a sequence of nontrivial critical
points which converges to the origin.

By the oddness of f , we see that I(−u) = I(u). For ‖u‖ ≥ 2, one has

I(u) =
1
2

∫
Ω

|∇u|2dx =
1
2
‖u‖2,

which implies that I(u) → +∞ as ‖u‖ → ∞. Thus I is bounded from below and
satisfies the (PS) condition.

Given any k ∈ N , let Ek = ⊕kj=1Xj , where Xj = pan{ej}. Since on the finite-
dimensional space Ek all norms are equivalent, there exists dk > 0 such that

dk|u|2 ≥ ‖u‖ and dk‖u‖ ≥ ‖u‖∞ (3.1)

for all u ∈ Ek, where ‖u‖∞ = maxx∈Ω |u(x)|. By (F7), there is r3 > 0 such that

F (x, t) ≥ d2
k(1 + |a|sC2)t2, ∀x ∈ Ω, |t| ≤ r3. (3.2)

Therefore, for u ∈ Ek with ‖u‖ = lk := min{1/2, r3/dk}, we obtain

I(u) =
1
2

∫
Ω

(|∇u|2 + a(x)u2)dx−
∫

Ω

F (x, u)dx

≤ 1
2
‖u‖2 +

1
2
|a|s|u|2s′ − d2

k(1 + |a|sC2)
∫

Ω

u2dx

≤ 1
2

(1 + |a|sC2)‖u‖2 − (1 + |a|sC2)‖u‖2

≤ −1
2

(1 + |a|sC2)l2k

by (3.2), (3.1), (2.1) and Hölder’s inequality, where s′ = 2s/(s − 1). This implies
that

{u ∈ Ek : ‖u‖ = lk} ⊂ {u ∈ X : I(u) ≤ −1
2

(1 + |a|sC2)l2k}.

So, taking Ak = {u ∈ X : I(u) ≤ −(1 + |a|sC2)l2k/2}, by Proposition 3.1, we obtain

γ(Ak) ≥ γ({u ∈ Ek : ‖u‖ = lk}) ≥ k,
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and hence Ak ∈ Γk and

sup
u∈Ak

I(u) ≤ −1
2

(1 + |a|sC2)l2k < 0.

Thus, Theorem 1.8 follows from Proposition 3.2 and the proof is complete. �
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